/** @file Copyright (c) 2013-2018, ARM Ltd. All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #include #include #include /* Display timings on Juno for 1920x1080. On Juno due to instability of the PLLs, we set OSC frequency to 138.5MHz which is stable for most monitors. Frequency 148.5MHz does not work with some monitors. 148.5MHz is set by SCP firmware by default. #define JUNO_HD_OSC_FREQUENCY 148500000 */ #define JUNO_HD_OSC_FREQUENCY 138500000 #define JUNO_HD_H_SYNC ( 32 - 1) #define JUNO_HD_H_FRONT_PORCH ( 48 - 1) #define JUNO_HD_H_BACK_PORCH ( 80 - 1) #define JUNO_HD_V_SYNC ( 5 - 1) #define JUNO_HD_V_FRONT_PORCH ( 3 - 1) #define JUNO_HD_V_BACK_PORCH ( 23 - 1) /* SCMI defined clock device name and ID. This is not documented but obtained using clock management protocol's CLOCK_ATTRIBUTES command. Generally we must discover clock device ID using clock name and then set/get rate using CLOCK_RATE_SET/CLOCK_RATE_GET commands. However because LcdGraphicsOutputDxe is a DXE driver, which gets initialized at boot time, for faster boot, in release build we will directly use this already known value as an argument to rate get/set functions. We expect these values not to change in future SCP firmware releases. DEBUG build however will probe SCP firmware and discover clock device ID for HDLCD. */ #define ARM_JUNO_CSS_CLK_NAME_HDLCD_0 "HDLCD_0" #define ARM_JUNO_CSS_CLKID_HDLCD_0 3 typedef struct { UINT32 OscFreq; SCAN_TIMINGS Horizontal; SCAN_TIMINGS Vertical; } DISPLAY_MODE; STATIC DISPLAY_MODE mDisplayModes[] = { { // VGA : 640 x 480 x 24 bpp. VGA_OSC_FREQUENCY, {VGA_H_RES_PIXELS, VGA_H_SYNC, VGA_H_BACK_PORCH, VGA_H_FRONT_PORCH}, {VGA_V_RES_PIXELS, VGA_V_SYNC, VGA_V_BACK_PORCH, VGA_V_FRONT_PORCH} }, { // WVGA : 800 x 480 x 24 bpp. WVGA_OSC_FREQUENCY, {WVGA_H_RES_PIXELS, WVGA_H_SYNC, WVGA_H_BACK_PORCH, WVGA_H_FRONT_PORCH}, {WVGA_V_RES_PIXELS, WVGA_V_SYNC, WVGA_V_BACK_PORCH, WVGA_V_FRONT_PORCH} }, { // SVGA : 800 x 600 x 24 bpp. SVGA_OSC_FREQUENCY, {SVGA_H_RES_PIXELS, SVGA_H_SYNC, SVGA_H_BACK_PORCH, SVGA_H_FRONT_PORCH}, {SVGA_V_RES_PIXELS, SVGA_V_SYNC, SVGA_V_BACK_PORCH, SVGA_V_FRONT_PORCH} }, { // QHD : 960 x 540 x 24 bpp. QHD_OSC_FREQUENCY, {QHD_H_RES_PIXELS, QHD_H_SYNC, QHD_H_BACK_PORCH, QHD_H_FRONT_PORCH}, {QHD_V_RES_PIXELS, QHD_V_SYNC, QHD_V_BACK_PORCH, QHD_V_FRONT_PORCH} }, { // WSVGA : 1024 x 600 x 24 bpp. WSVGA_OSC_FREQUENCY, {WSVGA_H_RES_PIXELS, WSVGA_H_SYNC, WSVGA_H_BACK_PORCH, WSVGA_H_FRONT_PORCH}, {WSVGA_V_RES_PIXELS, WSVGA_V_SYNC, WSVGA_V_BACK_PORCH, WSVGA_V_FRONT_PORCH} }, { // XGA : 1024 x 768 x 24 bpp. XGA_OSC_FREQUENCY, {XGA_H_RES_PIXELS, XGA_H_SYNC, XGA_H_BACK_PORCH, XGA_H_FRONT_PORCH}, {XGA_V_RES_PIXELS, XGA_V_SYNC, XGA_V_BACK_PORCH, XGA_V_FRONT_PORCH} }, { // HD : 1280 x 720 x 24 bpp. HD720_OSC_FREQUENCY, {HD720_H_RES_PIXELS, HD720_H_SYNC, HD720_H_BACK_PORCH, HD720_H_FRONT_PORCH}, {HD720_V_RES_PIXELS, HD720_V_SYNC, HD720_V_BACK_PORCH, HD720_V_FRONT_PORCH} }, { // WXGA : 1280 x 800 x 24 bpp. WXGA_OSC_FREQUENCY, {WXGA_H_RES_PIXELS, WXGA_H_SYNC, WXGA_H_BACK_PORCH, WXGA_H_FRONT_PORCH}, {WXGA_V_RES_PIXELS, WXGA_V_SYNC, WXGA_V_BACK_PORCH, WXGA_V_FRONT_PORCH} }, { // SXGA : 1280 x 1024 x 24 bpp. SXGA_OSC_FREQUENCY, {SXGA_H_RES_PIXELS, SXGA_H_SYNC, SXGA_H_BACK_PORCH, SXGA_H_FRONT_PORCH}, {SXGA_V_RES_PIXELS, SXGA_V_SYNC, SXGA_V_BACK_PORCH, SXGA_V_FRONT_PORCH} }, { // WSXGA+ : 1680 x 1050 x 24 bpp. WSXGA_OSC_FREQUENCY, {WSXGA_H_RES_PIXELS, WSXGA_H_SYNC, WSXGA_H_BACK_PORCH, WSXGA_H_FRONT_PORCH}, {WSXGA_V_RES_PIXELS, WSXGA_V_SYNC, WSXGA_V_BACK_PORCH, WSXGA_V_FRONT_PORCH} }, { // HD : 1920 x 1080 x 24 bpp. JUNO_HD_OSC_FREQUENCY, {HD_H_RES_PIXELS, JUNO_HD_H_SYNC, JUNO_HD_H_BACK_PORCH, JUNO_HD_H_FRONT_PORCH}, {HD_V_RES_PIXELS, JUNO_HD_V_SYNC, JUNO_HD_V_BACK_PORCH, JUNO_HD_V_FRONT_PORCH} } }; /* If PcdArmMaliDpMaxMode is 0, platform supports full range of modes else platform supports modes from 0 to PcdArmHdLcdMaxMode - 1 */ STATIC CONST UINT32 mMaxMode = ((FixedPcdGet32 (PcdArmHdLcdMaxMode) != 0) ? FixedPcdGet32 (PcdArmHdLcdMaxMode) : sizeof (mDisplayModes) / sizeof (DISPLAY_MODE)); /** HDLCD platform specific initialization function. @param[in] Handle Handle to the LCD device instance. @retval EFI_SUCCESS Plaform library initialized successfully. @retval EFI_UNSUPPORTED PcdGopPixelFormat must be PixelRedGreenBlueReserved8BitPerColor OR PixelBlueGreenRedReserved8BitPerColor any other format is not supported. @retval !(EFI_SUCCESS) Other errors. **/ EFI_STATUS LcdPlatformInitializeDisplay ( IN EFI_HANDLE Handle ) { (VOID)Handle; EFI_GRAPHICS_PIXEL_FORMAT PixelFormat; // PixelBitMask and PixelBltOnly pixel formats are not supported. PixelFormat = FixedPcdGet32 (PcdGopPixelFormat); if (PixelFormat != PixelRedGreenBlueReserved8BitPerColor && PixelFormat != PixelBlueGreenRedReserved8BitPerColor) { ASSERT (PixelFormat == PixelRedGreenBlueReserved8BitPerColor || PixelFormat == PixelBlueGreenRedReserved8BitPerColor); return EFI_UNSUPPORTED; } return EFI_SUCCESS; } /** Allocate VRAM memory in DRAM for the framebuffer (unless it is reserved already). The allocated address can be used to set the framebuffer. @param[out] VramBaseAddress A pointer to the framebuffer address. @param[out] VramSize A pointer to the size of the framebuffer in bytes @retval EFI_SUCCESS Framebuffer memory allocated successfully. @retval !(EFI_SUCCESS) Other errors. **/ EFI_STATUS LcdPlatformGetVram ( OUT EFI_PHYSICAL_ADDRESS * VramBaseAddress, OUT UINTN * VramSize ) { EFI_STATUS Status = EFI_SUCCESS; EFI_CPU_ARCH_PROTOCOL *Cpu; ASSERT (VramBaseAddress != NULL); ASSERT (VramSize != NULL); // Set the VRAM size. *VramSize = (UINTN)FixedPcdGet32 (PcdArmLcdDdrFrameBufferSize); // Check if memory is already reserved for the framebuffer. *VramBaseAddress = (EFI_PHYSICAL_ADDRESS)FixedPcdGet64 (PcdArmLcdDdrFrameBufferBase); if (*VramBaseAddress == 0) { // If not already reserved, attempt to allocate the VRAM from the DRAM. Status = gBS->AllocatePages ( AllocateAnyPages, EfiReservedMemoryType, EFI_SIZE_TO_PAGES (*VramSize), VramBaseAddress ); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "HdLcdArmJuno: Failed to allocate frame buffer.\n")); ASSERT_EFI_ERROR (Status); return Status; } // Ensure the Cpu architectural protocol is already installed Status = gBS->LocateProtocol ( &gEfiCpuArchProtocolGuid, NULL, (VOID **)&Cpu ); if (!EFI_ERROR (Status)) { // The VRAM is inside the DRAM, which is cacheable. // Mark the VRAM as write-combining (uncached) and non-executable. Status = Cpu->SetMemoryAttributes ( Cpu, *VramBaseAddress, *VramSize, EFI_MEMORY_WC | EFI_MEMORY_XP ); } if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); gBS->FreePages (*VramBaseAddress, EFI_SIZE_TO_PAGES (*VramSize)); } } return Status; } /** Return total number of modes supported. Note: Valid mode numbers are 0 to MaxMode - 1 See Section 12.9 of the UEFI Specification 2.7 @retval UINT32 Mode Number. **/ UINT32 LcdPlatformGetMaxMode (VOID) { return mMaxMode; } #if !defined(MDEPKG_NDEBUG) /** Probe Clock device ID of the HDLCD clock and current pixel clock frequency. NOTE: We will probe information only in DEBUG build. @param[in] ClockProtocol A pointer to SCMI clock protocol interface instance. @param[out] ClockId ID of the clock device @retval EFI_SUCCESS Clock ID of the HDLCD device returned successfully. @retval EFI_UNSUPPORTED SCMI clock management protocol unsupported. @retval EFI_DEVICE_ERROR SCMI error. @retval EFI_NOT_FOUND Not found valid clock device ID of the HDLCD. **/ STATIC EFI_STATUS ProbeHdLcdClock ( IN SCMI_CLOCK_PROTOCOL * ClockProtocol, OUT UINT32 * ClockId ) { EFI_STATUS Status; UINT64 CurrentHdLcdFreq; UINT32 TotalClocks; UINT32 ClockProtocolVersion; BOOLEAN Enabled; CHAR8 ClockName[SCMI_MAX_STR_LEN]; BOOLEAN ClockFound = FALSE; UINT32 TotalRates = 0; UINT32 ClockRateSize; SCMI_CLOCK_RATE ClockRate; SCMI_CLOCK_RATE_FORMAT ClockRateFormat; Status = ClockProtocol->GetVersion (ClockProtocol, &ClockProtocolVersion); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } DEBUG ((DEBUG_ERROR, "SCMI clock management protocol version = %x\n", ClockProtocolVersion)); if (ClockProtocolVersion != SCMI_CLOCK_PROTOCOL_VERSION) { ASSERT (FALSE); return EFI_UNSUPPORTED; } Status = ClockProtocol->GetTotalClocks (ClockProtocol, &TotalClocks); if (EFI_ERROR (Status)) { return Status; } DEBUG ((DEBUG_ERROR, "Total number of clocks supported by SCMI clock management protocol = %d\n", TotalClocks)); for (*ClockId = 0; *ClockId < TotalClocks; (*ClockId)++) { Status = ClockProtocol->GetClockAttributes ( ClockProtocol, *ClockId, &Enabled, ClockName ); if (EFI_ERROR (Status)) { // In current implementation of SCMI, some clocks are not accessible to // calling agents (in our case UEFI is an agent) which results in an // EFI_DEVICE_ERROR error. A bug fix for this is in discussions and will // be fixed in future versions of the SCP firmware. Irrespective of a fix // we must iterate over each clock to see if it matches with HDLCD. continue; } if (AsciiStrnCmp ((CONST CHAR8*)ClockName, (CONST CHAR8*)ARM_JUNO_CSS_CLK_NAME_HDLCD_0, sizeof (ARM_JUNO_CSS_CLK_NAME_HDLCD_0)) == 0) { ClockFound = TRUE; break; } } if (!ClockFound) { return EFI_NOT_FOUND; } ClockRateSize = sizeof (ClockRate); Status = ClockProtocol->DescribeRates ( ClockProtocol, *ClockId, &ClockRateFormat, &TotalRates, &ClockRateSize, &ClockRate ); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } Status = ClockProtocol->RateGet (ClockProtocol, *ClockId, &CurrentHdLcdFreq); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } DEBUG ((DEBUG_ERROR, "Clock ID = %d Clock name = %a\n", *ClockId, ClockName)); DEBUG ((DEBUG_ERROR, "Minimum frequency = %uHz\n", ClockRate.Min)); DEBUG ((DEBUG_ERROR, "Maximum frequency = %uHz\n", ClockRate.Max)); DEBUG ((DEBUG_ERROR, "Clock rate step = %uHz\n", ClockRate.Step)); DEBUG ((DEBUG_ERROR, "HDLCD Current frequency = %uHz\n", CurrentHdLcdFreq)); return EFI_SUCCESS; } #endif /** Set the requested display mode. @param[in] ModeNumber Mode Number. @retval EFI_SUCCESS Mode set successfully. @retval EFI_NOT_FOUND Clock protocol instance not found. @retval EFI_DEVICE_ERROR SCMI error. @retval EFI_INVALID_PARAMETER Requested mode not found. @retval !(EFI_SUCCESS) Other errors. */ EFI_STATUS LcdPlatformSetMode ( IN UINT32 ModeNumber ) { EFI_STATUS Status; SCMI_CLOCK_PROTOCOL *ClockProtocol; UINT32 ClockId; EFI_GUID ClockProtocolGuid = ARM_SCMI_CLOCK_PROTOCOL_GUID; if (ModeNumber >= mMaxMode) { ASSERT (ModeNumber < mMaxMode); return EFI_INVALID_PARAMETER; } // Display debug information in boot log. DEBUG ((DEBUG_ERROR, "HDLCD Display controller:\n")); DEBUG ((DEBUG_ERROR, "Required frequency for resolution %dx%d = %uHz\n", mDisplayModes[ModeNumber].Horizontal.Resolution, mDisplayModes[ModeNumber].Vertical.Resolution, mDisplayModes[ModeNumber].OscFreq)); Status = gBS->LocateProtocol ( &ClockProtocolGuid, NULL, (VOID**)&ClockProtocol ); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return Status; } #if !defined(MDEPKG_NDEBUG) /* Avoid probing clock device ID in RELEASE build */ Status = ProbeHdLcdClock (ClockProtocol, &ClockId); if (EFI_ERROR (Status)) { return Status; } ASSERT (ClockId == ARM_JUNO_CSS_CLKID_HDLCD_0); #else ClockId = ARM_JUNO_CSS_CLKID_HDLCD_0; #endif // Set HDLCD clock required for the requested mode Status = ClockProtocol->RateSet ( ClockProtocol, ClockId, mDisplayModes[ModeNumber].OscFreq ); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "SCMI error: %r\n", Status)); return Status; } #if !defined(MDEPKG_NDEBUG) UINT64 CurrentHdLcdFreq; // Actual value set can differ from requested frequency so verify. Status = ClockProtocol->RateGet ( ClockProtocol, ARM_JUNO_CSS_CLKID_HDLCD_0, &CurrentHdLcdFreq ); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "SCMI Error: %r\n", Status)); } else { DEBUG ((DEBUG_ERROR, "Requested frequency change = %uHz, Actual changed frequency = %uHz\n", mDisplayModes[ModeNumber].OscFreq, CurrentHdLcdFreq )); } #endif return Status; } /** Return information for the requested mode number. @param[in] ModeNumber Mode Number. @param[out] Info Pointer for returned mode information (on success). @retval EFI_SUCCESS Mode information for the requested mode returned successfully. @retval EFI_INVALID_PARAMETER Requested mode not found. **/ EFI_STATUS LcdPlatformQueryMode ( IN UINT32 ModeNumber, OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION * Info ) { if (ModeNumber >= mMaxMode ){ ASSERT (ModeNumber < mMaxMode); return EFI_INVALID_PARAMETER; } ASSERT (Info != NULL); Info->Version = 0; Info->HorizontalResolution = mDisplayModes[ModeNumber].Horizontal.Resolution; Info->VerticalResolution = mDisplayModes[ModeNumber].Vertical.Resolution; Info->PixelsPerScanLine = mDisplayModes[ModeNumber].Horizontal.Resolution; Info->PixelFormat = FixedPcdGet32 (PcdGopPixelFormat); return EFI_SUCCESS; } /** Return display timing information for the requested mode number. @param[in] ModeNumber Mode Number. @param[out] Horizontal Pointer to horizontal timing parameters. (Resolution, Sync, Back porch, Front porch) @param[out] Vertical Pointer to vertical timing parameters. (Resolution, Sync, Back porch, Front porch) @retval EFI_SUCCESS Display timing information for the requested mode returned successfully. @retval EFI_INVALID_PARAMETER Requested mode not found. **/ EFI_STATUS LcdPlatformGetTimings ( IN UINT32 ModeNumber, OUT SCAN_TIMINGS ** Horizontal, OUT SCAN_TIMINGS ** Vertical ) { if (ModeNumber >= mMaxMode ){ ASSERT (ModeNumber < mMaxMode); return EFI_INVALID_PARAMETER; } ASSERT (Horizontal != NULL); ASSERT (Vertical != NULL); *Horizontal = &mDisplayModes[ModeNumber].Horizontal; *Vertical = &mDisplayModes[ModeNumber].Vertical; return EFI_SUCCESS; } /** Return bits per pixel information for a mode number. @param[in] ModeNumber Mode Number. @param[out] Bpp Pointer to bits per pixel information. @retval EFI_SUCCESS Bits per pixel information for the requested mode returned successfully. @retval EFI_INVALID_PARAMETER Requested mode not found. **/ EFI_STATUS LcdPlatformGetBpp ( IN UINT32 ModeNumber, OUT LCD_BPP * Bpp ) { if (ModeNumber >= mMaxMode) { // Check valid ModeNumber and Bpp. ASSERT (ModeNumber < mMaxMode); return EFI_INVALID_PARAMETER; } ASSERT (Bpp != NULL); *Bpp = LCD_BITS_PER_PIXEL_24; return EFI_SUCCESS; }