/** @file UEFI Memory page management functions. Copyright (c) 2007 - 2008, Intel Corporation.
All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "DxeMain.h" #include "Imem.h" #define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT (EFI_PAGE_SIZE) // // Entry for tracking the memory regions for each memory type to coalesce similar memory types // typedef struct { EFI_PHYSICAL_ADDRESS BaseAddress; EFI_PHYSICAL_ADDRESS MaximumAddress; UINT64 CurrentNumberOfPages; UINT64 NumberOfPages; UINTN InformationIndex; BOOLEAN Special; BOOLEAN Runtime; } EFI_MEMORY_TYPE_STAISTICS; // // MemoryMap - The current memory map // UINTN mMemoryMapKey = 0; #define MAX_MAP_DEPTH 6 /// /// mMapDepth - depth of new descriptor stack /// UINTN mMapDepth = 0; /// /// mMapStack - space to use as temp storage to build new map descriptors /// MEMORY_MAP mMapStack[MAX_MAP_DEPTH]; UINTN mFreeMapStack = 0; /// /// This list maintain the free memory map list /// LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList); BOOLEAN mMemoryTypeInformationInitialized = FALSE; EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = { { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiReservedMemoryType { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderCode { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiLoaderData { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesCode { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiBootServicesData { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesCode { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiRuntimeServicesData { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiConventionalMemory { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiUnusableMemory { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIReclaimMemory { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, FALSE }, // EfiACPIMemoryNVS { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIO { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }, // EfiMemoryMappedIOPortSpace { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE, TRUE }, // EfiPalCode { 0, EFI_MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE } // EfiMaxMemoryType }; EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = EFI_MAX_ADDRESS; EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = { { EfiReservedMemoryType, 0 }, { EfiLoaderCode, 0 }, { EfiLoaderData, 0 }, { EfiBootServicesCode, 0 }, { EfiBootServicesData, 0 }, { EfiRuntimeServicesCode, 0 }, { EfiRuntimeServicesData, 0 }, { EfiConventionalMemory, 0 }, { EfiUnusableMemory, 0 }, { EfiACPIReclaimMemory, 0 }, { EfiACPIMemoryNVS, 0 }, { EfiMemoryMappedIO, 0 }, { EfiMemoryMappedIOPortSpace, 0 }, { EfiPalCode, 0 }, { EfiMaxMemoryType, 0 } }; /** Enter critical section by gaining lock on gMemoryLock. **/ VOID CoreAcquireMemoryLock ( VOID ) { CoreAcquireLock (&gMemoryLock); } /** Exit critical section by releasing lock on gMemoryLock. **/ VOID CoreReleaseMemoryLock ( VOID ) { CoreReleaseLock (&gMemoryLock); } /** Internal function. Removes a descriptor entry. @param Entry The entry to remove **/ VOID RemoveMemoryMapEntry ( IN OUT MEMORY_MAP *Entry ) { RemoveEntryList (&Entry->Link); Entry->Link.ForwardLink = NULL; if (Entry->FromPages) { // // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList // InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link); } } /** Internal function. Adds a ranges to the memory map. The range must not already exist in the map. @param Type The type of memory range to add @param Start The starting address in the memory range Must be paged aligned @param End The last address in the range Must be the last byte of a page @param Attribute The attributes of the memory range to add **/ VOID CoreAddRange ( IN EFI_MEMORY_TYPE Type, IN EFI_PHYSICAL_ADDRESS Start, IN EFI_PHYSICAL_ADDRESS End, IN UINT64 Attribute ) { LIST_ENTRY *Link; MEMORY_MAP *Entry; ASSERT ((Start & EFI_PAGE_MASK) == 0); ASSERT (End > Start) ; ASSERT_LOCKED (&gMemoryLock); DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type)); // // Memory map being altered so updated key // mMemoryMapKey += 1; // // UEFI 2.0 added an event group for notificaiton on memory map changes. // So we need to signal this Event Group every time the memory map changes. // If we are in EFI 1.10 compatability mode no event groups will be // found and nothing will happen we we call this function. These events // will get signaled but since a lock is held around the call to this // function the notificaiton events will only be called after this funciton // returns and the lock is released. // CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid); // // Look for adjoining memory descriptor // // Two memory descriptors can only be merged if they have the same Type // and the same Attribute // Link = gMemoryMap.ForwardLink; while (Link != &gMemoryMap) { Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); Link = Link->ForwardLink; if (Entry->Type != Type) { continue; } if (Entry->Attribute != Attribute) { continue; } if (Entry->End + 1 == Start) { Start = Entry->Start; RemoveMemoryMapEntry (Entry); } else if (Entry->Start == End + 1) { End = Entry->End; RemoveMemoryMapEntry (Entry); } } // // Add descriptor // mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE; mMapStack[mMapDepth].FromPages = FALSE; mMapStack[mMapDepth].Type = Type; mMapStack[mMapDepth].Start = Start; mMapStack[mMapDepth].End = End; mMapStack[mMapDepth].VirtualStart = 0; mMapStack[mMapDepth].Attribute = Attribute; InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link); mMapDepth += 1; ASSERT (mMapDepth < MAX_MAP_DEPTH); return ; } /** Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList. If the list is emtry, then allocate a new page to refuel the list. Please Note this algorithm to allocate the memory map descriptor has a property that the memory allocated for memory entries always grows, and will never really be freed For example, if the current boot uses 2000 memory map entries at the maximum point, but ends up with only 50 at the time the OS is booted, then the memory associated with the 1950 memory map entries is still allocated from EfiBootServicesMemory. @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList **/ MEMORY_MAP * AllocateMemoryMapEntry ( VOID ) { MEMORY_MAP* FreeDescriptorEntries; MEMORY_MAP* Entry; UINTN Index; if (IsListEmpty (&mFreeMemoryMapEntryList)) { // // The list is empty, to allocate one page to refuel the list // FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION); if(FreeDescriptorEntries != NULL) { // // Enque the free memmory map entries into the list // for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) { FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE; InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link); } } else { return NULL; } } // // dequeue the first descriptor from the list // Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); RemoveEntryList (&Entry->Link); return Entry; } /** Internal function. Moves any memory descriptors that are on the temporary descriptor stack to heap. **/ VOID CoreFreeMemoryMapStack ( VOID ) { MEMORY_MAP *Entry; MEMORY_MAP *Entry2; LIST_ENTRY *Link2; ASSERT_LOCKED (&gMemoryLock); // // If already freeing the map stack, then return // if (mFreeMapStack != 0) { return ; } // // Move the temporary memory descriptor stack into pool // mFreeMapStack += 1; while (mMapDepth != 0) { // // Deque an memory map entry from mFreeMemoryMapEntryList // Entry = AllocateMemoryMapEntry (); ASSERT (Entry); // // Update to proper entry // mMapDepth -= 1; if (mMapStack[mMapDepth].Link.ForwardLink != NULL) { // // Move this entry to general memory // RemoveEntryList (&mMapStack[mMapDepth].Link); mMapStack[mMapDepth].Link.ForwardLink = NULL; CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP)); Entry->FromPages = TRUE; // // Find insertion location // for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) { Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); if (Entry2->FromPages && Entry2->Start > Entry->Start) { break; } } InsertTailList (Link2, &Entry->Link); } else { // // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list, // so here no need to move it to memory. // InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link); } } mFreeMapStack -= 1; } /** Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable. **/ VOID PromoteMemoryResource ( VOID ) { LIST_ENTRY *Link; EFI_GCD_MAP_ENTRY *Entry; DEBUG ((DEBUG_PAGE, "Promote the memory resource\n")); CoreAcquireGcdMemoryLock (); Link = mGcdMemorySpaceMap.ForwardLink; while (Link != &mGcdMemorySpaceMap) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved && Entry->EndAddress < EFI_MAX_ADDRESS && (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) == (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) { // // Update the GCD map // Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory; Entry->Capabilities |= EFI_MEMORY_TESTED; Entry->ImageHandle = gDxeCoreImageHandle; Entry->DeviceHandle = NULL; // // Add to allocable system memory resource // CoreAddRange ( EfiConventionalMemory, Entry->BaseAddress, Entry->EndAddress, Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME) ); CoreFreeMemoryMapStack (); } Link = Link->ForwardLink; } CoreReleaseGcdMemoryLock (); return; } /** Called to initialize the memory map and add descriptors to the current descriptor list. The first descriptor that is added must be general usable memory as the addition allocates heap. @param Type The type of memory to add @param Start The starting address in the memory range Must be page aligned @param NumberOfPages The number of pages in the range @param Attribute Attributes of the memory to add @return None. The range is added to the memory map **/ VOID CoreAddMemoryDescriptor ( IN EFI_MEMORY_TYPE Type, IN EFI_PHYSICAL_ADDRESS Start, IN UINT64 NumberOfPages, IN UINT64 Attribute ) { EFI_PHYSICAL_ADDRESS End; EFI_STATUS Status; UINTN Index; UINTN FreeIndex; if ((Start & EFI_PAGE_MASK) != 0) { return; } if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) { return; } CoreAcquireMemoryLock (); End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1; CoreAddRange (Type, Start, End, Attribute); CoreFreeMemoryMapStack (); CoreReleaseMemoryLock (); // // Check to see if the statistics for the different memory types have already been established // if (mMemoryTypeInformationInitialized) { return; } // // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array // for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) { // // Make sure the memory type in the gMemoryTypeInformation[] array is valid // Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type); if (Type < 0 || Type > EfiMaxMemoryType) { continue; } if (gMemoryTypeInformation[Index].NumberOfPages != 0) { // // Allocate pages for the current memory type from the top of available memory // Status = CoreAllocatePages ( AllocateAnyPages, Type, gMemoryTypeInformation[Index].NumberOfPages, &mMemoryTypeStatistics[Type].BaseAddress ); if (EFI_ERROR (Status)) { // // If an error occurs allocating the pages for the current memory type, then // free all the pages allocates for the previous memory types and return. This // operation with be retied when/if more memory is added to the system // for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) { // // Make sure the memory type in the gMemoryTypeInformation[] array is valid // Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type); if (Type < 0 || Type > EfiMaxMemoryType) { continue; } if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) { CoreFreePages ( mMemoryTypeStatistics[Type].BaseAddress, gMemoryTypeInformation[FreeIndex].NumberOfPages ); mMemoryTypeStatistics[Type].BaseAddress = 0; mMemoryTypeStatistics[Type].MaximumAddress = EFI_MAX_ADDRESS; } } return; } // // Compute the address at the top of the current statistics // mMemoryTypeStatistics[Type].MaximumAddress = mMemoryTypeStatistics[Type].BaseAddress + LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1; // // If the current base address is the lowest address so far, then update the default // maximum address // if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) { mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1; } } } // // There was enough system memory for all the the memory types were allocated. So, // those memory areas can be freed for future allocations, and all future memory // allocations can occur within their respective bins // for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) { // // Make sure the memory type in the gMemoryTypeInformation[] array is valid // Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type); if (Type < 0 || Type > EfiMaxMemoryType) { continue; } if (gMemoryTypeInformation[Index].NumberOfPages != 0) { CoreFreePages ( mMemoryTypeStatistics[Type].BaseAddress, gMemoryTypeInformation[Index].NumberOfPages ); mMemoryTypeStatistics[Type].NumberOfPages = gMemoryTypeInformation[Index].NumberOfPages; gMemoryTypeInformation[Index].NumberOfPages = 0; } } // // If the number of pages reserved for a memory type is 0, then all allocations for that type // should be in the default range. // for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) { for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) { if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) { mMemoryTypeStatistics[Type].InformationIndex = Index; } } mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0; if (mMemoryTypeStatistics[Type].MaximumAddress == EFI_MAX_ADDRESS) { mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress; } } mMemoryTypeInformationInitialized = TRUE; } /** Internal function. Converts a memory range to the specified type. The range must exist in the memory map. @param Start The first address of the range Must be page aligned @param NumberOfPages The number of pages to convert @param NewType The new type for the memory range @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_NOT_FOUND Could not find a descriptor cover the specified range or convertion not allowed. @retval EFI_SUCCESS Successfully converts the memory range to the specified type. **/ EFI_STATUS CoreConvertPages ( IN UINT64 Start, IN UINT64 NumberOfPages, IN EFI_MEMORY_TYPE NewType ) { UINT64 NumberOfBytes; UINT64 End; UINT64 RangeEnd; UINT64 Attribute; LIST_ENTRY *Link; MEMORY_MAP *Entry; Entry = NULL; NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT); End = Start + NumberOfBytes - 1; ASSERT (NumberOfPages); ASSERT ((Start & EFI_PAGE_MASK) == 0); ASSERT (End > Start) ; ASSERT_LOCKED (&gMemoryLock); if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) { return EFI_INVALID_PARAMETER; } // // Convert the entire range // while (Start < End) { // // Find the entry that the covers the range // for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) { Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); if (Entry->Start <= Start && Entry->End > Start) { break; } } if (Link == &gMemoryMap) { DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End)); return EFI_NOT_FOUND; } // // Convert range to the end, or to the end of the descriptor // if that's all we've got // RangeEnd = End; if (Entry->End < End) { RangeEnd = Entry->End; } DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType)); // // Debug code - verify conversion is allowed // if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) { DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types\n")); return EFI_NOT_FOUND; } // // Update counters for the number of pages allocated to each memory type // if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) { if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress && Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) { if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) { mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0; } else { mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages; } } } if (NewType >= 0 && NewType < EfiMaxMemoryType) { if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) { mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages; if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages > gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) { gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages; } } } // // Pull range out of descriptor // if (Entry->Start == Start) { // // Clip start // Entry->Start = RangeEnd + 1; } else if (Entry->End == RangeEnd) { // // Clip end // Entry->End = Start - 1; } else { // // Pull it out of the center, clip current // // // Add a new one // mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE; mMapStack[mMapDepth].FromPages = FALSE; mMapStack[mMapDepth].Type = Entry->Type; mMapStack[mMapDepth].Start = RangeEnd+1; mMapStack[mMapDepth].End = Entry->End; // // Inherit Attribute from the Memory Descriptor that is being clipped // mMapStack[mMapDepth].Attribute = Entry->Attribute; Entry->End = Start - 1; ASSERT (Entry->Start < Entry->End); Entry = &mMapStack[mMapDepth]; InsertTailList (&gMemoryMap, &Entry->Link); mMapDepth += 1; ASSERT (mMapDepth < MAX_MAP_DEPTH); } // // The new range inherits the same Attribute as the Entry //it is being cut out of // Attribute = Entry->Attribute; // // If the descriptor is empty, then remove it from the map // if (Entry->Start == Entry->End + 1) { RemoveMemoryMapEntry (Entry); Entry = NULL; } // // Add our new range in // CoreAddRange (NewType, Start, RangeEnd, Attribute); // // Move any map descriptor stack to general pool // CoreFreeMemoryMapStack (); // // Bump the starting address, and convert the next range // Start = RangeEnd + 1; } // // Converted the whole range, done // return EFI_SUCCESS; } /** Internal function. Finds a consecutive free page range below the requested address. @param MaxAddress The address that the range must be below @param NumberOfPages Number of pages needed @param NewType The type of memory the range is going to be turned into @param Alignment Bits to align with @return The base address of the range, or 0 if the range was not found **/ UINT64 CoreFindFreePagesI ( IN UINT64 MaxAddress, IN UINT64 NumberOfPages, IN EFI_MEMORY_TYPE NewType, IN UINTN Alignment ) { UINT64 NumberOfBytes; UINT64 Target; UINT64 DescStart; UINT64 DescEnd; UINT64 DescNumberOfBytes; LIST_ENTRY *Link; MEMORY_MAP *Entry; if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) { return 0; } if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) { // // If MaxAddress is not aligned to the end of a page // // // Change MaxAddress to be 1 page lower // MaxAddress -= (EFI_PAGE_MASK + 1); // // Set MaxAddress to a page boundary // MaxAddress &= ~EFI_PAGE_MASK; // // Set MaxAddress to end of the page // MaxAddress |= EFI_PAGE_MASK; } NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT); Target = 0; for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) { Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); // // If it's not a free entry, don't bother with it // if (Entry->Type != EfiConventionalMemory) { continue; } DescStart = Entry->Start; DescEnd = Entry->End; // // If desc is past max allowed address, skip it // if (DescStart >= MaxAddress) { continue; } // // If desc ends past max allowed address, clip the end // if (DescEnd >= MaxAddress) { DescEnd = MaxAddress; } DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1; // // Compute the number of bytes we can used from this // descriptor, and see it's enough to satisfy the request // DescNumberOfBytes = DescEnd - DescStart + 1; if (DescNumberOfBytes >= NumberOfBytes) { // // If this is the best match so far remember it // if (DescEnd > Target) { Target = DescEnd; } } } // // If this is a grow down, adjust target to be the allocation base // Target -= NumberOfBytes - 1; // // If we didn't find a match, return 0 // if ((Target & EFI_PAGE_MASK) != 0) { return 0; } return Target; } /** Internal function. Finds a consecutive free page range below the requested address @param MaxAddress The address that the range must be below @param NoPages Number of pages needed @param NewType The type of memory the range is going to be turned into @param Alignment Bits to align with @return The base address of the range, or 0 if the range was not found. **/ UINT64 FindFreePages ( IN UINT64 MaxAddress, IN UINT64 NoPages, IN EFI_MEMORY_TYPE NewType, IN UINTN Alignment ) { UINT64 NewMaxAddress; UINT64 Start; NewMaxAddress = MaxAddress; if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) { NewMaxAddress = mMemoryTypeStatistics[NewType].MaximumAddress; } else { if (NewMaxAddress > mDefaultMaximumAddress) { NewMaxAddress = mDefaultMaximumAddress; } } Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment); if (Start == 0) { Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment); if (Start == 0) { // // Here means there may be no enough memory to use, so try to go through // all the memory descript to promote the untested memory directly // PromoteMemoryResource (); // // Allocate memory again after the memory resource re-arranged // Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment); } } return Start; } /** Allocates pages from the memory map. @param Type The type of allocation to perform @param MemoryType The type of memory to turn the allocated pages into @param NumberOfPages The number of pages to allocate @param Memory A pointer to receive the base allocated memory address @return Status. On success, Memory is filled in with the base address allocated @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in spec. @retval EFI_NOT_FOUND Could not allocate pages match the requirement. @retval EFI_OUT_OF_RESOURCES No enough pages to allocate. @retval EFI_SUCCESS Pages successfully allocated. **/ EFI_STATUS EFIAPI CoreAllocatePages ( IN EFI_ALLOCATE_TYPE Type, IN EFI_MEMORY_TYPE MemoryType, IN UINTN NumberOfPages, IN OUT EFI_PHYSICAL_ADDRESS *Memory ) { EFI_STATUS Status; UINT64 Start; UINT64 MaxAddress; UINTN Alignment; if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) { return EFI_INVALID_PARAMETER; } if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) || MemoryType == EfiConventionalMemory) { return EFI_INVALID_PARAMETER; } Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT; if (MemoryType == EfiACPIReclaimMemory || MemoryType == EfiACPIMemoryNVS || MemoryType == EfiRuntimeServicesCode || MemoryType == EfiRuntimeServicesData) { Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT; } if (Type == AllocateAddress) { if ((*Memory & (Alignment - 1)) != 0) { return EFI_NOT_FOUND; } } NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1; NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1); // // If this is for below a particular address, then // Start = *Memory; // // The max address is the max natively addressable address for the processor // MaxAddress = EFI_MAX_ADDRESS; if (Type == AllocateMaxAddress) { MaxAddress = Start; } CoreAcquireMemoryLock (); // // If not a specific address, then find an address to allocate // if (Type != AllocateAddress) { Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment); if (Start == 0) { Status = EFI_OUT_OF_RESOURCES; goto Done; } } // // Convert pages from FreeMemory to the requested type // Status = CoreConvertPages (Start, NumberOfPages, MemoryType); Done: CoreReleaseMemoryLock (); if (!EFI_ERROR (Status)) { *Memory = Start; } return Status; } /** Frees previous allocated pages. @param Memory Base address of memory being freed @param NumberOfPages The number of pages to free @retval EFI_NOT_FOUND Could not find the entry that covers the range @retval EFI_INVALID_PARAMETER Address not aligned @return EFI_SUCCESS -Pages successfully freed. **/ EFI_STATUS EFIAPI CoreFreePages ( IN EFI_PHYSICAL_ADDRESS Memory, IN UINTN NumberOfPages ) { EFI_STATUS Status; LIST_ENTRY *Link; MEMORY_MAP *Entry; UINTN Alignment; // // Free the range // CoreAcquireMemoryLock (); // // Find the entry that the covers the range // Entry = NULL; for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) { Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); if (Entry->Start <= Memory && Entry->End > Memory) { break; } } if (Link == &gMemoryMap) { CoreReleaseMemoryLock (); return EFI_NOT_FOUND; } Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT; if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS || Entry->Type == EfiRuntimeServicesCode || Entry->Type == EfiRuntimeServicesData) { Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT; } if ((Memory & (Alignment - 1)) != 0) { CoreReleaseMemoryLock (); return EFI_INVALID_PARAMETER; } NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1; NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1); Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory); CoreReleaseMemoryLock (); if (EFI_ERROR (Status)) { return Status; } // // Destroy the contents // if (Memory < EFI_MAX_ADDRESS) { DEBUG_CLEAR_MEMORY ((VOID *)(UINTN)Memory, NumberOfPages << EFI_PAGE_SHIFT); } return Status; } /** This function returns a copy of the current memory map. The map is an array of memory descriptors, each of which describes a contiguous block of memory. @param MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On input, this is the size of the buffer allocated by the caller. On output, it is the size of the buffer returned by the firmware if the buffer was large enough, or the size of the buffer needed to contain the map if the buffer was too small. @param MemoryMap A pointer to the buffer in which firmware places the current memory map. @param MapKey A pointer to the location in which firmware returns the key for the current memory map. @param DescriptorSize A pointer to the location in which firmware returns the size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. @param DescriptorVersion A pointer to the location in which firmware returns the version number associated with the EFI_MEMORY_DESCRIPTOR. @retval EFI_SUCCESS The memory map was returned in the MemoryMap buffer. @retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current buffer size needed to hold the memory map is returned in MemoryMapSize. @retval EFI_INVALID_PARAMETER One of the parameters has an invalid value. **/ EFI_STATUS EFIAPI CoreGetMemoryMap ( IN OUT UINTN *MemoryMapSize, IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap, OUT UINTN *MapKey, OUT UINTN *DescriptorSize, OUT UINT32 *DescriptorVersion ) { EFI_STATUS Status; UINTN Size; UINTN BufferSize; UINTN NumberOfRuntimeEntries; LIST_ENTRY *Link; MEMORY_MAP *Entry; EFI_GCD_MAP_ENTRY *GcdMapEntry; EFI_MEMORY_TYPE Type; // // Make sure the parameters are valid // if (MemoryMapSize == NULL) { return EFI_INVALID_PARAMETER; } CoreAcquireGcdMemoryLock (); // // Count the number of Reserved and MMIO entries that are marked for runtime use // NumberOfRuntimeEntries = 0; for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) { GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) || (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) { if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) { NumberOfRuntimeEntries++; } } } Size = sizeof (EFI_MEMORY_DESCRIPTOR); // // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will // prevent people from having pointer math bugs in their code. // now you have to use *DescriptorSize to make things work. // Size += sizeof(UINT64) - (Size % sizeof (UINT64)); if (DescriptorSize != NULL) { *DescriptorSize = Size; } if (DescriptorVersion != NULL) { *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION; } CoreAcquireMemoryLock (); // // Compute the buffer size needed to fit the entire map // BufferSize = Size * NumberOfRuntimeEntries; for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) { BufferSize += Size; } if (*MemoryMapSize < BufferSize) { Status = EFI_BUFFER_TOO_SMALL; goto Done; } if (MemoryMap == NULL) { Status = EFI_INVALID_PARAMETER; goto Done; } // // Build the map // ZeroMem (MemoryMap, BufferSize); for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) { Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); ASSERT (Entry->VirtualStart == 0); // // Convert internal map into an EFI_MEMORY_DESCRIPTOR // MemoryMap->Type = Entry->Type; MemoryMap->PhysicalStart = Entry->Start; MemoryMap->VirtualStart = Entry->VirtualStart; MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT); // // If the memory type is EfiConventionalMemory, then determine if the range is part of a // memory type bin and needs to be converted to the same memory type as the rest of the // memory type bin in order to minimize EFI Memory Map changes across reboots. This // improves the chances for a successful S4 resume in the presence of minor page allocation // differences across reboots. // if (MemoryMap->Type == EfiConventionalMemory) { for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) { if (mMemoryTypeStatistics[Type].Special && mMemoryTypeStatistics[Type].NumberOfPages > 0 && Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress && Entry->End <= mMemoryTypeStatistics[Type].MaximumAddress) { MemoryMap->Type = Type; } } } MemoryMap->Attribute = Entry->Attribute; if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) { MemoryMap->Attribute |= EFI_MEMORY_RUNTIME; } MemoryMap = NextMemoryDescriptor (MemoryMap, Size); } for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) { GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) || (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) { if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) { // // Create EFI_MEMORY_DESCRIPTOR for every Reserved and MMIO GCD entries // that are marked for runtime use // MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress; MemoryMap->VirtualStart = 0; MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT); MemoryMap->Attribute = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO; if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) { MemoryMap->Type = EfiReservedMemoryType; } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) { if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) { MemoryMap->Type = EfiMemoryMappedIOPortSpace; } else { MemoryMap->Type = EfiMemoryMappedIO; } } MemoryMap = NextMemoryDescriptor (MemoryMap, Size); } } } Status = EFI_SUCCESS; Done: CoreReleaseMemoryLock (); CoreReleaseGcdMemoryLock (); // // Update the map key finally // if (MapKey != NULL) { *MapKey = mMemoryMapKey; } *MemoryMapSize = BufferSize; return Status; } /** Internal function. Used by the pool functions to allocate pages to back pool allocation requests. @param PoolType The type of memory for the new pool pages @param NumberOfPages No of pages to allocate @param Alignment Bits to align. @return The allocated memory, or NULL **/ VOID * CoreAllocatePoolPages ( IN EFI_MEMORY_TYPE PoolType, IN UINTN NumberOfPages, IN UINTN Alignment ) { UINT64 Start; // // Find the pages to convert // Start = FindFreePages (EFI_MAX_ADDRESS, NumberOfPages, PoolType, Alignment); // // Convert it to boot services data // if (Start == 0) { DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", NumberOfPages)); } else { CoreConvertPages (Start, NumberOfPages, PoolType); } return (VOID *)(UINTN) Start; } /** Internal function. Frees pool pages allocated via AllocatePoolPages () @param Memory The base address to free @param NumberOfPages The number of pages to free **/ VOID CoreFreePoolPages ( IN EFI_PHYSICAL_ADDRESS Memory, IN UINTN NumberOfPages ) { CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory); } /** Make sure the memory map is following all the construction rules, it is the last time to check memory map error before exit boot services. @param MapKey Memory map key @retval EFI_INVALID_PARAMETER Memory map not consistent with construction rules. @retval EFI_SUCCESS Valid memory map. **/ EFI_STATUS CoreTerminateMemoryMap ( IN UINTN MapKey ) { EFI_STATUS Status; LIST_ENTRY *Link; MEMORY_MAP *Entry; Status = EFI_SUCCESS; CoreAcquireMemoryLock (); if (MapKey == mMemoryMapKey) { // // Make sure the memory map is following all the construction rules // This is the last chance we will be able to display any messages on // the console devices. // for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) { Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE); if ((Entry->Attribute & EFI_MEMORY_RUNTIME) != 0) { if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) { DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n")); Status = EFI_INVALID_PARAMETER; goto Done; } if ((Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) { DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n")); Status = EFI_INVALID_PARAMETER; goto Done; } if (((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) { DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n")); Status = EFI_INVALID_PARAMETER; goto Done; } } } // // The map key they gave us matches what we expect. Fall through and // return success. In an ideal world we would clear out all of // EfiBootServicesCode and EfiBootServicesData. However this function // is not the last one called by ExitBootServices(), so we have to // preserve the memory contents. // } else { Status = EFI_INVALID_PARAMETER; } Done: CoreReleaseMemoryLock (); return Status; }