/**@file Firmware Volume Block Protocol Runtime Interface Abstraction And FVB Extension protocol Runtime Interface Abstraction mFvbEntry is an array of Handle Fvb pairs. The Fvb Lib Instance matches the index in the mFvbEntry array. This should be the same sequence as the FVB's were described in the HOB. We have to remember the handle so we can tell if the protocol has been reinstalled and it needs updating. Copyright (c) 2006 - 2008, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "Fvb.h" // // Event for Set Virtual Map Changed Event // EFI_EVENT mSetVirtualMapChangedEvent = NULL; // // Lib will ASSERT if more FVB devices than this are added to the system. // FVB_ENTRY *mFvbEntry = NULL; EFI_EVENT mFvbRegistration = NULL; UINTN mFvbCount = 0; /** Check whether an address is runtime memory or not. @param Address The Address being checked. @retval TRUE The address is runtime memory. @retval FALSE The address is not runtime memory. **/ BOOLEAN IsRuntimeMemory ( IN VOID *Address ) { EFI_STATUS Status; UINT8 TmpMemoryMap[1]; UINTN MapKey; UINTN DescriptorSize; UINT32 DescriptorVersion; UINTN MemoryMapSize; EFI_MEMORY_DESCRIPTOR *MemoryMap; EFI_MEMORY_DESCRIPTOR *MemoryMapPtr; BOOLEAN IsRuntime; UINTN Index; IsRuntime = FALSE; // // Get System MemoryMapSize // MemoryMapSize = 1; Status = gBS->GetMemoryMap ( &MemoryMapSize, (EFI_MEMORY_DESCRIPTOR *)TmpMemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion ); ASSERT (Status == EFI_BUFFER_TOO_SMALL); // // Enlarge space here, because we will allocate pool now. // MemoryMapSize += EFI_PAGE_SIZE; MemoryMap = AllocatePool (MemoryMapSize); ASSERT (MemoryMap != NULL); // // Get System MemoryMap // Status = gBS->GetMemoryMap ( &MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion ); ASSERT_EFI_ERROR (Status); MemoryMapPtr = MemoryMap; // // Search the request Address // for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) { if (((EFI_PHYSICAL_ADDRESS)(UINTN)Address >= MemoryMap->PhysicalStart) && ((EFI_PHYSICAL_ADDRESS)(UINTN)Address < MemoryMap->PhysicalStart + LShiftU64 (MemoryMap->NumberOfPages, EFI_PAGE_SHIFT))) { // // Found it // if ((MemoryMap->Attribute & EFI_MEMORY_RUNTIME) != 0) { IsRuntime = TRUE; } break; } // // Get next item // MemoryMap = (EFI_MEMORY_DESCRIPTOR *)((UINTN) MemoryMap + DescriptorSize); } // // Done // FreePool (MemoryMapPtr); return IsRuntime; } /** Update mFvbEntry. Add new entry, or update existing entry if Fvb protocol is reinstalled. @param Event The Event that is being processed @param Context Event Context **/ VOID EFIAPI FvbNotificationEvent ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; UINTN BufferSize; EFI_HANDLE Handle; UINTN Index; UINTN UpdateIndex; while (TRUE) { BufferSize = sizeof (Handle); Status = gBS->LocateHandle ( ByRegisterNotify, &gEfiFirmwareVolumeBlockProtocolGuid, mFvbRegistration, &BufferSize, &Handle ); if (EFI_ERROR (Status)) { // // Exit Path of While Loop.... // break; } UpdateIndex = MAX_FVB_COUNT; for (Index = 0; Index < mFvbCount; Index++) { if (mFvbEntry[Index].Handle == Handle) { // // If the handle is already in the table just update the protocol // UpdateIndex = Index; break; } } if (UpdateIndex == MAX_FVB_COUNT) { // // Use the next free slot for a new entry // UpdateIndex = mFvbCount++; // // Check the UpdateIndex whether exceed the maximum value. // ASSERT (UpdateIndex < MAX_FVB_COUNT); mFvbEntry[UpdateIndex].Handle = Handle; } // // The array does not have enough entries // ASSERT (UpdateIndex < MAX_FVB_COUNT); // // Get the interface pointer and if it's ours, skip it // Status = gBS->HandleProtocol ( Handle, &gEfiFirmwareVolumeBlockProtocolGuid, (VOID **) &mFvbEntry[UpdateIndex].Fvb ); ASSERT_EFI_ERROR (Status); Status = gBS->HandleProtocol ( Handle, &gEfiFvbExtensionProtocolGuid, (VOID **) &mFvbEntry[UpdateIndex].FvbExtension ); if (Status != EFI_SUCCESS) { mFvbEntry[UpdateIndex].FvbExtension = NULL; } // // Check the FVB can be accessed in RUNTIME, The FVBs in FVB handle list come from two ways: // 1) Dxe Core. (FVB information is transferred from FV HOB). 2) FVB driver. The FVB produced // Dxe core is used to discovery DXE driver and dispatch. These FVBs can only be accessed in // boot time. FVB driver will discovery all FV in FLASH and these FVBs can be accessed in // runtime. The FVB itself produced by FVB driver is allocated in runtime memory. So we can // determine the what FVB can be accessed in RUNTIME by judging whether FVB itself is allocated // in RUNTIME memory. // mFvbEntry[UpdateIndex].IsRuntimeAccess = IsRuntimeMemory (mFvbEntry[UpdateIndex].Fvb); } } /** Convert all pointers in mFvbEntry after ExitBootServices. @param Event The Event that is being processed @param Context Event Context **/ VOID EFIAPI FvbVirtualAddressChangeNotifyEvent ( IN EFI_EVENT Event, IN VOID *Context ) { UINTN Index; if (mFvbEntry != NULL) { for (Index = 0; Index < MAX_FVB_COUNT; Index++) { if (!mFvbEntry[Index].IsRuntimeAccess) { continue; } if (mFvbEntry[Index].Fvb != NULL) { EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->GetBlockSize); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->GetPhysicalAddress); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->GetAttributes); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->SetAttributes); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->Read); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->Write); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb->EraseBlocks); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].Fvb); } if (mFvbEntry[Index].FvbExtension != NULL) { EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].FvbExtension->EraseFvbCustomBlock); EfiConvertPointer (0x0, (VOID **) &mFvbEntry[Index].FvbExtension); } } EfiConvertPointer (0x0, (VOID **) &mFvbEntry); } } /** Library constructor function entry. @param ImageHandle The handle of image who call this library. @param SystemTable The point of System Table. @retval EFI_SUCESS Success construct this library. @retval Others Fail to construct this library. **/ EFI_STATUS EFIAPI FvbLibInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; mFvbEntry = AllocateRuntimeZeroPool (sizeof (FVB_ENTRY) * MAX_FVB_COUNT); ASSERT (mFvbEntry != NULL); // // Register FvbNotificationEvent () notify function. // EfiCreateProtocolNotifyEvent ( &gEfiFirmwareVolumeBlockProtocolGuid, TPL_CALLBACK, FvbNotificationEvent, NULL, &mFvbRegistration ); // // Register SetVirtualAddressMap () notify function // Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, FvbVirtualAddressChangeNotifyEvent, NULL, &gEfiEventVirtualAddressChangeGuid, &mSetVirtualMapChangedEvent ); ASSERT_EFI_ERROR (Status); return Status; } // // ============================================================================= // The following functions wrap Fvb protocol in the Runtime Lib functions. // The Instance translates into Fvb instance. The Fvb order defined by HOBs and // thus the sequence of FVB protocol addition define Instance. // /** Reads specified number of bytes into a buffer from the specified block. The EfiFvbReadBlock() function reads the requested number of bytes from the requested block in the specified firmware volume and stores them in the provided buffer. Implementations should be mindful that the firmware volume might be in the ReadDisabled state. If it is in this state, the EfiFvbReadBlock() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the buffer. The EfiFvbReadBlock() function must also prevent spanning block boundaries. If a read is requested that would span a block boundary, the read must read up to the boundary but not beyond. The output parameter NumBytes must be set to correctly indicate the number of bytes actually read. The caller must be aware that a read may be partially completed. If NumBytes is NULL, then ASSERT(). If Buffer is NULL, then ASSERT(). @param[in] Instance The FV instance to be read from. @param[in] Lba The logical block address to be read from @param[in] Offset The offset relative to the block, at which to begin reading. @param[in, out] NumBytes Pointer to a UINTN. On input, *NumBytes contains the total size of the buffer. On output, it contains the actual number of bytes read. @param[out] Buffer Pointer to a caller allocated buffer that will be used to hold the data read. @retval EFI_SUCCESS The firmware volume was read successfully and contents are in Buffer. @retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary. On output, NumBytes contains the total number of bytes returned in Buffer. @retval EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state. @retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read. @retval EFI_INVALID_PARAMETER Invalid parameter, Instance is larger than the max FVB number. Lba index is larger than the last block of the firmware volume. Offset is larger than the block size. **/ EFI_STATUS EFIAPI EfiFvbReadBlock ( IN UINTN Instance, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, OUT UINT8 *Buffer ) { ASSERT (NumBytes != NULL); ASSERT (Buffer != NULL); if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->Read (mFvbEntry[Instance].Fvb, Lba, Offset, NumBytes, Buffer); } /** Writes specified number of bytes from the input buffer to the block The EfiFvbWriteBlock() function writes the specified number of bytes from the provided buffer to the specified block and offset in the requested firmware volume. If the firmware volume is sticky write, the caller must ensure that all the bits of the specified range to write are in the EFI_FVB_ERASE_POLARITY state before calling the EfiFvbWriteBlock() function, or else the result will be unpredictable. This unpredictability arises because, for a sticky-write firmware volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY state but it cannot flip it back again. In general, before calling the EfiFvbWriteBlock() function, the caller should call the EfiFvbEraseBlock() function first to erase the specified block to write. A block erase cycle will transition bits from the (NOT)EFI_FVB_ERASE_POLARITY state back to the EFI_FVB_ERASE_POLARITY state. Implementations should be mindful that the firmware volume might be in the WriteDisabled state. If it is in this state, the EfiFvbWriteBlock() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the firmware volume. The EfiFvbWriteBlock() function must also prevent spanning block boundaries. If a write is requested that spans a block boundary, the write must store up to the boundary but not beyond. The output parameter NumBytes must be set to correctly indicate the number of bytes actually written. The caller must be aware that a write may be partially completed. All writes, partial or otherwise, must be fully flushed to the hardware before the EfiFvbWriteBlock() function returns. If NumBytes is NULL, then ASSERT(). @param Instance The FV instance to be written to. @param Lba The starting logical block index to write. @param Offset The offset relative to the block to write. @param NumBytes Pointer to a UINTN. On input, *NumBytes contains the total size of the buffer. On output, it contains the actual number of bytes written. @param Buffer Pointer to a caller allocated buffer that contains the source for the write @retval EFI_SUCCESS The firmware volume was written successfully. @retval EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary. On output, NumBytes contains the total number of bytes actually written. @retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. @retval EFI_DEVICE_ERROR The block device is malfunctioning and could not be written. @retval EFI_INVALID_PARAMETER Invalid parameter, Instance is larger than the max FVB number. Lba index is larger than the last block of the firmware volume. Offset is larger than the block size. **/ EFI_STATUS EFIAPI EfiFvbWriteBlock ( IN UINTN Instance, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN UINT8 *Buffer ) { ASSERT (NumBytes != NULL); if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->Write (mFvbEntry[Instance].Fvb, Lba, Offset, NumBytes, Buffer); } /** Erases and initializes a firmware volume block. The EfiFvbEraseBlock() function erases one block specified by Lba. Implementations should be mindful that the firmware volume might be in the WriteDisabled state. If it is in this state, the EfiFvbEraseBlock() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the firmware volume. If Instance is larger than the max FVB number, or Lba index is larger than the last block of the firmware volume, this function return the status code EFI_INVALID_PARAMETER. All calls to EfiFvbEraseBlock() must be fully flushed to the hardware before this function returns. @param[in] Instance The FV instance to be erased. @param[in] Lba The logical block index to be erased from. @retval EFI_SUCCESS The erase request was successfully completed. @retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. @retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written. The firmware device may have been partially erased. @retval EFI_INVALID_PARAMETER Invalid parameter. Instance is larger than the max FVB number. Lba index is larger than the last block of the firmware volume. **/ EFI_STATUS EFIAPI EfiFvbEraseBlock ( IN UINTN Instance, IN EFI_LBA Lba ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->EraseBlocks (mFvbEntry[Instance].Fvb, Lba, 1, EFI_LBA_LIST_TERMINATOR); } /** Retrieves the attributes and current settings of the specified block, returns resulting attributes in output parameter. The EfiFvbGetAttributes() function retrieves the attributes and current settings of the block specified by Instance. If Instance is larger than the max FVB number, this function returns the status code EFI_INVALID_PARAMETER. If Attributes is NULL, then ASSERT(). @param[in] Instance The FV instance to be operated. @param[out] Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and current settings are returned. @retval EFI_EFI_SUCCESS The firmware volume attributes were returned. @retval EFI_INVALID_PARAMETER Invalid parameter. Instance is larger than the max FVB number. **/ EFI_STATUS EFIAPI EfiFvbGetVolumeAttributes ( IN UINTN Instance, OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) { ASSERT (Attributes != NULL); if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->GetAttributes (mFvbEntry[Instance].Fvb, Attributes); } /** Modify the attributes and current settings of the specified block according to the input parameter. The EfiFvbSetAttributes() function sets configurable firmware volume attributes and returns the new settings of the firmware volume specified by Instance. If Instance is larger than the max FVB number, this function returns the status code EFI_INVALID_PARAMETER. If Attributes is NULL, then ASSERT(). @param[in] Instance The FV instance to be operated. @param[in, out]Attributes On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2 that contains the desired firmware volume settings. On successful return, it contains the new settings of the firmware volume. @retval EFI_EFI_SUCCESS The firmware volume attributes were modified successfully. @retval EFI_INVALID_PARAMETER Invalid parameter. Instance is larger than the max FVB number. **/ EFI_STATUS EFIAPI EfiFvbSetVolumeAttributes ( IN UINTN Instance, IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) { ASSERT (Attributes != NULL); if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->SetAttributes (mFvbEntry[Instance].Fvb, Attributes); } /** Retrieves the physical address of the specified memory mapped FV. Retrieve the base address of a memory-mapped firmware volume specified by Instance. If Instance is larger than the max FVB number, this function returns the status code EFI_INVALID_PARAMETER. If BaseAddress is NULL, then ASSERT(). @param[in] Instance The FV instance to be operated. @param[out] BaseAddress Pointer to a caller allocated EFI_PHYSICAL_ADDRESS that on successful return, contains the base address of the firmware volume. @retval EFI_EFI_SUCCESS The firmware volume base address is returned. @retval EFI_INVALID_PARAMETER Invalid parameter. Instance is larger than the max FVB number. **/ EFI_STATUS EFIAPI EfiFvbGetPhysicalAddress ( IN UINTN Instance, OUT EFI_PHYSICAL_ADDRESS *BaseAddress ) { ASSERT (BaseAddress != NULL); if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->GetPhysicalAddress (mFvbEntry[Instance].Fvb, BaseAddress); } /** Retrieve the block size of the specified fv. The EfiFvbGetBlockSize() function retrieves the size of the requested block. It also returns the number of additional blocks with the identical size. If Instance is larger than the max FVB number, or Lba index is larger than the last block of the firmware volume, this function return the status code EFI_INVALID_PARAMETER. If BlockSize is NULL, then ASSERT(). If NumOfBlocks is NULL, then ASSERT(). @param[in] Instance The FV instance to be operated. @param[in] Lba Indicates which block to return the size for. @param[out] BlockSize Pointer to a caller-allocated UINTN in which the size of the block is returned. @param[out] NumOfBlocks Pointer to a caller-allocated UINTN in which the number of consecutive blocks, starting with Lba, is returned. All blocks in this range have a size of BlockSize. @retval EFI_EFI_SUCCESS The firmware volume base address is returned. @retval EFI_INVALID_PARAMETER Invalid parameter. Instance is larger than the max FVB number. Lba index is larger than the last block of the firmware volume. **/ EFI_STATUS EFIAPI EfiFvbGetBlockSize ( IN UINTN Instance, IN EFI_LBA Lba, OUT UINTN *BlockSize, OUT UINTN *NumOfBlocks ) { ASSERT (BlockSize != NULL); ASSERT (NumOfBlocks != NULL); if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } return mFvbEntry[Instance].Fvb->GetBlockSize (mFvbEntry[Instance].Fvb, Lba, BlockSize, NumOfBlocks); } /** Erases and initializes a specified range of a firmware volume. The EfiFvbEraseCustomBlockRange() function erases the specified range in the firmware volume index by Instance. If Instance is larger than the max FVB number, StartLba or LastLba index is larger than the last block of the firmware volume, StartLba > LastLba or StartLba equal to LastLba but OffsetStartLba > OffsetLastLba, this function return the status code EFI_INVALID_PARAMETER. @param[in] Instance The FV instance to be operated. @param[in] StartLba The starting logical block index to be erased. @param[in] OffsetStartLba Offset into the starting block at which to begin erasing. @param[in] LastLba The last logical block index to be erased. @param[in] OffsetLastLba Offset into the last block at which to end erasing. @retval EFI_EFI_SUCCESS Successfully erase custom block range @retval EFI_INVALID_PARAMETER Invalid parameter. Instance is larger than the max FVB number. @retval EFI_UNSUPPORTED Firmware volume block device has no this capability. **/ EFI_STATUS EFIAPI EfiFvbEraseCustomBlockRange ( IN UINTN Instance, IN EFI_LBA StartLba, IN UINTN OffsetStartLba, IN EFI_LBA LastLba, IN UINTN OffsetLastLba ) { if (Instance >= mFvbCount) { return EFI_INVALID_PARAMETER; } if (EfiAtRuntime() && !mFvbEntry[Instance].IsRuntimeAccess) { return EFI_INVALID_PARAMETER; } if (!(mFvbEntry[Instance].FvbExtension)) { return EFI_UNSUPPORTED; } if (!(mFvbEntry[Instance].FvbExtension->EraseFvbCustomBlock)) { return EFI_UNSUPPORTED; } return mFvbEntry[Instance].FvbExtension->EraseFvbCustomBlock ( mFvbEntry[Instance].FvbExtension, StartLba, OffsetStartLba, LastLba, OffsetLastLba ); }