/** @file Internal generic functions to operate flash block. Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "FaultTolerantWrite.h" /** Check whether a flash buffer is erased. @param Buffer Buffer to check @param BufferSize Size of the buffer @return A BOOLEAN value indicating erased or not. **/ BOOLEAN IsErasedFlashBuffer ( IN UINT8 *Buffer, IN UINTN BufferSize ) { BOOLEAN IsEmpty; UINT8 *Ptr; UINTN Index; Ptr = Buffer; IsEmpty = TRUE; for (Index = 0; Index < BufferSize; Index += 1) { if (*Ptr++ != FTW_ERASED_BYTE) { IsEmpty = FALSE; break; } } return IsEmpty; } /** To erase the block with the spare block size. @param FtwDevice The private data of FTW driver @param FvBlock FVB Protocol interface @param Lba Lba of the firmware block @retval EFI_SUCCESS Block LBA is Erased successfully @retval Others Error occurs **/ EFI_STATUS FtwEraseBlock ( IN EFI_FTW_DEVICE *FtwDevice, EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock, EFI_LBA Lba ) { return FvBlock->EraseBlocks ( FvBlock, Lba, FtwDevice->NumberOfSpareBlock, EFI_LBA_LIST_TERMINATOR ); } /** Erase spare block. @param FtwDevice The private data of FTW driver @retval EFI_SUCCESS The erase request was successfully completed. @retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. @retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written. The firmware device may have been partially erased. @retval EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do not exist in the firmware volume. **/ EFI_STATUS FtwEraseSpareBlock ( IN EFI_FTW_DEVICE *FtwDevice ) { return FtwDevice->FtwBackupFvb->EraseBlocks ( FtwDevice->FtwBackupFvb, FtwDevice->FtwSpareLba, FtwDevice->NumberOfSpareBlock, EFI_LBA_LIST_TERMINATOR ); } /** Is it in working block? @param FtwDevice The private data of FTW driver @param FvBlock Fvb protocol instance @param Lba The block specified @return A BOOLEAN value indicating in working block or not. **/ BOOLEAN IsWorkingBlock ( EFI_FTW_DEVICE *FtwDevice, EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock, EFI_LBA Lba ) { // // If matching the following condition, the target block is in working block. // 1. Target block is on the FV of working block (Using the same FVB protocol instance). // 2. Lba falls into the range of working block. // return (BOOLEAN) ( (FvBlock == FtwDevice->FtwFvBlock) && (Lba >= FtwDevice->FtwWorkBlockLba) && (Lba <= FtwDevice->FtwWorkSpaceLba) ); } /** Get firmware block by address. @param Address Address specified the block @param FvBlock The block caller wanted @retval EFI_SUCCESS The protocol instance if found. @retval EFI_NOT_FOUND Block not found **/ EFI_HANDLE GetFvbByAddress ( IN EFI_PHYSICAL_ADDRESS Address, OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock ) { EFI_STATUS Status; EFI_HANDLE *HandleBuffer; UINTN HandleCount; UINTN Index; EFI_PHYSICAL_ADDRESS FvbBaseAddress; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_HANDLE FvbHandle; *FvBlock = NULL; FvbHandle = NULL; // // Locate all handles of Fvb protocol // Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer); if (EFI_ERROR (Status)) { return NULL; } // // Get the FVB to access variable store // for (Index = 0; Index < HandleCount; Index += 1) { Status = FtwGetFvbByHandle (HandleBuffer[Index], &Fvb); if (EFI_ERROR (Status)) { break; } // // Compare the address and select the right one // Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress); if (EFI_ERROR (Status)) { continue; } FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress); if ((Address >= FvbBaseAddress) && (Address <= (FvbBaseAddress + (FwVolHeader->FvLength - 1)))) { *FvBlock = Fvb; FvbHandle = HandleBuffer[Index]; break; } } FreePool (HandleBuffer); return FvbHandle; } /** Is it in boot block? @param FtwDevice The private data of FTW driver @param FvBlock Fvb protocol instance @param Lba The block specified @return A BOOLEAN value indicating in boot block or not. **/ BOOLEAN IsBootBlock ( EFI_FTW_DEVICE *FtwDevice, EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock, EFI_LBA Lba ) { EFI_STATUS Status; EFI_SWAP_ADDRESS_RANGE_PROTOCOL *SarProtocol; EFI_PHYSICAL_ADDRESS BootBlockBase; UINTN BootBlockSize; EFI_PHYSICAL_ADDRESS BackupBlockBase; UINTN BackupBlockSize; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *BootFvb; BOOLEAN IsSwapped; EFI_HANDLE FvbHandle; if (!FeaturePcdGet(PcdFullFtwServiceEnable)) { return FALSE; } Status = FtwGetSarProtocol ((VOID **) &SarProtocol); if (EFI_ERROR (Status)) { return FALSE; } // // Get the boot block range // Status = SarProtocol->GetRangeLocation ( SarProtocol, &BootBlockBase, &BootBlockSize, &BackupBlockBase, &BackupBlockSize ); if (EFI_ERROR (Status)) { return FALSE; } Status = SarProtocol->GetSwapState (SarProtocol, &IsSwapped); if (EFI_ERROR (Status)) { return FALSE; } // // Get FVB by address // if (!IsSwapped) { FvbHandle = GetFvbByAddress (BootBlockBase, &BootFvb); } else { FvbHandle = GetFvbByAddress (BackupBlockBase, &BootFvb); } if (FvbHandle == NULL) { return FALSE; } // // Compare the Fvb // return (BOOLEAN) (FvBlock == BootFvb); } /** Copy the content of spare block to a boot block. Size is FTW_BLOCK_SIZE. Spare block is accessed by FTW working FVB protocol interface. LBA is 1. Target block is accessed by FvbBlock protocol interface. LBA is Lba. FTW will do extra work on boot block update. FTW should depend on a protocol of EFI_ADDRESS_RANGE_SWAP_PROTOCOL, which is produced by a chipset driver. FTW updating boot block steps may be: 1. GetRangeLocation(), if the Range is inside the boot block, FTW know that boot block will be update. It shall add a FLAG in the working block. 2. When spare block is ready, 3. SetSwapState(EFI_SWAPPED) 4. erasing boot block, 5. programming boot block until the boot block is ok. 6. SetSwapState(UNSWAPPED) FTW shall not allow to update boot block when battery state is error. @param FtwDevice The private data of FTW driver @retval EFI_SUCCESS Spare block content is copied to boot block @retval EFI_INVALID_PARAMETER Input parameter error @retval EFI_OUT_OF_RESOURCES Allocate memory error @retval EFI_ABORTED The function could not complete successfully **/ EFI_STATUS FlushSpareBlockToBootBlock ( EFI_FTW_DEVICE *FtwDevice ) { EFI_STATUS Status; UINTN Length; UINT8 *Buffer; UINTN Count; UINT8 *Ptr; UINTN Index; BOOLEAN TopSwap; EFI_SWAP_ADDRESS_RANGE_PROTOCOL *SarProtocol; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *BootFvb; EFI_LBA BootLba; if (!FeaturePcdGet(PcdFullFtwServiceEnable)) { return EFI_UNSUPPORTED; } // // Locate swap address range protocol // Status = FtwGetSarProtocol ((VOID **) &SarProtocol); if (EFI_ERROR (Status)) { return Status; } // // Allocate a memory buffer // Length = FtwDevice->SpareAreaLength; Buffer = AllocatePool (Length); if (Buffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Get TopSwap bit state // Status = SarProtocol->GetSwapState (SarProtocol, &TopSwap); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Ftw: Get Top Swapped status - %r\n", Status)); FreePool (Buffer); return EFI_ABORTED; } if (TopSwap) { // // Get FVB of current boot block // if (GetFvbByAddress (FtwDevice->SpareAreaAddress + FtwDevice->SpareAreaLength, &BootFvb) == NULL) { FreePool (Buffer); return EFI_ABORTED; } // // Read data from current boot block // BootLba = 0; Ptr = Buffer; for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) { Count = FtwDevice->BlockSize; Status = BootFvb->Read ( BootFvb, BootLba + Index, 0, &Count, Ptr ); if (EFI_ERROR (Status)) { FreePool (Buffer); return Status; } Ptr += Count; } } else { // // Read data from spare block // Ptr = Buffer; for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) { Count = FtwDevice->BlockSize; Status = FtwDevice->FtwBackupFvb->Read ( FtwDevice->FtwBackupFvb, FtwDevice->FtwSpareLba + Index, 0, &Count, Ptr ); if (EFI_ERROR (Status)) { FreePool (Buffer); return Status; } Ptr += Count; } // // Set TopSwap bit // Status = SarProtocol->SetSwapState (SarProtocol, TRUE); if (EFI_ERROR (Status)) { FreePool (Buffer); return Status; } } // // Erase current spare block // Because TopSwap is set, this actually erase the top block (boot block)! // Status = FtwEraseSpareBlock (FtwDevice); if (EFI_ERROR (Status)) { FreePool (Buffer); return EFI_ABORTED; } // // Write memory buffer currenet spare block. Still top block. // Ptr = Buffer; for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) { Count = FtwDevice->BlockSize; Status = FtwDevice->FtwBackupFvb->Write ( FtwDevice->FtwBackupFvb, FtwDevice->FtwSpareLba + Index, 0, &Count, Ptr ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Ftw: FVB Write boot block - %r\n", Status)); FreePool (Buffer); return Status; } Ptr += Count; } FreePool (Buffer); // // Clear TopSwap bit // Status = SarProtocol->SetSwapState (SarProtocol, FALSE); return Status; } /** Copy the content of spare block to a target block. Size is FTW_BLOCK_SIZE. Spare block is accessed by FTW backup FVB protocol interface. LBA is 1. Target block is accessed by FvbBlock protocol interface. LBA is Lba. @param FtwDevice The private data of FTW driver @param FvBlock FVB Protocol interface to access target block @param Lba Lba of the target block @retval EFI_SUCCESS Spare block content is copied to target block @retval EFI_INVALID_PARAMETER Input parameter error @retval EFI_OUT_OF_RESOURCES Allocate memory error @retval EFI_ABORTED The function could not complete successfully **/ EFI_STATUS FlushSpareBlockToTargetBlock ( EFI_FTW_DEVICE *FtwDevice, EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock, EFI_LBA Lba ) { EFI_STATUS Status; UINTN Length; UINT8 *Buffer; UINTN Count; UINT8 *Ptr; UINTN Index; if ((FtwDevice == NULL) || (FvBlock == NULL)) { return EFI_INVALID_PARAMETER; } // // Allocate a memory buffer // Length = FtwDevice->SpareAreaLength; Buffer = AllocatePool (Length); if (Buffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Read all content of spare block to memory buffer // Ptr = Buffer; for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) { Count = FtwDevice->BlockSize; Status = FtwDevice->FtwBackupFvb->Read ( FtwDevice->FtwBackupFvb, FtwDevice->FtwSpareLba + Index, 0, &Count, Ptr ); if (EFI_ERROR (Status)) { FreePool (Buffer); return Status; } Ptr += Count; } // // Erase the target block // Status = FtwEraseBlock (FtwDevice, FvBlock, Lba); if (EFI_ERROR (Status)) { FreePool (Buffer); return EFI_ABORTED; } // // Write memory buffer to block, using the FvbBlock protocol interface // Ptr = Buffer; for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) { Count = FtwDevice->BlockSize; Status = FvBlock->Write (FvBlock, Lba + Index, 0, &Count, Ptr); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Ftw: FVB Write block - %r\n", Status)); FreePool (Buffer); return Status; } Ptr += Count; } FreePool (Buffer); return Status; } /** Copy the content of spare block to working block. Size is FTW_BLOCK_SIZE. Spare block is accessed by FTW backup FVB protocol interface. LBA is FtwDevice->FtwSpareLba. Working block is accessed by FTW working FVB protocol interface. LBA is FtwDevice->FtwWorkBlockLba. Since the working block header is important when FTW initializes, the state of the operation should be handled carefully. The Crc value is calculated without STATE element. @param FtwDevice The private data of FTW driver @retval EFI_SUCCESS Spare block content is copied to target block @retval EFI_OUT_OF_RESOURCES Allocate memory error @retval EFI_ABORTED The function could not complete successfully **/ EFI_STATUS FlushSpareBlockToWorkingBlock ( EFI_FTW_DEVICE *FtwDevice ) { EFI_STATUS Status; UINTN Length; UINT8 *Buffer; EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *WorkingBlockHeader; UINTN Count; UINT8 *Ptr; UINTN Index; EFI_LBA WorkSpaceLbaOffset; // // Allocate a memory buffer // Length = FtwDevice->SpareAreaLength; Buffer = AllocatePool (Length); if (Buffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // To guarantee that the WorkingBlockValid is set on spare block // // Offset = OFFSET_OF(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER, // WorkingBlockValid); // To skip Signature and Crc: sizeof(EFI_GUID)+sizeof(UINT32). // FtwUpdateFvState ( FtwDevice->FtwBackupFvb, FtwDevice->FtwWorkSpaceLba, FtwDevice->FtwWorkSpaceBase + sizeof (EFI_GUID) + sizeof (UINT32), WORKING_BLOCK_VALID ); // // Read from spare block to memory buffer // Ptr = Buffer; for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) { Count = FtwDevice->BlockSize; Status = FtwDevice->FtwBackupFvb->Read ( FtwDevice->FtwBackupFvb, FtwDevice->FtwSpareLba + Index, 0, &Count, Ptr ); if (EFI_ERROR (Status)) { FreePool (Buffer); return Status; } Ptr += Count; } // // Clear the CRC and STATE, copy data from spare to working block. // WorkSpaceLbaOffset = FtwDevice->FtwWorkSpaceLba - FtwDevice->FtwWorkBlockLba; WorkingBlockHeader = (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *) (Buffer + (UINTN) WorkSpaceLbaOffset * FtwDevice->BlockSize + FtwDevice->FtwWorkSpaceBase); InitWorkSpaceHeader (WorkingBlockHeader); WorkingBlockHeader->WorkingBlockValid = FTW_ERASE_POLARITY; WorkingBlockHeader->WorkingBlockInvalid = FTW_ERASE_POLARITY; // // target block is working block, then // Set WorkingBlockInvalid in EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER // before erase the working block. // // Offset = OFFSET_OF(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER, // WorkingBlockInvalid); // So hardcode offset as sizeof(EFI_GUID)+sizeof(UINT32) to // skip Signature and Crc. // Status = FtwUpdateFvState ( FtwDevice->FtwFvBlock, FtwDevice->FtwWorkSpaceLba, FtwDevice->FtwWorkSpaceBase + sizeof (EFI_GUID) + sizeof (UINT32), WORKING_BLOCK_INVALID ); if (EFI_ERROR (Status)) { FreePool (Buffer); return EFI_ABORTED; } FtwDevice->FtwWorkSpaceHeader->WorkingBlockInvalid = FTW_VALID_STATE; // // Erase the working block // Status = FtwEraseBlock (FtwDevice, FtwDevice->FtwFvBlock, FtwDevice->FtwWorkBlockLba); if (EFI_ERROR (Status)) { FreePool (Buffer); return EFI_ABORTED; } // // Write memory buffer to working block, using the FvbBlock protocol interface // Ptr = Buffer; for (Index = 0; Index < FtwDevice->NumberOfSpareBlock; Index += 1) { Count = FtwDevice->BlockSize; Status = FtwDevice->FtwFvBlock->Write ( FtwDevice->FtwFvBlock, FtwDevice->FtwWorkBlockLba + Index, 0, &Count, Ptr ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Ftw: FVB Write block - %r\n", Status)); FreePool (Buffer); return Status; } Ptr += Count; } // // Since the memory buffer will not be used, free memory Buffer. // FreePool (Buffer); // // Update the VALID of the working block // // Offset = OFFSET_OF(EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER, WorkingBlockValid); // So hardcode offset as sizeof(EFI_GUID)+sizeof(UINT32) to skip Signature and Crc. // Status = FtwUpdateFvState ( FtwDevice->FtwFvBlock, FtwDevice->FtwWorkSpaceLba, FtwDevice->FtwWorkSpaceBase + sizeof (EFI_GUID) + sizeof (UINT32), WORKING_BLOCK_VALID ); if (EFI_ERROR (Status)) { return EFI_ABORTED; } FtwDevice->FtwWorkSpaceHeader->WorkingBlockValid = FTW_VALID_STATE; return EFI_SUCCESS; } /** Update a bit of state on a block device. The location of the bit is calculated by the (Lba, Offset, bit). Here bit is determined by the the name of a certain bit. @param FvBlock FVB Protocol interface to access SrcBlock and DestBlock @param Lba Lba of a block @param Offset Offset on the Lba @param NewBit New value that will override the old value if it can be change @retval EFI_SUCCESS A state bit has been updated successfully @retval Others Access block device error. Notes: Assume all bits of State are inside the same BYTE. @retval EFI_ABORTED Read block fail **/ EFI_STATUS FtwUpdateFvState ( IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvBlock, IN EFI_LBA Lba, IN UINTN Offset, IN UINT8 NewBit ) { EFI_STATUS Status; UINT8 State; UINTN Length; // // Read state from device, assume State is only one byte. // Length = sizeof (UINT8); Status = FvBlock->Read (FvBlock, Lba, Offset, &Length, &State); if (EFI_ERROR (Status)) { return EFI_ABORTED; } State ^= FTW_POLARITY_REVERT; State = (UINT8) (State | NewBit); State ^= FTW_POLARITY_REVERT; // // Write state back to device // Length = sizeof (UINT8); Status = FvBlock->Write (FvBlock, Lba, Offset, &Length, &State); return Status; } /** Get the last Write Header pointer. The last write header is the header whose 'complete' state hasn't been set. After all, this header may be a EMPTY header entry for next Allocate. @param FtwWorkSpaceHeader Pointer of the working block header @param FtwWorkSpaceSize Size of the work space @param FtwWriteHeader Pointer to retrieve the last write header @retval EFI_SUCCESS Get the last write record successfully @retval EFI_ABORTED The FTW work space is damaged **/ EFI_STATUS FtwGetLastWriteHeader ( IN EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *FtwWorkSpaceHeader, IN UINTN FtwWorkSpaceSize, OUT EFI_FAULT_TOLERANT_WRITE_HEADER **FtwWriteHeader ) { UINTN Offset; EFI_FAULT_TOLERANT_WRITE_HEADER *FtwHeader; *FtwWriteHeader = NULL; FtwHeader = (EFI_FAULT_TOLERANT_WRITE_HEADER *) (FtwWorkSpaceHeader + 1); Offset = sizeof (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER); while (FtwHeader->Complete == FTW_VALID_STATE) { Offset += WRITE_TOTAL_SIZE (FtwHeader->NumberOfWrites, FtwHeader->PrivateDataSize); // // If Offset exceed the FTW work space boudary, return error. // if (Offset >= FtwWorkSpaceSize) { *FtwWriteHeader = FtwHeader; return EFI_ABORTED; } FtwHeader = (EFI_FAULT_TOLERANT_WRITE_HEADER *) ((UINT8 *) FtwWorkSpaceHeader + Offset); } // // Last write header is found // *FtwWriteHeader = FtwHeader; return EFI_SUCCESS; } /** Get the last Write Record pointer. The last write Record is the Record whose DestinationCompleted state hasn't been set. After all, this Record may be a EMPTY record entry for next write. @param FtwWriteHeader Pointer to the write record header @param FtwWriteRecord Pointer to retrieve the last write record @retval EFI_SUCCESS Get the last write record successfully @retval EFI_ABORTED The FTW work space is damaged **/ EFI_STATUS FtwGetLastWriteRecord ( IN EFI_FAULT_TOLERANT_WRITE_HEADER *FtwWriteHeader, OUT EFI_FAULT_TOLERANT_WRITE_RECORD **FtwWriteRecord ) { UINTN Index; EFI_FAULT_TOLERANT_WRITE_RECORD *FtwRecord; *FtwWriteRecord = NULL; FtwRecord = (EFI_FAULT_TOLERANT_WRITE_RECORD *) (FtwWriteHeader + 1); // // Try to find the last write record "that has not completed" // for (Index = 0; Index < FtwWriteHeader->NumberOfWrites; Index += 1) { if (FtwRecord->DestinationComplete != FTW_VALID_STATE) { // // The last write record is found // *FtwWriteRecord = FtwRecord; return EFI_SUCCESS; } FtwRecord++; if (FtwWriteHeader->PrivateDataSize != 0) { FtwRecord = (EFI_FAULT_TOLERANT_WRITE_RECORD *) ((UINTN) FtwRecord + FtwWriteHeader->PrivateDataSize); } } // // if Index == NumberOfWrites, then // the last record has been written successfully, // but the Header->Complete Flag has not been set. // also return the last record. // if (Index == FtwWriteHeader->NumberOfWrites) { *FtwWriteRecord = (EFI_FAULT_TOLERANT_WRITE_RECORD *) ((UINTN) FtwRecord - RECORD_SIZE (FtwWriteHeader->PrivateDataSize)); return EFI_SUCCESS; } return EFI_ABORTED; } /** To check if FtwRecord is the first record of FtwHeader. @param FtwHeader Pointer to the write record header @param FtwRecord Pointer to the write record @retval TRUE FtwRecord is the first Record of the FtwHeader @retval FALSE FtwRecord is not the first Record of the FtwHeader **/ BOOLEAN IsFirstRecordOfWrites ( IN EFI_FAULT_TOLERANT_WRITE_HEADER *FtwHeader, IN EFI_FAULT_TOLERANT_WRITE_RECORD *FtwRecord ) { UINT8 *Head; UINT8 *Ptr; Head = (UINT8 *) FtwHeader; Ptr = (UINT8 *) FtwRecord; Head += sizeof (EFI_FAULT_TOLERANT_WRITE_HEADER); return (BOOLEAN) (Head == Ptr); } /** To check if FtwRecord is the last record of FtwHeader. Because the FtwHeader has NumberOfWrites & PrivateDataSize, the FtwRecord can be determined if it is the last record of FtwHeader. @param FtwHeader Pointer to the write record header @param FtwRecord Pointer to the write record @retval TRUE FtwRecord is the last Record of the FtwHeader @retval FALSE FtwRecord is not the last Record of the FtwHeader **/ BOOLEAN IsLastRecordOfWrites ( IN EFI_FAULT_TOLERANT_WRITE_HEADER *FtwHeader, IN EFI_FAULT_TOLERANT_WRITE_RECORD *FtwRecord ) { UINT8 *Head; UINT8 *Ptr; Head = (UINT8 *) FtwHeader; Ptr = (UINT8 *) FtwRecord; Head += WRITE_TOTAL_SIZE (FtwHeader->NumberOfWrites - 1, FtwHeader->PrivateDataSize); return (BOOLEAN) (Head == Ptr); } /** To check if FtwRecord is the first record of FtwHeader. @param FtwHeader Pointer to the write record header @param FtwRecord Pointer to retrieve the previous write record @retval EFI_ACCESS_DENIED Input record is the first record, no previous record is return. @retval EFI_SUCCESS The previous write record is found. **/ EFI_STATUS GetPreviousRecordOfWrites ( IN EFI_FAULT_TOLERANT_WRITE_HEADER *FtwHeader, IN OUT EFI_FAULT_TOLERANT_WRITE_RECORD **FtwRecord ) { UINT8 *Ptr; if (IsFirstRecordOfWrites (FtwHeader, *FtwRecord)) { *FtwRecord = NULL; return EFI_ACCESS_DENIED; } Ptr = (UINT8 *) (*FtwRecord); Ptr -= RECORD_SIZE (FtwHeader->PrivateDataSize); *FtwRecord = (EFI_FAULT_TOLERANT_WRITE_RECORD *) Ptr; return EFI_SUCCESS; } /** Allocate private data for FTW driver and initialize it. @param[out] FtwData Pointer to the FTW device structure @retval EFI_SUCCESS Initialize the FTW device successfully. @retval EFI_OUT_OF_RESOURCES Allocate memory error @retval EFI_INVALID_PARAMETER Workspace or Spare block does not exist **/ EFI_STATUS InitFtwDevice ( OUT EFI_FTW_DEVICE **FtwData ) { EFI_FTW_DEVICE *FtwDevice; // // Allocate private data of this driver, // Including the FtwWorkSpace[FTW_WORK_SPACE_SIZE]. // FtwDevice = AllocateZeroPool (sizeof (EFI_FTW_DEVICE) + PcdGet32 (PcdFlashNvStorageFtwWorkingSize)); if (FtwDevice == NULL) { return EFI_OUT_OF_RESOURCES; } // // Initialize other parameters, and set WorkSpace as FTW_ERASED_BYTE. // FtwDevice->WorkSpaceLength = (UINTN) PcdGet32 (PcdFlashNvStorageFtwWorkingSize); FtwDevice->SpareAreaLength = (UINTN) PcdGet32 (PcdFlashNvStorageFtwSpareSize); if ((FtwDevice->WorkSpaceLength == 0) || (FtwDevice->SpareAreaLength == 0)) { DEBUG ((EFI_D_ERROR, "Ftw: Workspace or Spare block does not exist!\n")); FreePool (FtwDevice); return EFI_INVALID_PARAMETER; } FtwDevice->Signature = FTW_DEVICE_SIGNATURE; FtwDevice->FtwFvBlock = NULL; FtwDevice->FtwBackupFvb = NULL; FtwDevice->FtwWorkSpaceLba = (EFI_LBA) (-1); FtwDevice->FtwSpareLba = (EFI_LBA) (-1); FtwDevice->WorkSpaceAddress = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageFtwWorkingBase64); if (FtwDevice->WorkSpaceAddress == 0) { FtwDevice->WorkSpaceAddress = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageFtwWorkingBase); } FtwDevice->SpareAreaAddress = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageFtwSpareBase64); if (FtwDevice->SpareAreaAddress == 0) { FtwDevice->SpareAreaAddress = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageFtwSpareBase); } *FtwData = FtwDevice; return EFI_SUCCESS; } /** Find the proper Firmware Volume Block protocol for FTW operation. @param[in, out] FtwDevice Pointer to the FTW device structure @retval EFI_SUCCESS Find the FVB protocol successfully. @retval EFI_NOT_FOUND No proper FVB protocol was found. @retval EFI_ABORTED Some data can not be got or be invalid. **/ EFI_STATUS FindFvbForFtw ( IN OUT EFI_FTW_DEVICE *FtwDevice ) { EFI_STATUS Status; EFI_HANDLE *HandleBuffer; UINTN HandleCount; UINTN Index; EFI_PHYSICAL_ADDRESS FvbBaseAddress; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FVB_ATTRIBUTES_2 Attributes; EFI_FV_BLOCK_MAP_ENTRY *FvbMapEntry; UINT32 LbaIndex; // // Get all FVB handle. // Status = GetFvbCountAndBuffer (&HandleCount, &HandleBuffer); if (EFI_ERROR (Status)) { return EFI_NOT_FOUND; } // // Get the FVB to access variable store // Fvb = NULL; for (Index = 0; Index < HandleCount; Index += 1) { Status = FtwGetFvbByHandle (HandleBuffer[Index], &Fvb); if (EFI_ERROR (Status)) { Status = EFI_NOT_FOUND; break; } // // Ensure this FVB protocol support Write operation. // Status = Fvb->GetAttributes (Fvb, &Attributes); if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) { continue; } // // Compare the address and select the right one // Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress); if (EFI_ERROR (Status)) { continue; } FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress); if ((FtwDevice->FtwFvBlock == NULL) && (FtwDevice->WorkSpaceAddress >= FvbBaseAddress) && ((FtwDevice->WorkSpaceAddress + FtwDevice->WorkSpaceLength) <= (FvbBaseAddress + FwVolHeader->FvLength)) ) { FtwDevice->FtwFvBlock = Fvb; // // To get the LBA of work space // if ((FwVolHeader->FvLength) > (FwVolHeader->HeaderLength)) { // // Now, one FV has one type of BlockLength // FvbMapEntry = &FwVolHeader->BlockMap[0]; for (LbaIndex = 1; LbaIndex <= FvbMapEntry->NumBlocks; LbaIndex += 1) { if ((FtwDevice->WorkSpaceAddress >= (FvbBaseAddress + FvbMapEntry->Length * (LbaIndex - 1))) && (FtwDevice->WorkSpaceAddress < (FvbBaseAddress + FvbMapEntry->Length * LbaIndex))) { FtwDevice->FtwWorkSpaceLba = LbaIndex - 1; // // Get the Work space size and Base(Offset) // FtwDevice->FtwWorkSpaceSize = FtwDevice->WorkSpaceLength; FtwDevice->FtwWorkSpaceBase = (UINTN) (FtwDevice->WorkSpaceAddress - (FvbBaseAddress + FvbMapEntry->Length * (LbaIndex - 1))); break; } } } } if ((FtwDevice->FtwBackupFvb == NULL) && (FtwDevice->SpareAreaAddress >= FvbBaseAddress) && ((FtwDevice->SpareAreaAddress + FtwDevice->SpareAreaLength) <= (FvbBaseAddress + FwVolHeader->FvLength)) ) { FtwDevice->FtwBackupFvb = Fvb; // // To get the LBA of spare // if ((FwVolHeader->FvLength) > (FwVolHeader->HeaderLength)) { // // Now, one FV has one type of BlockLength // FvbMapEntry = &FwVolHeader->BlockMap[0]; for (LbaIndex = 1; LbaIndex <= FvbMapEntry->NumBlocks; LbaIndex += 1) { if ((FtwDevice->SpareAreaAddress >= (FvbBaseAddress + FvbMapEntry->Length * (LbaIndex - 1))) && (FtwDevice->SpareAreaAddress < (FvbBaseAddress + FvbMapEntry->Length * LbaIndex))) { // // Get the NumberOfSpareBlock and BlockSize // FtwDevice->FtwSpareLba = LbaIndex - 1; FtwDevice->BlockSize = FvbMapEntry->Length; FtwDevice->NumberOfSpareBlock = FtwDevice->SpareAreaLength / FtwDevice->BlockSize; // // Check the range of spare area to make sure that it's in FV range // if ((FtwDevice->FtwSpareLba + FtwDevice->NumberOfSpareBlock) > FvbMapEntry->NumBlocks) { DEBUG ((EFI_D_ERROR, "Ftw: Spare area is out of FV range\n")); FreePool (HandleBuffer); ASSERT (FALSE); return EFI_ABORTED; } break; } } } } } FreePool (HandleBuffer); if ((FtwDevice->FtwBackupFvb == NULL) || (FtwDevice->FtwFvBlock == NULL) || (FtwDevice->FtwWorkSpaceLba == (EFI_LBA) (-1)) || (FtwDevice->FtwSpareLba == (EFI_LBA) (-1))) { return EFI_ABORTED; } return EFI_SUCCESS; } /** Initialization for Fault Tolerant Write protocol. @param[in, out] FtwDevice Pointer to the FTW device structure @retval EFI_SUCCESS Initialize the FTW protocol successfully. @retval EFI_NOT_FOUND No proper FVB protocol was found. **/ EFI_STATUS InitFtwProtocol ( IN OUT EFI_FTW_DEVICE *FtwDevice ) { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; UINTN Length; EFI_FAULT_TOLERANT_WRITE_HEADER *FtwHeader; UINTN Offset; EFI_HANDLE FvbHandle; // // Find the right SMM Fvb protocol instance for FTW. // Status = FindFvbForFtw (FtwDevice); if (EFI_ERROR (Status)) { return EFI_NOT_FOUND; } // // Calculate the start LBA of working block. Working block is an area which // contains working space in its last block and has the same size as spare // block, unless there are not enough blocks before the block that contains // working space. // FtwDevice->FtwWorkBlockLba = FtwDevice->FtwWorkSpaceLba - FtwDevice->NumberOfSpareBlock + 1; ASSERT ((INT64) (FtwDevice->FtwWorkBlockLba) >= 0); // // Initialize other parameters, and set WorkSpace as FTW_ERASED_BYTE. // FtwDevice->FtwWorkSpace = (UINT8 *) (FtwDevice + 1); FtwDevice->FtwWorkSpaceHeader = (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *) FtwDevice->FtwWorkSpace; FtwDevice->FtwLastWriteHeader = NULL; FtwDevice->FtwLastWriteRecord = NULL; // // Refresh the working space data from working block // Status = WorkSpaceRefresh (FtwDevice); ASSERT_EFI_ERROR (Status); // // If the working block workspace is not valid, try the spare block // if (!IsValidWorkSpace (FtwDevice->FtwWorkSpaceHeader)) { // // Read from spare block // Length = FtwDevice->FtwWorkSpaceSize; Status = FtwDevice->FtwBackupFvb->Read ( FtwDevice->FtwBackupFvb, FtwDevice->FtwSpareLba, FtwDevice->FtwWorkSpaceBase, &Length, FtwDevice->FtwWorkSpace ); ASSERT_EFI_ERROR (Status); // // If spare block is valid, then replace working block content. // if (IsValidWorkSpace (FtwDevice->FtwWorkSpaceHeader)) { Status = FlushSpareBlockToWorkingBlock (FtwDevice); DEBUG ((EFI_D_ERROR, "Ftw: Restart working block update in InitFtwProtocol() - %r\n", Status)); FtwAbort (&FtwDevice->FtwInstance); // // Refresh work space. // Status = WorkSpaceRefresh (FtwDevice); ASSERT_EFI_ERROR (Status); } else { DEBUG ((EFI_D_ERROR, "Ftw: Both are invalid, init workspace\n")); // // If both are invalid, then initialize work space. // SetMem ( FtwDevice->FtwWorkSpace, FtwDevice->FtwWorkSpaceSize, FTW_ERASED_BYTE ); InitWorkSpaceHeader (FtwDevice->FtwWorkSpaceHeader); // // Initialize the work space // Status = FtwReclaimWorkSpace (FtwDevice, FALSE); ASSERT_EFI_ERROR (Status); } } // // If the FtwDevice->FtwLastWriteRecord is 1st record of write header && // (! SpareComplete) THEN call Abort(). // if ((FtwDevice->FtwLastWriteHeader->HeaderAllocated == FTW_VALID_STATE) && (FtwDevice->FtwLastWriteRecord->SpareComplete != FTW_VALID_STATE) && IsFirstRecordOfWrites (FtwDevice->FtwLastWriteHeader, FtwDevice->FtwLastWriteRecord) ) { DEBUG ((EFI_D_ERROR, "Ftw: Init.. find first record not SpareCompleted, abort()\n")); FtwAbort (&FtwDevice->FtwInstance); } // // If Header is incompleted and the last record has completed, then // call Abort() to set the Header->Complete FLAG. // if ((FtwDevice->FtwLastWriteHeader->Complete != FTW_VALID_STATE) && (FtwDevice->FtwLastWriteRecord->DestinationComplete == FTW_VALID_STATE) && IsLastRecordOfWrites (FtwDevice->FtwLastWriteHeader, FtwDevice->FtwLastWriteRecord) ) { DEBUG ((EFI_D_ERROR, "Ftw: Init.. find last record completed but header not, abort()\n")); FtwAbort (&FtwDevice->FtwInstance); } // // To check the workspace buffer following last Write header/records is EMPTY or not. // If it's not EMPTY, FTW also need to call reclaim(). // FtwHeader = FtwDevice->FtwLastWriteHeader; Offset = (UINT8 *) FtwHeader - FtwDevice->FtwWorkSpace; if (FtwDevice->FtwWorkSpace[Offset] != FTW_ERASED_BYTE) { Offset += WRITE_TOTAL_SIZE (FtwHeader->NumberOfWrites, FtwHeader->PrivateDataSize); } if (!IsErasedFlashBuffer (FtwDevice->FtwWorkSpace + Offset, FtwDevice->FtwWorkSpaceSize - Offset)) { Status = FtwReclaimWorkSpace (FtwDevice, TRUE); ASSERT_EFI_ERROR (Status); } // // Restart if it's boot block // if ((FtwDevice->FtwLastWriteHeader->Complete != FTW_VALID_STATE) && (FtwDevice->FtwLastWriteRecord->SpareComplete == FTW_VALID_STATE) ) { if (FtwDevice->FtwLastWriteRecord->BootBlockUpdate == FTW_VALID_STATE) { Status = FlushSpareBlockToBootBlock (FtwDevice); DEBUG ((EFI_D_ERROR, "Ftw: Restart boot block update - %r\n", Status)); ASSERT_EFI_ERROR (Status); FtwAbort (&FtwDevice->FtwInstance); } else { // // if (SpareCompleted) THEN Restart to fault tolerant write. // FvbHandle = NULL; FvbHandle = GetFvbByAddress (FtwDevice->FtwLastWriteRecord->FvBaseAddress, &Fvb); if (FvbHandle != NULL) { Status = FtwRestart (&FtwDevice->FtwInstance, FvbHandle); DEBUG ((EFI_D_ERROR, "FtwLite: Restart last write - %r\n", Status)); ASSERT_EFI_ERROR (Status); } FtwAbort (&FtwDevice->FtwInstance); } } // // Hook the protocol API // FtwDevice->FtwInstance.GetMaxBlockSize = FtwGetMaxBlockSize; FtwDevice->FtwInstance.Allocate = FtwAllocate; FtwDevice->FtwInstance.Write = FtwWrite; FtwDevice->FtwInstance.Restart = FtwRestart; FtwDevice->FtwInstance.Abort = FtwAbort; FtwDevice->FtwInstance.GetLastWrite = FtwGetLastWrite; return EFI_SUCCESS; }