/** @file
The implementation of IPsec.
(C) Copyright 2015 Hewlett-Packard Development Company, L.P.
Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "IpSecImpl.h"
#include "IkeService.h"
#include "IpSecDebug.h"
#include "IpSecCryptIo.h"
#include "IpSecConfigImpl.h"
/**
Check if the specified Address is the Valid Address Range.
This function checks if the bytes after prefixed length are all Zero in this
Address. This Address is supposed to point to a range address. That means it
should gives the correct prefixed address and the bytes outside the prefixed are
zero.
@param[in] IpVersion The IP version.
@param[in] Address Points to EFI_IP_ADDRESS to be checked.
@param[in] PrefixLength The PrefixeLength of this address.
@retval TRUE The address is a vaild address range.
@retval FALSE The address is not a vaild address range.
**/
BOOLEAN
IpSecValidAddressRange (
IN UINT8 IpVersion,
IN EFI_IP_ADDRESS *Address,
IN UINT8 PrefixLength
)
{
UINT8 Div;
UINT8 Mod;
UINT8 Mask;
UINT8 AddrLen;
UINT8 *Addr;
EFI_IP_ADDRESS ZeroAddr;
if (PrefixLength == 0) {
return TRUE;
}
AddrLen = (UINT8) ((IpVersion == IP_VERSION_4) ? 32 : 128);
if (AddrLen <= PrefixLength) {
return FALSE;
}
Div = (UINT8) (PrefixLength / 8);
Mod = (UINT8) (PrefixLength % 8);
Addr = (UINT8 *) Address;
ZeroMem (&ZeroAddr, sizeof (EFI_IP_ADDRESS));
//
// Check whether the mod part of host scope is zero or not.
//
if (Mod > 0) {
Mask = (UINT8) (0xFF << (8 - Mod));
if ((Addr[Div] | Mask) != Mask) {
return FALSE;
}
Div++;
}
//
// Check whether the div part of host scope is zero or not.
//
if (CompareMem (
&Addr[Div],
&ZeroAddr,
sizeof (EFI_IP_ADDRESS) - Div
) != 0) {
return FALSE;
}
return TRUE;
}
/**
Extrct the Address Range from a Address.
This function keep the prefix address and zero other part address.
@param[in] Address Point to a specified address.
@param[in] PrefixLength The prefix length.
@param[out] Range Contain the return Address Range.
**/
VOID
IpSecExtractAddressRange (
IN EFI_IP_ADDRESS *Address,
IN UINT8 PrefixLength,
OUT EFI_IP_ADDRESS *Range
)
{
UINT8 Div;
UINT8 Mod;
UINT8 Mask;
UINT8 *Addr;
if (PrefixLength == 0) {
return ;
}
Div = (UINT8) (PrefixLength / 8);
Mod = (UINT8) (PrefixLength % 8);
Addr = (UINT8 *) Range;
CopyMem (Range, Address, sizeof (EFI_IP_ADDRESS));
//
// Zero the mod part of host scope.
//
if (Mod > 0) {
Mask = (UINT8) (0xFF << (8 - Mod));
Addr[Div] = (UINT8) (Addr[Div] & Mask);
Div++;
}
//
// Zero the div part of host scope.
//
ZeroMem (&Addr[Div], sizeof (EFI_IP_ADDRESS) - Div);
}
/**
Checks if the IP Address in the address range of AddressInfos specified.
@param[in] IpVersion The IP version.
@param[in] IpAddr Point to EFI_IP_ADDRESS to be check.
@param[in] AddressInfo A list of EFI_IP_ADDRESS_INFO that is used to check
the IP Address is matched.
@param[in] AddressCount The total numbers of the AddressInfo.
@retval TRUE If the Specified IP Address is in the range of the AddressInfos specified.
@retval FALSE If the Specified IP Address is not in the range of the AddressInfos specified.
**/
BOOLEAN
IpSecMatchIpAddress (
IN UINT8 IpVersion,
IN EFI_IP_ADDRESS *IpAddr,
IN EFI_IP_ADDRESS_INFO *AddressInfo,
IN UINT32 AddressCount
)
{
EFI_IP_ADDRESS Range;
UINT32 Index;
BOOLEAN IsMatch;
IsMatch = FALSE;
for (Index = 0; Index < AddressCount; Index++) {
//
// Check whether the target address is in the address range
// if it's a valid range of address.
//
if (IpSecValidAddressRange (
IpVersion,
&AddressInfo[Index].Address,
AddressInfo[Index].PrefixLength
)) {
//
// Get the range of the target address belongs to.
//
ZeroMem (&Range, sizeof (EFI_IP_ADDRESS));
IpSecExtractAddressRange (
IpAddr,
AddressInfo[Index].PrefixLength,
&Range
);
if (CompareMem (
&Range,
&AddressInfo[Index].Address,
sizeof (EFI_IP_ADDRESS)
) == 0) {
//
// The target address is in the address range.
//
IsMatch = TRUE;
break;
}
}
if (CompareMem (
IpAddr,
&AddressInfo[Index].Address,
sizeof (EFI_IP_ADDRESS)
) == 0) {
//
// The target address is exact same as the address.
//
IsMatch = TRUE;
break;
}
}
return IsMatch;
}
/**
Check if the specified Protocol and Prot is supported by the specified SPD Entry.
This function is the subfunction of IPsecLookUpSpdEntry() that is used to
check if the sent/received IKE packet has the related SPD entry support.
@param[in] Protocol The Protocol to be checked.
@param[in] IpPayload Point to IP Payload to be check.
@param[in] SpdProtocol The Protocol supported by SPD.
@param[in] SpdLocalPort The Local Port in SPD.
@param[in] SpdRemotePort The Remote Port in SPD.
@param[in] IsOutbound Flag to indicate the is for IKE Packet sending or recieving.
@retval TRUE The Protocol and Port are supported by the SPD Entry.
@retval FALSE The Protocol and Port are not supported by the SPD Entry.
**/
BOOLEAN
IpSecMatchNextLayerProtocol (
IN UINT8 Protocol,
IN UINT8 *IpPayload,
IN UINT16 SpdProtocol,
IN UINT16 SpdLocalPort,
IN UINT16 SpdRemotePort,
IN BOOLEAN IsOutbound
)
{
BOOLEAN IsMatch;
if (SpdProtocol == EFI_IPSEC_ANY_PROTOCOL) {
return TRUE;
}
IsMatch = FALSE;
if (SpdProtocol == Protocol) {
switch (Protocol) {
case EFI_IP_PROTO_UDP:
case EFI_IP_PROTO_TCP:
//
// For udp and tcp, (0, 0) means no need to check local and remote
// port. The payload is passed from upper level, which means it should
// be in network order.
//
IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
IsMatch = (BOOLEAN) (IsMatch ||
(IsOutbound &&
(BOOLEAN)(
NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdLocalPort &&
NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdRemotePort
)
));
IsMatch = (BOOLEAN) (IsMatch ||
(!IsOutbound &&
(BOOLEAN)(
NTOHS (((EFI_UDP_HEADER *) IpPayload)->DstPort) == SpdLocalPort &&
NTOHS (((EFI_UDP_HEADER *) IpPayload)->SrcPort) == SpdRemotePort
)
));
break;
case EFI_IP_PROTO_ICMP:
//
// For icmpv4, type code is replaced with local port and remote port,
// and (0, 0) means no need to check.
//
IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
IsMatch = (BOOLEAN) (IsMatch ||
(BOOLEAN) (((IP4_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
((IP4_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
)
);
break;
case IP6_ICMP:
//
// For icmpv6, type code is replaced with local port and remote port,
// and (0, 0) means no need to check.
//
IsMatch = (BOOLEAN) (SpdLocalPort == 0 && SpdRemotePort == 0);
IsMatch = (BOOLEAN) (IsMatch ||
(BOOLEAN) (((IP6_ICMP_HEAD *) IpPayload)->Type == SpdLocalPort &&
((IP6_ICMP_HEAD *) IpPayload)->Code == SpdRemotePort
)
);
break;
default:
IsMatch = TRUE;
break;
}
}
return IsMatch;
}
/**
Find the SAD through a specified SPD's SAD list.
@param[in] SadList SAD list related to a specified SPD entry.
@param[in] DestAddress The destination address used to find the SAD entry.
@param[in] IpVersion The IP version. Ip4 or Ip6.
@return The pointer to a certain SAD entry.
**/
IPSEC_SAD_ENTRY *
IpSecLookupSadBySpd (
IN LIST_ENTRY *SadList,
IN EFI_IP_ADDRESS *DestAddress,
IN UINT8 IpVersion
)
{
LIST_ENTRY *Entry;
IPSEC_SAD_ENTRY *SadEntry;
NET_LIST_FOR_EACH (Entry, SadList) {
SadEntry = IPSEC_SAD_ENTRY_FROM_SPD (Entry);
//
// Find the right SAD entry which contains the appointed dest address.
//
if (IpSecMatchIpAddress (
IpVersion,
DestAddress,
SadEntry->Data->SpdSelector->RemoteAddress,
SadEntry->Data->SpdSelector->RemoteAddressCount
)){
return SadEntry;
}
}
return NULL;
}
/**
Find the SAD through whole SAD list.
@param[in] Spi The SPI used to search the SAD entry.
@param[in] DestAddress The destination used to search the SAD entry.
@param[in] IpVersion The IP version. Ip4 or Ip6.
@return the pointer to a certain SAD entry.
**/
IPSEC_SAD_ENTRY *
IpSecLookupSadBySpi (
IN UINT32 Spi,
IN EFI_IP_ADDRESS *DestAddress,
IN UINT8 IpVersion
)
{
LIST_ENTRY *Entry;
LIST_ENTRY *SadList;
IPSEC_SAD_ENTRY *SadEntry;
SadList = &mConfigData[IPsecConfigDataTypeSad];
NET_LIST_FOR_EACH (Entry, SadList) {
SadEntry = IPSEC_SAD_ENTRY_FROM_LIST (Entry);
//
// Find the right SAD entry which contain the appointed spi and dest addr.
//
if (SadEntry->Id->Spi == Spi) {
if (SadEntry->Data->Mode == EfiIPsecTunnel) {
if (CompareMem (
&DestAddress,
&SadEntry->Data->TunnelDestAddress,
sizeof (EFI_IP_ADDRESS)
)) {
return SadEntry;
}
} else {
if (SadEntry->Data->SpdSelector != NULL &&
IpSecMatchIpAddress (
IpVersion,
DestAddress,
SadEntry->Data->SpdSelector->RemoteAddress,
SadEntry->Data->SpdSelector->RemoteAddressCount
)
) {
return SadEntry;
}
}
}
}
return NULL;
}
/**
Look up if there is existing SAD entry for specified IP packet sending.
This function is called by the IPsecProcess when there is some IP packet needed to
send out. This function checks if there is an existing SAD entry that can be serviced
to this IP packet sending. If no existing SAD entry could be used, this
function will invoke an IPsec Key Exchange Negotiation.
@param[in] Private Points to private data.
@param[in] NicHandle Points to a NIC handle.
@param[in] IpVersion The version of IP.
@param[in] IpHead The IP Header of packet to be sent out.
@param[in] IpPayload The IP Payload to be sent out.
@param[in] OldLastHead The Last protocol of the IP packet.
@param[in] SpdEntry Points to a related SPD entry.
@param[out] SadEntry Contains the Point of a related SAD entry.
@retval EFI_DEVICE_ERROR One of following conditions is TRUE:
- If don't find related UDP service.
- Sequence Number is used up.
- Extension Sequence Number is used up.
@retval EFI_NOT_READY No existing SAD entry could be used.
@retval EFI_SUCCESS Find the related SAD entry.
**/
EFI_STATUS
IpSecLookupSadEntry (
IN IPSEC_PRIVATE_DATA *Private,
IN EFI_HANDLE NicHandle,
IN UINT8 IpVersion,
IN VOID *IpHead,
IN UINT8 *IpPayload,
IN UINT8 OldLastHead,
IN IPSEC_SPD_ENTRY *SpdEntry,
OUT IPSEC_SAD_ENTRY **SadEntry
)
{
IKE_UDP_SERVICE *UdpService;
IPSEC_SAD_ENTRY *Entry;
IPSEC_SAD_DATA *Data;
EFI_IP_ADDRESS DestIp;
UINT32 SeqNum32;
*SadEntry = NULL;
UdpService = IkeLookupUdp (Private, NicHandle, IpVersion);
if (UdpService == NULL) {
return EFI_DEVICE_ERROR;
}
//
// Parse the destination address from ip header.
//
ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
if (IpVersion == IP_VERSION_4) {
CopyMem (
&DestIp,
&((IP4_HEAD *) IpHead)->Dst,
sizeof (IP4_ADDR)
);
} else {
CopyMem (
&DestIp,
&((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
sizeof (EFI_IP_ADDRESS)
);
}
//
// Find the SAD entry in the spd.sas list according to the dest address.
//
Entry = IpSecLookupSadBySpd (&SpdEntry->Data->Sas, &DestIp, IpVersion);
if (Entry == NULL) {
if (OldLastHead != IP6_ICMP ||
(OldLastHead == IP6_ICMP && *IpPayload == ICMP_V6_ECHO_REQUEST)
) {
//
// Start ike negotiation process except the request packet of ping.
//
if (SpdEntry->Data->ProcessingPolicy->Mode == EfiIPsecTunnel) {
IkeNegotiate (
UdpService,
SpdEntry,
&SpdEntry->Data->ProcessingPolicy->TunnelOption->RemoteTunnelAddress
);
} else {
IkeNegotiate (
UdpService,
SpdEntry,
&DestIp
);
}
}
return EFI_NOT_READY;
}
Data = Entry->Data;
if (!Data->ManualSet) {
if (Data->ESNEnabled) {
//
// Validate the 64bit sn number if 64bit sn enabled.
//
if ((UINT64) (Data->SequenceNumber + 1) == 0) {
//
// TODO: Re-negotiate SA
//
return EFI_DEVICE_ERROR;
}
} else {
//
// Validate the 32bit sn number if 64bit sn disabled.
//
SeqNum32 = (UINT32) Data->SequenceNumber;
if ((UINT32) (SeqNum32 + 1) == 0) {
//
// TODO: Re-negotiate SA
//
return EFI_DEVICE_ERROR;
}
}
}
*SadEntry = Entry;
return EFI_SUCCESS;
}
/**
Find a PAD entry according to a remote IP address.
@param[in] IpVersion The version of IP.
@param[in] IpAddr Points to remote IP address.
@return the pointer of related PAD entry.
**/
IPSEC_PAD_ENTRY *
IpSecLookupPadEntry (
IN UINT8 IpVersion,
IN EFI_IP_ADDRESS *IpAddr
)
{
LIST_ENTRY *PadList;
LIST_ENTRY *Entry;
EFI_IP_ADDRESS_INFO *IpAddrInfo;
IPSEC_PAD_ENTRY *PadEntry;
PadList = &mConfigData[IPsecConfigDataTypePad];
for (Entry = PadList->ForwardLink; Entry != PadList; Entry = Entry->ForwardLink) {
PadEntry = IPSEC_PAD_ENTRY_FROM_LIST (Entry);
IpAddrInfo = &PadEntry->Id->Id.IpAddress;
//
// Find the right pad entry which contain the appointed dest addr.
//
if (IpSecMatchIpAddress (IpVersion, IpAddr, IpAddrInfo, 1)) {
return PadEntry;
}
}
return NULL;
}
/**
Check if the specified IP packet can be serviced by this SPD entry.
@param[in] SpdEntry Point to SPD entry.
@param[in] IpVersion Version of IP.
@param[in] IpHead Point to IP header.
@param[in] IpPayload Point to IP payload.
@param[in] Protocol The Last protocol of IP packet.
@param[in] IsOutbound Traffic direction.
@param[out] Action The support action of SPD entry.
@retval EFI_SUCCESS Find the related SPD.
@retval EFI_NOT_FOUND Not find the related SPD entry;
**/
EFI_STATUS
IpSecLookupSpdEntry (
IN IPSEC_SPD_ENTRY *SpdEntry,
IN UINT8 IpVersion,
IN VOID *IpHead,
IN UINT8 *IpPayload,
IN UINT8 Protocol,
IN BOOLEAN IsOutbound,
OUT EFI_IPSEC_ACTION *Action
)
{
EFI_IPSEC_SPD_SELECTOR *SpdSel;
IP4_HEAD *Ip4;
EFI_IP6_HEADER *Ip6;
EFI_IP_ADDRESS SrcAddr;
EFI_IP_ADDRESS DstAddr;
BOOLEAN SpdMatch;
ASSERT (SpdEntry != NULL);
SpdSel = SpdEntry->Selector;
Ip4 = (IP4_HEAD *) IpHead;
Ip6 = (EFI_IP6_HEADER *) IpHead;
ZeroMem (&SrcAddr, sizeof (EFI_IP_ADDRESS));
ZeroMem (&DstAddr, sizeof (EFI_IP_ADDRESS));
//
// Parse the source and destination address from ip header.
//
if (IpVersion == IP_VERSION_4) {
CopyMem (&SrcAddr, &Ip4->Src, sizeof (IP4_ADDR));
CopyMem (&DstAddr, &Ip4->Dst, sizeof (IP4_ADDR));
} else {
CopyMem (&SrcAddr, &Ip6->SourceAddress, sizeof (EFI_IPv6_ADDRESS));
CopyMem (&DstAddr, &Ip6->DestinationAddress, sizeof (EFI_IPv6_ADDRESS));
}
//
// Check the local and remote addresses for outbound traffic
//
SpdMatch = (BOOLEAN)(IsOutbound &&
IpSecMatchIpAddress (
IpVersion,
&SrcAddr,
SpdSel->LocalAddress,
SpdSel->LocalAddressCount
) &&
IpSecMatchIpAddress (
IpVersion,
&DstAddr,
SpdSel->RemoteAddress,
SpdSel->RemoteAddressCount
)
);
//
// Check the local and remote addresses for inbound traffic
//
SpdMatch = (BOOLEAN) (SpdMatch ||
(!IsOutbound &&
IpSecMatchIpAddress (
IpVersion,
&DstAddr,
SpdSel->LocalAddress,
SpdSel->LocalAddressCount
) &&
IpSecMatchIpAddress (
IpVersion,
&SrcAddr,
SpdSel->RemoteAddress,
SpdSel->RemoteAddressCount
)
));
//
// Check the next layer protocol and local and remote ports.
//
SpdMatch = (BOOLEAN) (SpdMatch &&
IpSecMatchNextLayerProtocol (
Protocol,
IpPayload,
SpdSel->NextLayerProtocol,
SpdSel->LocalPort,
SpdSel->RemotePort,
IsOutbound
)
);
if (SpdMatch) {
//
// Find the right SPD entry if match the 5 key elements.
//
*Action = SpdEntry->Data->Action;
return EFI_SUCCESS;
}
return EFI_NOT_FOUND;
}
/**
The call back function of NetbufFromExt.
@param[in] Arg The argument passed from the caller.
**/
VOID
EFIAPI
IpSecOnRecyclePacket (
IN VOID *Arg
)
{
}
/**
This is a Notification function. It is called when the related IP6_TXTOKEN_WRAP
is released.
@param[in] Event The related event.
@param[in] Context The data passed by the caller.
**/
VOID
EFIAPI
IpSecRecycleCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
IPSEC_RECYCLE_CONTEXT *RecycleContext;
RecycleContext = (IPSEC_RECYCLE_CONTEXT *) Context;
if (RecycleContext->FragmentTable != NULL) {
FreePool (RecycleContext->FragmentTable);
}
if (RecycleContext->PayloadBuffer != NULL) {
FreePool (RecycleContext->PayloadBuffer);
}
FreePool (RecycleContext);
gBS->CloseEvent (Event);
}
/**
Calculate the extension hader of IP. The return length only doesn't contain
the fixed IP header length.
@param[in] IpHead Points to an IP head to be calculated.
@param[in] LastHead Points to the last header of the IP header.
@return The length of the extension header.
**/
UINT16
IpSecGetPlainExtHeadSize (
IN VOID *IpHead,
IN UINT8 *LastHead
)
{
UINT16 Size;
Size = (UINT16) (LastHead - (UINT8 *) IpHead);
if (Size > sizeof (EFI_IP6_HEADER)) {
//
// * (LastHead+1) point the last header's length but not include the first
// 8 octers, so this formluation add 8 at the end.
//
Size = (UINT16) (Size - sizeof (EFI_IP6_HEADER) + *(LastHead + 1) + 8);
} else {
Size = 0;
}
return Size;
}
/**
Verify if the Authentication payload is correct.
@param[in] EspBuffer Points to the ESP wrapped buffer.
@param[in] EspSize The size of the ESP wrapped buffer.
@param[in] SadEntry The related SAD entry to store the authentication
algorithm key.
@param[in] IcvSize The length of ICV.
@retval EFI_SUCCESS The authentication data is correct.
@retval EFI_ACCESS_DENIED The authentication data is not correct.
**/
EFI_STATUS
IpSecEspAuthVerifyPayload (
IN UINT8 *EspBuffer,
IN UINTN EspSize,
IN IPSEC_SAD_ENTRY *SadEntry,
IN UINTN IcvSize
)
{
EFI_STATUS Status;
UINTN AuthSize;
UINT8 IcvBuffer[12];
HASH_DATA_FRAGMENT HashFragment[1];
//
// Calculate the size of authentication payload.
//
AuthSize = EspSize - IcvSize;
//
// Calculate the icv buffer and size of the payload.
//
HashFragment[0].Data = EspBuffer;
HashFragment[0].DataSize = AuthSize;
Status = IpSecCryptoIoHmac (
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
HashFragment,
1,
IcvBuffer,
IcvSize
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Compare the calculated icv and the appended original icv.
//
if (CompareMem (EspBuffer + AuthSize, IcvBuffer, IcvSize) == 0) {
return EFI_SUCCESS;
}
DEBUG ((DEBUG_ERROR, "Error auth verify payload\n"));
return EFI_ACCESS_DENIED;
}
/**
Search the related SAD entry by the input .
@param[in] IpHead The pointer to IP header.
@param[in] IpVersion The version of IP (IP4 or IP6).
@param[in] Spi The SPI used to search the related SAD entry.
@retval NULL Not find the related SAD entry.
@retval IPSEC_SAD_ENTRY Return the related SAD entry.
**/
IPSEC_SAD_ENTRY *
IpSecFoundSadFromInboundPacket (
UINT8 *IpHead,
UINT8 IpVersion,
UINT32 Spi
)
{
EFI_IP_ADDRESS DestIp;
//
// Parse destination address from ip header.
//
ZeroMem (&DestIp, sizeof (EFI_IP_ADDRESS));
if (IpVersion == IP_VERSION_4) {
CopyMem (
&DestIp,
&((IP4_HEAD *) IpHead)->Dst,
sizeof (IP4_ADDR)
);
} else {
CopyMem (
&DestIp,
&((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
sizeof (EFI_IPv6_ADDRESS)
);
}
//
// Lookup SAD entry according to the spi and dest address.
//
return IpSecLookupSadBySpi (Spi, &DestIp, IpVersion);
}
/**
Validate the IP6 extension header format for both the packets we received
and that we will transmit.
@param[in] NextHeader The next header field in IPv6 basic header.
@param[in] ExtHdrs The first bye of the option.
@param[in] ExtHdrsLen The length of the whole option.
@param[out] LastHeader The pointer of NextHeader of the last extension
header processed by IP6.
@param[out] RealExtsLen The length of extension headers processed by IP6 layer.
This is an optional parameter that may be NULL.
@retval TRUE The option is properly formated.
@retval FALSE The option is malformated.
**/
BOOLEAN
IpSecIsIp6ExtsValid (
IN UINT8 *NextHeader,
IN UINT8 *ExtHdrs,
IN UINT32 ExtHdrsLen,
OUT UINT8 **LastHeader,
OUT UINT32 *RealExtsLen OPTIONAL
)
{
UINT32 Pointer;
UINT8 *Option;
UINT8 OptionLen;
UINT8 CountD;
UINT8 CountF;
UINT8 CountA;
if (RealExtsLen != NULL) {
*RealExtsLen = 0;
}
*LastHeader = NextHeader;
if (ExtHdrs == NULL && ExtHdrsLen == 0) {
return TRUE;
}
if ((ExtHdrs == NULL && ExtHdrsLen != 0) || (ExtHdrs != NULL && ExtHdrsLen == 0)) {
return FALSE;
}
Pointer = 0;
CountD = 0;
CountF = 0;
CountA = 0;
while (Pointer <= ExtHdrsLen) {
switch (*NextHeader) {
case IP6_HOP_BY_HOP:
if (Pointer != 0) {
return FALSE;
}
//
// Fall through
//
case IP6_DESTINATION:
if (*NextHeader == IP6_DESTINATION) {
CountD++;
}
if (CountD > 2) {
return FALSE;
}
NextHeader = ExtHdrs + Pointer;
Pointer++;
Option = ExtHdrs + Pointer;
OptionLen = (UINT8) ((*Option + 1) * 8 - 2);
Option++;
Pointer++;
Pointer = Pointer + OptionLen;
break;
case IP6_FRAGMENT:
if (++CountF > 1) {
return FALSE;
}
//
// RFC2402, AH header should after fragment header.
//
if (CountA > 1) {
return FALSE;
}
NextHeader = ExtHdrs + Pointer;
Pointer = Pointer + 8;
break;
case IP6_AH:
if (++CountA > 1) {
return FALSE;
}
Option = ExtHdrs + Pointer;
NextHeader = Option;
Option++;
//
// RFC2402, Payload length is specified in 32-bit words, minus "2".
//
OptionLen = (UINT8) ((*Option + 2) * 4);
Pointer = Pointer + OptionLen;
break;
default:
*LastHeader = NextHeader;
if (RealExtsLen != NULL) {
*RealExtsLen = Pointer;
}
return TRUE;
}
}
*LastHeader = NextHeader;
if (RealExtsLen != NULL) {
*RealExtsLen = Pointer;
}
return TRUE;
}
/**
The actual entry to process the tunnel header and inner header for tunnel mode
outbound traffic.
This function is the subfunction of IpSecEspInboundPacket(). It change the destination
Ip address to the station address and recalculate the uplayyer's checksum.
@param[in, out] IpHead Points to the IP header containing the ESP header
to be trimed on input, and without ESP header
on return.
@param[in] IpPayload The decrypted Ip payload. It start from the inner
header.
@param[in] IpVersion The version of IP.
@param[in] SadData Pointer of the relevant SAD.
@param[in, out] LastHead The Last Header in IP header on return.
**/
VOID
IpSecTunnelInboundPacket (
IN OUT UINT8 *IpHead,
IN UINT8 *IpPayload,
IN UINT8 IpVersion,
IN IPSEC_SAD_DATA *SadData,
IN OUT UINT8 *LastHead
)
{
EFI_UDP_HEADER *UdpHeader;
TCP_HEAD *TcpHeader;
UINT16 *Checksum;
UINT16 PseudoChecksum;
UINT16 PacketChecksum;
UINT32 OptionLen;
IP6_ICMP_HEAD *Icmp6Head;
Checksum = NULL;
if (IpVersion == IP_VERSION_4) {
//
// Zero OutIP header use this to indicate the input packet is under
// IPsec Tunnel protected.
//
ZeroMem (
(IP4_HEAD *)IpHead,
sizeof (IP4_HEAD)
);
CopyMem (
&((IP4_HEAD *)IpPayload)->Dst,
&SadData->TunnelDestAddress.v4,
sizeof (EFI_IPv4_ADDRESS)
);
//
// Recalculate IpHeader Checksum
//
if (((IP4_HEAD *)(IpPayload))->Checksum != 0 ) {
((IP4_HEAD *)(IpPayload))->Checksum = 0;
((IP4_HEAD *)(IpPayload))->Checksum = (UINT16) (~NetblockChecksum (
(UINT8 *)IpPayload,
((IP4_HEAD *)IpPayload)->HeadLen << 2
));
}
//
// Recalcualte PseudoChecksum
//
switch (((IP4_HEAD *)IpPayload)->Protocol) {
case EFI_IP_PROTO_UDP :
UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
Checksum = & UdpHeader->Checksum;
*Checksum = 0;
break;
case EFI_IP_PROTO_TCP:
TcpHeader = (TCP_HEAD *) ((UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2));
Checksum = &TcpHeader->Checksum;
*Checksum = 0;
break;
default:
break;
}
PacketChecksum = NetblockChecksum (
(UINT8 *)IpPayload + (((IP4_HEAD *)IpPayload)->HeadLen << 2),
NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)
);
PseudoChecksum = NetPseudoHeadChecksum (
((IP4_HEAD *)IpPayload)->Src,
((IP4_HEAD *)IpPayload)->Dst,
((IP4_HEAD *)IpPayload)->Protocol,
0
);
if (Checksum != NULL) {
*Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
*Checksum = (UINT16) ~(NetAddChecksum (*Checksum, HTONS((UINT16)(NTOHS (((IP4_HEAD *)IpPayload)->TotalLen) - (((IP4_HEAD *)IpPayload)->HeadLen << 2)))));
}
}else {
//
// Zero OutIP header use this to indicate the input packet is under
// IPsec Tunnel protected.
//
ZeroMem (
IpHead,
sizeof (EFI_IP6_HEADER)
);
CopyMem (
&((EFI_IP6_HEADER*)IpPayload)->DestinationAddress,
&SadData->TunnelDestAddress.v6,
sizeof (EFI_IPv6_ADDRESS)
);
//
// Get the Extension Header and Header length.
//
IpSecIsIp6ExtsValid (
&((EFI_IP6_HEADER *)IpPayload)->NextHeader,
IpPayload + sizeof (EFI_IP6_HEADER),
((EFI_IP6_HEADER *)IpPayload)->PayloadLength,
&LastHead,
&OptionLen
);
//
// Recalcualte PseudoChecksum
//
switch (*LastHead) {
case EFI_IP_PROTO_UDP:
UdpHeader = (EFI_UDP_HEADER *)((UINT8 *)IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
Checksum = &UdpHeader->Checksum;
*Checksum = 0;
break;
case EFI_IP_PROTO_TCP:
TcpHeader = (TCP_HEAD *)(IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
Checksum = &TcpHeader->Checksum;
*Checksum = 0;
break;
case IP6_ICMP:
Icmp6Head = (IP6_ICMP_HEAD *) (IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen);
Checksum = &Icmp6Head->Checksum;
*Checksum = 0;
break;
}
PacketChecksum = NetblockChecksum (
IpPayload + sizeof (EFI_IP6_HEADER) + OptionLen,
NTOHS(((EFI_IP6_HEADER *)IpPayload)->PayloadLength) - OptionLen
);
PseudoChecksum = NetIp6PseudoHeadChecksum (
&((EFI_IP6_HEADER *)IpPayload)->SourceAddress,
&((EFI_IP6_HEADER *)IpPayload)->DestinationAddress,
*LastHead,
0
);
if (Checksum != NULL) {
*Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
*Checksum = (UINT16) ~(NetAddChecksum (
*Checksum,
HTONS ((UINT16)((NTOHS (((EFI_IP6_HEADER *)(IpPayload))->PayloadLength)) - OptionLen))
));
}
}
}
/**
The actual entry to create inner header for tunnel mode inbound traffic.
This function is the subfunction of IpSecEspOutboundPacket(). It create
the sending packet by encrypting its payload and inserting ESP header in the orginal
IP header, then return the IpHeader and IPsec protected Fragmentable.
@param[in, out] IpHead Points to IP header containing the orginal IP header
to be processed on input, and inserted ESP header
on return.
@param[in] IpVersion The version of IP.
@param[in] SadData The related SAD data.
@param[in, out] LastHead The Last Header in IP header.
@param[in] OptionsBuffer Pointer to the options buffer.
@param[in] OptionsLength Length of the options buffer.
@param[in, out] FragmentTable Pointer to a list of fragments to be protected by
IPsec on input, and with IPsec protected
on return.
@param[in] FragmentCount The number of fragments.
**/
UINT8 *
IpSecTunnelOutboundPacket (
IN OUT UINT8 *IpHead,
IN UINT8 IpVersion,
IN IPSEC_SAD_DATA *SadData,
IN OUT UINT8 *LastHead,
IN VOID **OptionsBuffer,
IN UINT32 *OptionsLength,
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
IN UINT32 *FragmentCount
)
{
UINT8 *InnerHead;
NET_BUF *Packet;
UINT16 PacketChecksum;
UINT16 *Checksum;
UINT16 PseudoChecksum;
IP6_ICMP_HEAD *IcmpHead;
Checksum = NULL;
if (OptionsLength == NULL) {
return NULL;
}
if (IpVersion == IP_VERSION_4) {
InnerHead = AllocateZeroPool (sizeof (IP4_HEAD) + *OptionsLength);
if (InnerHead == NULL) {
return NULL;
}
CopyMem (
InnerHead,
IpHead,
sizeof (IP4_HEAD)
);
CopyMem (
InnerHead + sizeof (IP4_HEAD),
*OptionsBuffer,
*OptionsLength
);
} else {
InnerHead = AllocateZeroPool (sizeof (EFI_IP6_HEADER) + *OptionsLength);
if (InnerHead == NULL) {
return NULL;
}
CopyMem (
InnerHead,
IpHead,
sizeof (EFI_IP6_HEADER)
);
CopyMem (
InnerHead + sizeof (EFI_IP6_HEADER),
*OptionsBuffer,
*OptionsLength
);
}
if (OptionsBuffer != NULL) {
if (*OptionsLength != 0) {
*OptionsBuffer = NULL;
*OptionsLength = 0;
}
}
//
// 2. Reassamlbe Fragment into Packet
//
Packet = NetbufFromExt (
(NET_FRAGMENT *)(*FragmentTable),
*FragmentCount,
0,
0,
IpSecOnRecyclePacket,
NULL
);
if (Packet == NULL) {
FreePool (InnerHead);
return NULL;
}
//
// 3. Check the Last Header, if it is TCP, UDP or ICMP recalcualate its pesudo
// CheckSum.
//
switch (*LastHead) {
case EFI_IP_PROTO_UDP:
Packet->Udp = (EFI_UDP_HEADER *) NetbufGetByte (Packet, 0, 0);
ASSERT (Packet->Udp != NULL);
Checksum = &Packet->Udp->Checksum;
*Checksum = 0;
break;
case EFI_IP_PROTO_TCP:
Packet->Tcp = (TCP_HEAD *) NetbufGetByte (Packet, 0, 0);
ASSERT (Packet->Tcp != NULL);
Checksum = &Packet->Tcp->Checksum;
*Checksum = 0;
break;
case IP6_ICMP:
IcmpHead = (IP6_ICMP_HEAD *) NetbufGetByte (Packet, 0, NULL);
ASSERT (IcmpHead != NULL);
Checksum = &IcmpHead->Checksum;
*Checksum = 0;
break;
default:
break;
}
PacketChecksum = NetbufChecksum (Packet);
if (IpVersion == IP_VERSION_4) {
//
// Replace the source address of Inner Header.
//
CopyMem (
&((IP4_HEAD *)InnerHead)->Src,
&SadData->SpdSelector->LocalAddress[0].Address.v4,
sizeof (EFI_IPv4_ADDRESS)
);
PacketChecksum = NetbufChecksum (Packet);
PseudoChecksum = NetPseudoHeadChecksum (
((IP4_HEAD *)InnerHead)->Src,
((IP4_HEAD *)InnerHead)->Dst,
*LastHead,
0
);
} else {
//
// Replace the source address of Inner Header.
//
CopyMem (
&((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
&(SadData->SpdSelector->LocalAddress[0].Address.v6),
sizeof (EFI_IPv6_ADDRESS)
);
PacketChecksum = NetbufChecksum (Packet);
PseudoChecksum = NetIp6PseudoHeadChecksum (
&((EFI_IP6_HEADER *)InnerHead)->SourceAddress,
&((EFI_IP6_HEADER *)InnerHead)->DestinationAddress,
*LastHead,
0
);
}
if (Checksum != NULL) {
*Checksum = NetAddChecksum (PacketChecksum, PseudoChecksum);
*Checksum = (UINT16) ~(NetAddChecksum ((UINT16)*Checksum, HTONS ((UINT16) Packet->TotalSize)));
}
if (Packet != NULL) {
NetbufFree (Packet);
}
return InnerHead;
}
/**
The actual entry to relative function processes the inbound traffic of ESP header.
This function is the subfunction of IpSecProtectInboundPacket(). It checks the
received packet security property and trim the ESP header and then returns without
an IPsec protected IP Header and FramgmentTable.
@param[in] IpVersion The version of IP.
@param[in, out] IpHead Points to the IP header containing the ESP header
to be trimed on input, and without ESP header
on return.
@param[out] LastHead The Last Header in IP header on return.
@param[in, out] OptionsBuffer Pointer to the options buffer.
@param[in, out] OptionsLength Length of the options buffer.
@param[in, out] FragmentTable Pointer to a list of fragments in the form of IPsec
protected on input, and without IPsec protected
on return.
@param[in, out] FragmentCount The number of fragments.
@param[out] SpdSelector Pointer to contain the address of SPD selector on return.
@param[out] RecycleEvent The event for recycling of resources.
@retval EFI_SUCCESS The operation was successful.
@retval EFI_ACCESS_DENIED One or more following conditions is TRUE:
- ESP header was not found or mal-format.
- The related SAD entry was not found.
- The related SAD entry does not support the ESP protocol.
@retval EFI_OUT_OF_RESOURCES The required system resource can't be allocated.
**/
EFI_STATUS
IpSecEspInboundPacket (
IN UINT8 IpVersion,
IN OUT VOID *IpHead,
OUT UINT8 *LastHead,
IN OUT VOID **OptionsBuffer,
IN OUT UINT32 *OptionsLength,
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
IN OUT UINT32 *FragmentCount,
OUT EFI_IPSEC_SPD_SELECTOR **SpdSelector,
OUT EFI_EVENT *RecycleEvent
)
{
EFI_STATUS Status;
NET_BUF *Payload;
UINTN EspSize;
UINTN IvSize;
UINTN BlockSize;
UINTN MiscSize;
UINTN PlainPayloadSize;
UINTN PaddingSize;
UINTN IcvSize;
UINT8 *ProcessBuffer;
EFI_ESP_HEADER *EspHeader;
EFI_ESP_TAIL *EspTail;
EFI_IPSEC_SA_ID *SaId;
IPSEC_SAD_DATA *SadData;
IPSEC_SAD_ENTRY *SadEntry;
IPSEC_RECYCLE_CONTEXT *RecycleContext;
UINT8 NextHeader;
UINT16 IpSecHeadSize;
UINT8 *InnerHead;
Status = EFI_SUCCESS;
Payload = NULL;
ProcessBuffer = NULL;
RecycleContext = NULL;
*RecycleEvent = NULL;
PlainPayloadSize = 0;
NextHeader = 0;
//
// Build netbuf from fragment table first.
//
Payload = NetbufFromExt (
(NET_FRAGMENT *) *FragmentTable,
*FragmentCount,
0,
sizeof (EFI_ESP_HEADER),
IpSecOnRecyclePacket,
NULL
);
if (Payload == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
//
// Get the esp size and esp header from netbuf.
//
EspSize = Payload->TotalSize;
EspHeader = (EFI_ESP_HEADER *) NetbufGetByte (Payload, 0, NULL);
if (EspHeader == NULL) {
Status = EFI_ACCESS_DENIED;
goto ON_EXIT;
}
//
// Parse destination address from ip header and found the related SAD Entry.
//
SadEntry = IpSecFoundSadFromInboundPacket (
IpHead,
IpVersion,
NTOHL (EspHeader->Spi)
);
if (SadEntry == NULL) {
Status = EFI_ACCESS_DENIED;
goto ON_EXIT;
}
SaId = SadEntry->Id;
SadData = SadEntry->Data;
//
// Only support esp protocol currently.
//
if (SaId->Proto != EfiIPsecESP) {
Status = EFI_ACCESS_DENIED;
goto ON_EXIT;
}
if (!SadData->ManualSet) {
//
// TODO: Check SA lifetime and sequence number
//
}
//
// Allocate buffer for decryption and authentication.
//
ProcessBuffer = AllocateZeroPool (EspSize);
if (ProcessBuffer == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
NetbufCopy (Payload, 0, (UINT32) EspSize, ProcessBuffer);
//
// Get the IcvSize for authentication and BlockSize/IvSize for Decryption.
//
IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
BlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
//
// Make sure the ESP packet is not mal-formt.
// 1. Check whether the Espsize is larger than ESP header + IvSize + EspTail + IcvSize.
// 2. Check whether the left payload size is multiple of IvSize.
//
MiscSize = sizeof (EFI_ESP_HEADER) + IvSize + IcvSize;
if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL))) {
Status = EFI_ACCESS_DENIED;
goto ON_EXIT;
}
if ((EspSize - MiscSize) % BlockSize != 0) {
Status = EFI_ACCESS_DENIED;
goto ON_EXIT;
}
//
// Authenticate the ESP packet.
//
if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
Status = IpSecEspAuthVerifyPayload (
ProcessBuffer,
EspSize,
SadEntry,
IcvSize
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
}
//
// Decrypt the payload by the SAD entry if it has decrypt key.
//
if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
Status = IpSecCryptoIoDecrypt (
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
ProcessBuffer + sizeof (EFI_ESP_HEADER),
ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize,
EspSize - sizeof (EFI_ESP_HEADER) - IvSize - IcvSize,
ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
}
//
// Parse EspTail and compute the plain payload size.
//
EspTail = (EFI_ESP_TAIL *) (ProcessBuffer + EspSize - IcvSize - sizeof (EFI_ESP_TAIL));
PaddingSize = EspTail->PaddingLength;
NextHeader = EspTail->NextHeader;
if (EspSize <= (MiscSize + sizeof (EFI_ESP_TAIL) + PaddingSize)) {
Status = EFI_ACCESS_DENIED;
goto ON_EXIT;
}
PlainPayloadSize = EspSize - MiscSize - sizeof (EFI_ESP_TAIL) - PaddingSize;
//
// TODO: handle anti-replay window
//
//
// Decryption and authentication with esp has been done, so it's time to
// reload the new packet, create recycle event and fixup ip header.
//
RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
if (RecycleContext == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
IpSecRecycleCallback,
RecycleContext,
RecycleEvent
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// The caller will take responsible to handle the original fragment table
//
*FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
if (*FragmentTable == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
RecycleContext->PayloadBuffer = ProcessBuffer;
RecycleContext->FragmentTable = *FragmentTable;
//
// If Tunnel, recalculate upper-layyer PesudoCheckSum and trim the out
//
if (SadData->Mode == EfiIPsecTunnel) {
InnerHead = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
IpSecTunnelInboundPacket (
IpHead,
InnerHead,
IpVersion,
SadData,
LastHead
);
if (IpVersion == IP_VERSION_4) {
(*FragmentTable)[0].FragmentBuffer = InnerHead ;
(*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
}else {
(*FragmentTable)[0].FragmentBuffer = InnerHead;
(*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
}
} else {
(*FragmentTable)[0].FragmentBuffer = ProcessBuffer + sizeof (EFI_ESP_HEADER) + IvSize;
(*FragmentTable)[0].FragmentLength = (UINT32) PlainPayloadSize;
}
*FragmentCount = 1;
//
// Update the total length field in ip header since processed by esp.
//
if (SadData->Mode != EfiIPsecTunnel) {
if (IpVersion == IP_VERSION_4) {
((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + PlainPayloadSize));
} else {
IpSecHeadSize = IpSecGetPlainExtHeadSize (IpHead, LastHead);
((EFI_IP6_HEADER *) IpHead)->PayloadLength = HTONS ((UINT16)(IpSecHeadSize + PlainPayloadSize));
}
//
// Update the next layer field in ip header since esp header inserted.
//
*LastHead = NextHeader;
}
//
// Update the SPD association of the SAD entry.
//
*SpdSelector = SadData->SpdSelector;
ON_EXIT:
if (Payload != NULL) {
NetbufFree (Payload);
}
if (EFI_ERROR (Status)) {
if (ProcessBuffer != NULL) {
FreePool (ProcessBuffer);
}
if (RecycleContext != NULL) {
FreePool (RecycleContext);
}
if (*RecycleEvent != NULL) {
gBS->CloseEvent (*RecycleEvent);
}
}
return Status;
}
/**
The actual entry to the relative function processes the output traffic using the ESP protocol.
This function is the subfunction of IpSecProtectOutboundPacket(). It protected
the sending packet by encrypting its payload and inserting ESP header in the orginal
IP header, then return the IpHeader and IPsec protected Fragmentable.
@param[in] IpVersion The version of IP.
@param[in, out] IpHead Points to IP header containing the orginal IP header
to be processed on input, and inserted ESP header
on return.
@param[in, out] LastHead The Last Header in IP header.
@param[in, out] OptionsBuffer Pointer to the options buffer.
@param[in, out] OptionsLength Length of the options buffer.
@param[in, out] FragmentTable Pointer to a list of fragments to be protected by
IPsec on input, and with IPsec protected
on return.
@param[in, out] FragmentCount The number of fragments.
@param[in] SadEntry The related SAD entry.
@param[out] RecycleEvent The event for recycling of resources.
@retval EFI_SUCCESS The operation was successful.
@retval EFI_OUT_OF_RESOURCES The required system resources can't be allocated.
**/
EFI_STATUS
IpSecEspOutboundPacket (
IN UINT8 IpVersion,
IN OUT VOID *IpHead,
IN OUT UINT8 *LastHead,
IN OUT VOID **OptionsBuffer,
IN OUT UINT32 *OptionsLength,
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
IN OUT UINT32 *FragmentCount,
IN IPSEC_SAD_ENTRY *SadEntry,
OUT EFI_EVENT *RecycleEvent
)
{
EFI_STATUS Status;
UINTN Index;
EFI_IPSEC_SA_ID *SaId;
IPSEC_SAD_DATA *SadData;
IPSEC_RECYCLE_CONTEXT *RecycleContext;
UINT8 *ProcessBuffer;
UINTN BytesCopied;
INTN EncryptBlockSize;// Size of encryption block, 4 bytes aligned and >= 4
UINTN EspSize; // Total size of esp wrapped ip payload
UINTN IvSize; // Size of IV, optional, might be 0
UINTN PlainPayloadSize;// Original IP payload size
UINTN PaddingSize; // Size of padding
UINTN EncryptSize; // Size of data to be encrypted, start after IV and
// stop before ICV
UINTN IcvSize; // Size of ICV, optional, might be 0
UINT8 *RestOfPayload; // Start of Payload after IV
UINT8 *Padding; // Start address of padding
EFI_ESP_HEADER *EspHeader; // Start address of ESP frame
EFI_ESP_TAIL *EspTail; // Address behind padding
UINT8 *InnerHead;
HASH_DATA_FRAGMENT HashFragment[1];
Status = EFI_ACCESS_DENIED;
SaId = SadEntry->Id;
SadData = SadEntry->Data;
ProcessBuffer = NULL;
RecycleContext = NULL;
*RecycleEvent = NULL;
InnerHead = NULL;
if (!SadData->ManualSet &&
SadData->AlgoInfo.EspAlgoInfo.EncKey == NULL &&
SadData->AlgoInfo.EspAlgoInfo.AuthKey == NULL
) {
//
// Invalid manual SAD entry configuration.
//
goto ON_EXIT;
}
//
// Create OutHeader according to Inner Header
//
if (SadData->Mode == EfiIPsecTunnel) {
InnerHead = IpSecTunnelOutboundPacket (
IpHead,
IpVersion,
SadData,
LastHead,
OptionsBuffer,
OptionsLength,
FragmentTable,
FragmentCount
);
if (InnerHead == NULL) {
return EFI_INVALID_PARAMETER;
}
}
//
// Calculate enctrypt block size, need iv by default and 4 bytes alignment.
//
EncryptBlockSize = 4;
if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
EncryptBlockSize = IpSecGetEncryptBlockSize (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
if (EncryptBlockSize < 0 || (EncryptBlockSize != 1 && EncryptBlockSize % 4 != 0)) {
goto ON_EXIT;
}
}
//
// Calculate the plain payload size according to the fragment table.
//
PlainPayloadSize = 0;
for (Index = 0; Index < *FragmentCount; Index++) {
PlainPayloadSize += (*FragmentTable)[Index].FragmentLength;
}
//
// Add IPHeader size for Tunnel Mode
//
if (SadData->Mode == EfiIPsecTunnel) {
if (IpVersion == IP_VERSION_4) {
PlainPayloadSize += sizeof (IP4_HEAD);
} else {
PlainPayloadSize += sizeof (EFI_IP6_HEADER);
}
//
// OPtions should be encryption into it
//
PlainPayloadSize += *OptionsLength;
}
//
// Calculate icv size, optional by default and 4 bytes alignment.
//
IcvSize = 0;
if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
IcvSize = IpSecGetIcvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId);
if (IcvSize % 4 != 0) {
goto ON_EXIT;
}
}
//
// Calcuate the total size of esp wrapped ip payload.
//
IvSize = IpSecGetEncryptIvLength (SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId);
EncryptSize = (PlainPayloadSize + sizeof (EFI_ESP_TAIL) + EncryptBlockSize - 1) / EncryptBlockSize * EncryptBlockSize;
PaddingSize = EncryptSize - PlainPayloadSize - sizeof (EFI_ESP_TAIL);
EspSize = sizeof (EFI_ESP_HEADER) + IvSize + EncryptSize + IcvSize;
ProcessBuffer = AllocateZeroPool (EspSize);
if (ProcessBuffer == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
//
// Calculate esp header and esp tail including header, payload and padding.
//
EspHeader = (EFI_ESP_HEADER *) ProcessBuffer;
RestOfPayload = (UINT8 *) (EspHeader + 1) + IvSize;
Padding = RestOfPayload + PlainPayloadSize;
EspTail = (EFI_ESP_TAIL *) (Padding + PaddingSize);
//
// Fill the sn and spi fields in esp header.
//
EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber + 1);
//EspHeader->SequenceNumber = HTONL ((UINT32) SadData->SequenceNumber);
EspHeader->Spi = HTONL (SaId->Spi);
//
// Copy the rest of payload (after iv) from the original fragment buffer.
//
BytesCopied = 0;
//
// For Tunnel Mode
//
if (SadData->Mode == EfiIPsecTunnel) {
if (IpVersion == IP_VERSION_4) {
//
// HeadLen, Total Length
//
((IP4_HEAD *)InnerHead)->HeadLen = (UINT8) ((sizeof (IP4_HEAD) + *OptionsLength) >> 2);
((IP4_HEAD *)InnerHead)->TotalLen = HTONS ((UINT16) PlainPayloadSize);
((IP4_HEAD *)InnerHead)->Checksum = 0;
((IP4_HEAD *)InnerHead)->Checksum = (UINT16) (~NetblockChecksum (
(UINT8 *)InnerHead,
sizeof(IP4_HEAD)
));
CopyMem (
RestOfPayload + BytesCopied,
InnerHead,
sizeof (IP4_HEAD) + *OptionsLength
);
BytesCopied += sizeof (IP4_HEAD) + *OptionsLength;
} else {
((EFI_IP6_HEADER *)InnerHead)->PayloadLength = HTONS ((UINT16) (PlainPayloadSize - sizeof (EFI_IP6_HEADER)));
CopyMem (
RestOfPayload + BytesCopied,
InnerHead,
sizeof (EFI_IP6_HEADER) + *OptionsLength
);
BytesCopied += sizeof (EFI_IP6_HEADER) + *OptionsLength;
}
}
for (Index = 0; Index < *FragmentCount; Index++) {
CopyMem (
(RestOfPayload + BytesCopied),
(*FragmentTable)[Index].FragmentBuffer,
(*FragmentTable)[Index].FragmentLength
);
BytesCopied += (*FragmentTable)[Index].FragmentLength;
}
//
// Fill the padding buffer by natural number sequence.
//
for (Index = 0; Index < PaddingSize; Index++) {
Padding[Index] = (UINT8) (Index + 1);
}
//
// Fill the padding length and next header fields in esp tail.
//
EspTail->PaddingLength = (UINT8) PaddingSize;
EspTail->NextHeader = *LastHead;
//
// Fill the next header for Tunnel mode.
//
if (SadData->Mode == EfiIPsecTunnel) {
if (IpVersion == IP_VERSION_4) {
EspTail->NextHeader = 4;
} else {
EspTail->NextHeader = 41;
}
}
//
// Generate iv at random by crypt library.
//
Status = IpSecGenerateIv (
(UINT8 *) (EspHeader + 1),
IvSize
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Encryption the payload (after iv) by the SAD entry if has encrypt key.
//
if (SadData->AlgoInfo.EspAlgoInfo.EncKey != NULL) {
Status = IpSecCryptoIoEncrypt (
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncAlgoId,
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKey,
SadEntry->Data->AlgoInfo.EspAlgoInfo.EncKeyLength << 3,
(UINT8 *)(EspHeader + 1),
RestOfPayload,
EncryptSize,
RestOfPayload
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
}
//
// Authenticate the esp wrapped buffer by the SAD entry if it has auth key.
//
if (SadData->AlgoInfo.EspAlgoInfo.AuthKey != NULL) {
HashFragment[0].Data = ProcessBuffer;
HashFragment[0].DataSize = EspSize - IcvSize;
Status = IpSecCryptoIoHmac (
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthAlgoId,
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKey,
SadEntry->Data->AlgoInfo.EspAlgoInfo.AuthKeyLength,
HashFragment,
1,
ProcessBuffer + EspSize - IcvSize,
IcvSize
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
}
//
// Encryption and authentication with esp has been done, so it's time to
// reload the new packet, create recycle event and fixup ip header.
//
RecycleContext = AllocateZeroPool (sizeof (IPSEC_RECYCLE_CONTEXT));
if (RecycleContext == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
IpSecRecycleCallback,
RecycleContext,
RecycleEvent
);
if (EFI_ERROR (Status)) {
goto ON_EXIT;
}
//
// Caller take responsible to handle the original fragment table.
//
*FragmentTable = AllocateZeroPool (sizeof (EFI_IPSEC_FRAGMENT_DATA));
if (*FragmentTable == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto ON_EXIT;
}
RecycleContext->FragmentTable = *FragmentTable;
RecycleContext->PayloadBuffer = ProcessBuffer;
(*FragmentTable)[0].FragmentBuffer = ProcessBuffer;
(*FragmentTable)[0].FragmentLength = (UINT32) EspSize;
*FragmentCount = 1;
//
// Update the total length field in ip header since processed by esp.
//
if (IpVersion == IP_VERSION_4) {
((IP4_HEAD *) IpHead)->TotalLen = HTONS ((UINT16) ((((IP4_HEAD *) IpHead)->HeadLen << 2) + EspSize));
} else {
((EFI_IP6_HEADER *) IpHead)->PayloadLength = (UINT16) (IpSecGetPlainExtHeadSize (IpHead, LastHead) + EspSize);
}
//
// If tunnel mode, it should change the outer Ip header with tunnel source address
// and destination tunnel address.
//
if (SadData->Mode == EfiIPsecTunnel) {
if (IpVersion == IP_VERSION_4) {
CopyMem (
&((IP4_HEAD *) IpHead)->Src,
&SadData->TunnelSourceAddress.v4,
sizeof (EFI_IPv4_ADDRESS)
);
CopyMem (
&((IP4_HEAD *) IpHead)->Dst,
&SadData->TunnelDestAddress.v4,
sizeof (EFI_IPv4_ADDRESS)
);
} else {
CopyMem (
&((EFI_IP6_HEADER *) IpHead)->SourceAddress,
&SadData->TunnelSourceAddress.v6,
sizeof (EFI_IPv6_ADDRESS)
);
CopyMem (
&((EFI_IP6_HEADER *) IpHead)->DestinationAddress,
&SadData->TunnelDestAddress.v6,
sizeof (EFI_IPv6_ADDRESS)
);
}
}
//
// Update the next layer field in ip header since esp header inserted.
//
*LastHead = IPSEC_ESP_PROTOCOL;
//
// Increase the sn number in SAD entry according to rfc4303.
//
SadData->SequenceNumber++;
ON_EXIT:
if (EFI_ERROR (Status)) {
if (ProcessBuffer != NULL) {
FreePool (ProcessBuffer);
}
if (RecycleContext != NULL) {
FreePool (RecycleContext);
}
if (*RecycleEvent != NULL) {
gBS->CloseEvent (*RecycleEvent);
}
}
return Status;
}
/**
This function processes the inbound traffic with IPsec.
It checks the received packet security property, trims the ESP/AH header, and then
returns without an IPsec protected IP Header and FragmentTable.
@param[in] IpVersion The version of IP.
@param[in, out] IpHead Points to IP header containing the ESP/AH header
to be trimed on input, and without ESP/AH header
on return.
@param[in, out] LastHead The Last Header in IP header on return.
@param[in, out] OptionsBuffer Pointer to the options buffer.
@param[in, out] OptionsLength Length of the options buffer.
@param[in, out] FragmentTable Pointer to a list of fragments in form of IPsec
protected on input, and without IPsec protected
on return.
@param[in, out] FragmentCount The number of fragments.
@param[out] SpdEntry Pointer to contain the address of SPD entry on return.
@param[out] RecycleEvent The event for recycling of resources.
@retval EFI_SUCCESS The operation was successful.
@retval EFI_UNSUPPORTED The IPSEC protocol is not supported.
**/
EFI_STATUS
IpSecProtectInboundPacket (
IN UINT8 IpVersion,
IN OUT VOID *IpHead,
IN OUT UINT8 *LastHead,
IN OUT VOID **OptionsBuffer,
IN OUT UINT32 *OptionsLength,
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
IN OUT UINT32 *FragmentCount,
OUT EFI_IPSEC_SPD_SELECTOR **SpdEntry,
OUT EFI_EVENT *RecycleEvent
)
{
if (*LastHead == IPSEC_ESP_PROTOCOL) {
//
// Process the esp ipsec header of the inbound traffic.
//
return IpSecEspInboundPacket (
IpVersion,
IpHead,
LastHead,
OptionsBuffer,
OptionsLength,
FragmentTable,
FragmentCount,
SpdEntry,
RecycleEvent
);
}
//
// The other protocols are not supported.
//
return EFI_UNSUPPORTED;
}
/**
This fucntion processes the output traffic with IPsec.
It protected the sending packet by encrypting it payload and inserting ESP/AH header
in the orginal IP header, then return the IpHeader and IPsec protected Fragmentable.
@param[in] IpVersion The version of IP.
@param[in, out] IpHead Point to IP header containing the orginal IP header
to be processed on input, and inserted ESP/AH header
on return.
@param[in, out] LastHead The Last Header in IP header.
@param[in, out] OptionsBuffer Pointer to the options buffer.
@param[in, out] OptionsLength Length of the options buffer.
@param[in, out] FragmentTable Pointer to a list of fragments to be protected by
IPsec on input, and with IPsec protected
on return.
@param[in, out] FragmentCount Number of fragments.
@param[in] SadEntry Related SAD entry.
@param[out] RecycleEvent Event for recycling of resources.
@retval EFI_SUCCESS The operation is successful.
@retval EFI_UNSUPPORTED If the IPSEC protocol is not supported.
**/
EFI_STATUS
IpSecProtectOutboundPacket (
IN UINT8 IpVersion,
IN OUT VOID *IpHead,
IN OUT UINT8 *LastHead,
IN OUT VOID **OptionsBuffer,
IN OUT UINT32 *OptionsLength,
IN OUT EFI_IPSEC_FRAGMENT_DATA **FragmentTable,
IN OUT UINT32 *FragmentCount,
IN IPSEC_SAD_ENTRY *SadEntry,
OUT EFI_EVENT *RecycleEvent
)
{
if (SadEntry->Id->Proto == EfiIPsecESP) {
//
// Process the esp ipsec header of the outbound traffic.
//
return IpSecEspOutboundPacket (
IpVersion,
IpHead,
LastHead,
OptionsBuffer,
OptionsLength,
FragmentTable,
FragmentCount,
SadEntry,
RecycleEvent
);
}
//
// The other protocols are not supported.
//
return EFI_UNSUPPORTED;
}