/**@file Memory Detection for Virtual Machines. Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: MemDetect.c **/ // // The package level header files this module uses // #include // // The Library classes this module consumes // #include #include #include #include #include #include #include #include #include "Platform.h" #include "Cmos.h" UINT8 mPhysMemAddressWidth; UINT32 GetSystemMemorySizeBelow4gb ( VOID ) { UINT8 Cmos0x34; UINT8 Cmos0x35; // // CMOS 0x34/0x35 specifies the system memory above 16 MB. // * CMOS(0x35) is the high byte // * CMOS(0x34) is the low byte // * The size is specified in 64kb chunks // * Since this is memory above 16MB, the 16MB must be added // into the calculation to get the total memory size. // Cmos0x34 = (UINT8) CmosRead8 (0x34); Cmos0x35 = (UINT8) CmosRead8 (0x35); return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB); } STATIC UINT64 GetSystemMemorySizeAbove4gb ( ) { UINT32 Size; UINTN CmosIndex; // // CMOS 0x5b-0x5d specifies the system memory above 4GB MB. // * CMOS(0x5d) is the most significant size byte // * CMOS(0x5c) is the middle size byte // * CMOS(0x5b) is the least significant size byte // * The size is specified in 64kb chunks // Size = 0; for (CmosIndex = 0x5d; CmosIndex >= 0x5b; CmosIndex--) { Size = (UINT32) (Size << 8) + (UINT32) CmosRead8 (CmosIndex); } return LShiftU64 (Size, 16); } /** Initialize the mPhysMemAddressWidth variable, based on guest RAM size. **/ VOID AddressWidthInitialization ( VOID ) { UINT64 FirstNonAddress; // // As guest-physical memory size grows, the permanent PEI RAM requirements // are dominated by the identity-mapping page tables built by the DXE IPL. // The DXL IPL keys off of the physical address bits advertized in the CPU // HOB. To conserve memory, we calculate the minimum address width here. // FirstNonAddress = BASE_4GB + GetSystemMemorySizeAbove4gb (); mPhysMemAddressWidth = (UINT8)HighBitSet64 (FirstNonAddress); // // If FirstNonAddress is not an integral power of two, then we need an // additional bit. // if ((FirstNonAddress & (FirstNonAddress - 1)) != 0) { ++mPhysMemAddressWidth; } // // The minimum address width is 36 (covers up to and excluding 64 GB, which // is the maximum for Ia32 + PAE). The theoretical architecture maximum for // X64 long mode is 52 bits, but the DXE IPL clamps that down to 48 bits. We // can simply assert that here, since 48 bits are good enough for 256 TB. // if (mPhysMemAddressWidth <= 36) { mPhysMemAddressWidth = 36; } ASSERT (mPhysMemAddressWidth <= 48); } /** Calculate the cap for the permanent PEI memory. **/ STATIC UINT32 GetPeiMemoryCap ( VOID ) { BOOLEAN Page1GSupport; UINT32 RegEax; UINT32 RegEdx; UINT32 Pml4Entries; UINT32 PdpEntries; UINTN TotalPages; // // If DXE is 32-bit, then just return the traditional 64 MB cap. // #ifdef MDE_CPU_IA32 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { return SIZE_64MB; } #endif // // Dependent on physical address width, PEI memory allocations can be // dominated by the page tables built for 64-bit DXE. So we key the cap off // of those. The code below is based on CreateIdentityMappingPageTables() in // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c". // Page1GSupport = FALSE; if (PcdGetBool (PcdUse1GPageTable)) { AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000001) { AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT26) != 0) { Page1GSupport = TRUE; } } } if (mPhysMemAddressWidth <= 39) { Pml4Entries = 1; PdpEntries = 1 << (mPhysMemAddressWidth - 30); ASSERT (PdpEntries <= 0x200); } else { Pml4Entries = 1 << (mPhysMemAddressWidth - 39); ASSERT (Pml4Entries <= 0x200); PdpEntries = 512; } TotalPages = Page1GSupport ? Pml4Entries + 1 : (PdpEntries + 1) * Pml4Entries + 1; ASSERT (TotalPages <= 0x40201); // // Add 64 MB for miscellaneous allocations. Note that for // mPhysMemAddressWidth values close to 36, the cap will actually be // dominated by this increment. // return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB); } /** Publish PEI core memory @return EFI_SUCCESS The PEIM initialized successfully. **/ EFI_STATUS PublishPeiMemory ( VOID ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS MemoryBase; UINT64 MemorySize; UINT64 LowerMemorySize; UINT32 PeiMemoryCap; if (mBootMode == BOOT_ON_S3_RESUME) { MemoryBase = PcdGet32 (PcdS3AcpiReservedMemoryBase); MemorySize = PcdGet32 (PcdS3AcpiReservedMemorySize); } else { LowerMemorySize = GetSystemMemorySizeBelow4gb (); PeiMemoryCap = GetPeiMemoryCap (); DEBUG ((EFI_D_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n", __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10)); // // Determine the range of memory to use during PEI // MemoryBase = PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize); MemorySize = LowerMemorySize - MemoryBase; if (MemorySize > PeiMemoryCap) { MemoryBase = LowerMemorySize - PeiMemoryCap; MemorySize = PeiMemoryCap; } } // // Publish this memory to the PEI Core // Status = PublishSystemMemory(MemoryBase, MemorySize); ASSERT_EFI_ERROR (Status); return Status; } /** Peform Memory Detection for QEMU / KVM **/ STATIC VOID QemuInitializeRam ( VOID ) { UINT64 LowerMemorySize; UINT64 UpperMemorySize; MTRR_SETTINGS MtrrSettings; EFI_STATUS Status; DEBUG ((EFI_D_INFO, "%a called\n", __FUNCTION__)); // // Determine total memory size available // LowerMemorySize = GetSystemMemorySizeBelow4gb (); UpperMemorySize = GetSystemMemorySizeAbove4gb (); if (mBootMode != BOOT_ON_S3_RESUME) { // // Create memory HOBs // AddMemoryRangeHob (0, BASE_512KB + BASE_128KB); AddMemoryRangeHob (BASE_1MB, LowerMemorySize); if (UpperMemorySize != 0) { AddUntestedMemoryBaseSizeHob (BASE_4GB, UpperMemorySize); } } // // We'd like to keep the following ranges uncached: // - [640 KB, 1 MB) // - [LowerMemorySize, 4 GB) // // Everything else should be WB. Unfortunately, programming the inverse (ie. // keeping the default UC, and configuring the complement set of the above as // WB) is not reliable in general, because the end of the upper RAM can have // practically any alignment, and we may not have enough variable MTRRs to // cover it exactly. // if (IsMtrrSupported ()) { MtrrGetAllMtrrs (&MtrrSettings); // // MTRRs disabled, fixed MTRRs disabled, default type is uncached // ASSERT ((MtrrSettings.MtrrDefType & BIT11) == 0); ASSERT ((MtrrSettings.MtrrDefType & BIT10) == 0); ASSERT ((MtrrSettings.MtrrDefType & 0xFF) == 0); // // flip default type to writeback // SetMem (&MtrrSettings.Fixed, sizeof MtrrSettings.Fixed, 0x06); ZeroMem (&MtrrSettings.Variables, sizeof MtrrSettings.Variables); MtrrSettings.MtrrDefType |= BIT11 | BIT10 | 6; MtrrSetAllMtrrs (&MtrrSettings); // // Set memory range from 640KB to 1MB to uncacheable // Status = MtrrSetMemoryAttribute (BASE_512KB + BASE_128KB, BASE_1MB - (BASE_512KB + BASE_128KB), CacheUncacheable); ASSERT_EFI_ERROR (Status); // // Set memory range from the "top of lower RAM" (RAM below 4GB) to 4GB as // uncacheable // Status = MtrrSetMemoryAttribute (LowerMemorySize, SIZE_4GB - LowerMemorySize, CacheUncacheable); ASSERT_EFI_ERROR (Status); } } /** Publish system RAM and reserve memory regions **/ VOID InitializeRamRegions ( VOID ) { if (!mXen) { QemuInitializeRam (); } else { XenPublishRamRegions (); } if (mS3Supported && mBootMode != BOOT_ON_S3_RESUME) { // // This is the memory range that will be used for PEI on S3 resume // BuildMemoryAllocationHob ( (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdS3AcpiReservedMemoryBase), (UINT64)(UINTN) PcdGet32 (PcdS3AcpiReservedMemorySize), EfiACPIMemoryNVS ); // // Cover the initial RAM area used as stack and temporary PEI heap. // // This is reserved as ACPI NVS so it can be used on S3 resume. // BuildMemoryAllocationHob ( PcdGet32 (PcdOvmfSecPeiTempRamBase), PcdGet32 (PcdOvmfSecPeiTempRamSize), EfiACPIMemoryNVS ); // // SEC stores its table of GUIDed section handlers here. // BuildMemoryAllocationHob ( PcdGet64 (PcdGuidedExtractHandlerTableAddress), PcdGet32 (PcdGuidedExtractHandlerTableSize), EfiACPIMemoryNVS ); #ifdef MDE_CPU_X64 // // Reserve the initial page tables built by the reset vector code. // // Since this memory range will be used by the Reset Vector on S3 // resume, it must be reserved as ACPI NVS. // BuildMemoryAllocationHob ( (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfSecPageTablesBase), (UINT64)(UINTN) PcdGet32 (PcdOvmfSecPageTablesSize), EfiACPIMemoryNVS ); #endif } if (mBootMode != BOOT_ON_S3_RESUME) { // // Reserve the lock box storage area // // Since this memory range will be used on S3 resume, it must be // reserved as ACPI NVS. // // If S3 is unsupported, then various drivers might still write to the // LockBox area. We ought to prevent DXE from serving allocation requests // such that they would overlap the LockBox storage. // ZeroMem ( (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase), (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize) ); BuildMemoryAllocationHob ( (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase), (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize), mS3Supported ? EfiACPIMemoryNVS : EfiBootServicesData ); } }