/** @file ACPI DSDT table Copyright (c) 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License that accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #define TRAP_TYPE_DTS 0x02 #define TRAP_TYPE_IGD 0x03 #define TRAP_TYPE_BGD 0x04 // BIOS Guard // Define the following External variables to prevent a WARNING when // using ASL.EXE and an ERROR when using IASL.EXE. External(\PC00, IntObj) // PR00 _PDC Flags External(\PC01) External(\PC02) External(\PC03) External(\PC04) External(\PC05) External(\PC06) External(\PC07) External(\PC08) External(\PC09) External(\PC10) External(\PC11) External(\PC12) External(\PC13) External(\PC14) External(\PC15) External(\_PR.CFGD) External(\SGMD) // // DTS externals // External(\_PR.DTSF) External(\_PR.DTSE) External(\_PR.TRPD) External(\_PR.TRPF) External(\_PR.DSAE) // // SGX // External(\_PR.EPCS) External(\_PR.EMNA) External(\_PR.ELNG) External(\_SB.PCI0.GFX0.TCHE) // Technology enabled indicator External(\_SB.PCI0.GFX0.STAT) // State Indicator External(\_SB.TPM.PTS, MethodObj) External(\_SB.PCI0.PAUD.PUAM, MethodObj) //PUAM - PowerResource User Absent Mode External(\_SB.PCI0.XHC.DUAM, MethodObj) //DUAM - Device User Absent Mode for XHCI controller External(\_SB.PCI0.I2C4.GEXP.INVC, MethodObj) External(\_SB.PCI0.GFX0.IUEH, MethodObj) #define CONVERTIBLE_BUTTON 6 #define DOCK_INDICATOR 7 Name(ECUP, 1) // EC State indicator: 1- Normal Mode 0- Low Power Mode Mutex(EHLD, 0) // EC Hold indicator: 0- No one accessing the EC Power State 1- Someone else is accessing the EC Power State External(TBTD, MethodObj) External(TBTF, MethodObj) External(MMRP, MethodObj) External(MMTB, MethodObj) External(TBFF, MethodObj) External(FFTB, MethodObj) External(SXTB, MethodObj) // Interrupt specific registers include("Itss.asl") // Create a Global MUTEX. Mutex(MUTX,0) // OS Up mutex Mutex(OSUM, 0) // _WAK Finished Event Event(WFEV) // Define Port 80 as an ACPI Operating Region to use for debugging. Please // note that the Intel CRBs have the ability to ouput an entire DWord to // Port 80h for debugging purposes, so the model implemented here may not be // able to be used on OEM Designs. OperationRegion(PRT0,SystemIO,0x80,4) Field(PRT0,DwordAcc,Lock,Preserve) { P80H, 32 } // Port 80h Update: // Update 8 bits of the 32-bit Port 80h. // // Arguments: // Arg0: 0 = Write Port 80h, Bits 7:0 Only. // 1 = Write Port 80h, Bits 15:8 Only. // 2 = Write Port 80h, Bits 23:16 Only. // 3 = Write Port 80h, Bits 31:24 Only. // Arg1: 8-bit Value to write // // Return Value: // None Method(D8XH,2,Serialized) { If(LEqual(Arg0,0)) // Write Port 80h, Bits 7:0. { Store(Or(And(P80D,0xFFFFFF00),Arg1),P80D) } If(LEqual(Arg0,1)) // Write Port 80h, Bits 15:8. { Store(Or(And(P80D,0xFFFF00FF),ShiftLeft(Arg1,8)),P80D) } If(LEqual(Arg0,2)) // Write Port 80h, Bits 23:16. { Store(Or(And(P80D,0xFF00FFFF),ShiftLeft(Arg1,16)),P80D) } If(LEqual(Arg0,3)) // Write Port 80h, Bits 31:24. { Store(Or(And(P80D,0x00FFFFFF),ShiftLeft(Arg1,24)),P80D) } Store(P80D,P80H) } // Debug Port 80h Update: // If Acpidebug is enabled only then call D8XH to update 8 bits of the 32-bit Port 80h. // // Arguments: // Arg0: 0 = Write Port 80h, Bits 7:0 Only. // 1 = Write Port 80h, Bits 15:8 Only. // 2 = Write Port 80h, Bits 23:16 Only. // 3 = Write Port 80h, Bits 31:24 Only. // Arg1: 8-bit Value to write // // Return Value: // None Method(P8XH,2,Serialized) { // If ACPI debug is enabled, then display post codes on Port 80h If(CondRefOf(MDBG)) {// Check if ACPI Debug SSDT is loaded D8XH(Arg0,Arg1) } } Method(ADBG,1,Serialized) { Return(0) } // // Define SW SMI port as an ACPI Operating Region to use for generate SW SMI. // OperationRegion(SPRT,SystemIO, 0xB2,2) Field (SPRT, ByteAcc, Lock, Preserve) { SSMP, 8 } // The _PIC Control Method is optional for ACPI design. It allows the // OS to inform the ASL code which interrupt controller is being used, // the 8259 or APIC. The reference code in this document will address // PCI IRQ Routing and resource allocation for both cases. // // The values passed into _PIC are: // 0 = 8259 // 1 = IOAPIC Method(\_PIC,1) { Store(Arg0,GPIC) Store(Arg0,PICM) } // Prepare to Sleep. The hook is called when the OS is about to // enter a sleep state. The argument passed is the numeric value of // the Sx state. Method(_PTS,1) { Store(0,P80D) // Zero out the entire Port 80h DWord. D8XH(0,Arg0) // Output Sleep State to Port 80h, Byte 0. ADBG(Concatenate("_PTS=",ToHexString(Arg0))) // If code is executed, Wake from RI# via Serial Modem will be // enabled. If code is not executed, COM Port Debugging throughout // all Sx states will be enabled. If(LEqual(Arg0,3)) { // // Disable update DTS temperature and threshold value in every SMI // If(CondRefOf(\_PR.DTSE)){ If(LAnd(\_PR.DTSE, LGreater(TCNT, 1))) { TRAP(TRAP_TYPE_DTS,30) } } } // Generate a SW SMI trap to save some NVRAM data back to CMOS. // Don't enable IGD OpRegion support yet. // TRAP(1, 81) // // Call TPM.PTS // If(CondRefOf(\_SB.TPM.PTS)) { // // Call TPM PTS method // \_SB.TPM.PTS (Arg0) } } // Wake. This hook is called when the OS is about to wake from a // sleep state. The argument passed is the numeric value of the // sleep state the system is waking from. Method(_WAK,1,Serialized) { D8XH(1,0xAB) // Beginning of _WAK. ADBG("_WAK") // // Only set 8254 CG if Low Power S0 Idle Capability is enabled // If (LEqual(S0ID, One)) { // // Set ITSSPRC.8254CGE: Offset 3300h ITSSPRC[2] // Store(0x01, \_SB.SCGE) } If(NEXP) { // Reinitialize the Native PCI Express after resume If(And(OSCC,0x02)) { \_SB.PCI0.NHPG() } If(And(OSCC,0x04)) // PME control granted? { \_SB.PCI0.NPME() } } If(LOr(LEqual(Arg0,3), LEqual(Arg0,4))) // If S3 or S4 Resume { // Check to send Convertible/Dock state changes upon resume from Sx. If(And(GBSX,0x40)) { \_SB.PCI0.GFX0.IUEH(6) // // Do the same thing for Virtul Button device. // Toggle Bit3 of PB1E(Slate/Notebook status) // Xor(PB1E, 0x08, PB1E) } If(And(GBSX,0x80)) { \_SB.PCI0.GFX0.IUEH(7) // // Do the same thing for Virtul Button device. // Toggle Bit4 of PB1E (Dock/Undock status) // Xor(PB1E, 0x10, PB1E) } If(CondRefOf(\_PR.DTSE)){ If(LAnd(\_PR.DTSE, LGreater(TCNT, 1))) { TRAP(TRAP_TYPE_DTS, 20) } } // For PCI Express Express Cards, it is possible a device was // either inserted or removed during an Sx State. The problem // is that no wake event will occur for a given warm insertion // or removal, so the OS will not become aware of any change. // To get around this, re-enumerate all Express Card slots. // // If the Root Port is enabled, it may be assumed to be hot-pluggable. If(LNotEqual(\_SB.PCI0.RP01.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP01,0) } If(LNotEqual(\_SB.PCI0.RP02.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP02,0) } If(LNotEqual(\_SB.PCI0.RP03.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP03,0) } If(LNotEqual(\_SB.PCI0.RP04.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP04,0) } If(LNotEqual(\_SB.PCI0.RP05.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP05,0) } If(LNotEqual(\_SB.PCI0.RP06.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP06,0) } If(LNotEqual(\_SB.PCI0.RP07.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP07,0) } If(LNotEqual(\_SB.PCI0.RP08.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP08,0) } If(LNotEqual(\_SB.PCI0.RP09.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP09,0) } If(LNotEqual(\_SB.PCI0.RP10.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP10,0) } If(LNotEqual(\_SB.PCI0.RP11.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP11,0) } If(LNotEqual(\_SB.PCI0.RP12.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP12,0) } If(LNotEqual(\_SB.PCI0.RP13.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP13,0) } If(LNotEqual(\_SB.PCI0.RP14.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP14,0) } If(LNotEqual(\_SB.PCI0.RP15.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP15,0) } If(LNotEqual(\_SB.PCI0.RP16.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP16,0) } If(LNotEqual(\_SB.PCI0.RP17.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP17,0) } If(LNotEqual(\_SB.PCI0.RP18.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP18,0) } If(LNotEqual(\_SB.PCI0.RP19.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP19,0) } If(LNotEqual(\_SB.PCI0.RP20.VDID,0xFFFFFFFF)) { Notify (\_SB.PCI0.RP20,0) } } Return(Package(){0,0}) } // Get Buffer: // This method will take a buffer passed into the method and // create then return a smaller buffer based on the pointer // and size parameters passed in. // // Arguments: // Arg0: Pointer to start of new Buffer in passed in Buffer. // Arg1: Size of Buffer to create. // Arg2: Original Buffer // // Return Value: // Newly created buffer. Method(GETB,3,Serialized) { Multiply(Arg0,8,Local0) // Convert Index. Multiply(Arg1,8,Local1) // Convert Size. CreateField(Arg2,Local0,Local1,TBF3) // Create Buffer. Return(TBF3) // Return Buffer. } // Power Notification: // Perform all needed OS notifications during a // Power Switch. // // Arguments: // None // // Return Value: // None Method(PNOT,0,Serialized) { // // If MP enabled and driver support is present, notify all // processors. // If(LGreater(TCNT, 1)) { If(And(\PC00,0x0008)){ Notify(\_PR.PR00,0x80) // Eval PR00 _PPC. } If(And(\PC01,0x0008)){ Notify(\_PR.PR01,0x80) // Eval PR01 _PPC. } If(And(\PC02,0x0008)){ Notify(\_PR.PR02,0x80) // Eval PR02 _PPC. } If(And(\PC03,0x0008)){ Notify(\_PR.PR03,0x80) // Eval PR03 _PPC. } If(And(\PC04,0x0008)){ Notify(\_PR.PR04,0x80) // Eval PR04 _PPC. } If(And(\PC05,0x0008)){ Notify(\_PR.PR05,0x80) // Eval PR05 _PPC. } If(And(\PC06,0x0008)){ Notify(\_PR.PR06,0x80) // Eval PR06 _PPC. } If(And(\PC07,0x0008)){ Notify(\_PR.PR07,0x80) // Eval PR07 _PPC. } If(And(\PC08,0x0008)){ Notify(\_PR.PR08,0x80) // Eval PR08 _PPC. } If(And(\PC09,0x0008)){ Notify(\_PR.PR09,0x80) // Eval PR09 _PPC. } If(And(\PC10,0x0008)){ Notify(\_PR.PR10,0x80) // Eval PR10 _PPC. } If(And(\PC11,0x0008)){ Notify(\_PR.PR11,0x80) // Eval PR11 _PPC. } If(And(\PC12,0x0008)){ Notify(\_PR.PR12,0x80) // Eval PR12 _PPC. } If(And(\PC13,0x0008)){ Notify(\_PR.PR13,0x80) // Eval PR13 _PPC. } If(And(\PC14,0x0008)){ Notify(\_PR.PR14,0x80) // Eval PR14 _PPC. } If(And(\PC15,0x0008)){ Notify(\_PR.PR15,0x80) // Eval PR15 _PPC. } }Else{ Notify(\_PR.PR00,0x80) // Eval _PPC. } If(LGreater(TCNT, 1)){ If(LAnd(And(\PC00,0x0008),And(\PC00,0x0010))){ Notify(\_PR.PR00,0x81) // Eval PR00 _CST. } If(LAnd(And(\PC01,0x0008),And(\PC01,0x0010))){ Notify(\_PR.PR01,0x81) // Eval PR01 _CST. } If(LAnd(And(\PC02,0x0008),And(\PC02,0x0010))){ Notify(\_PR.PR02,0x81) // Eval PR02 _CST. } If(LAnd(And(\PC03,0x0008),And(\PC03,0x0010))){ Notify(\_PR.PR03,0x81) // Eval PR03 _CST. } If(LAnd(And(\PC04,0x0008),And(\PC04,0x0010))){ Notify(\_PR.PR04,0x81) // Eval PR04 _CST. } If(LAnd(And(\PC05,0x0008),And(\PC05,0x0010))){ Notify(\_PR.PR05,0x81) // Eval PR05 _CST. } If(LAnd(And(\PC06,0x0008),And(\PC06,0x0010))){ Notify(\_PR.PR06,0x81) // Eval PR06 _CST. } If(LAnd(And(\PC07,0x0008),And(\PC07,0x0010))){ Notify(\_PR.PR07,0x81) // Eval PR07 _CST. } If(LAnd(And(\PC08,0x0008),And(\PC08,0x0010))){ Notify(\_PR.PR08,0x81) // Eval PR08 _CST. } If(LAnd(And(\PC09,0x0008),And(\PC09,0x0010))){ Notify(\_PR.PR09,0x81) // Eval PR09 _CST. } If(LAnd(And(\PC10,0x0008),And(\PC10,0x0010))){ Notify(\_PR.PR10,0x81) // Eval PR10 _CST. } If(LAnd(And(\PC11,0x0008),And(\PC11,0x0010))){ Notify(\_PR.PR11,0x81) // Eval PR11 _CST. } If(LAnd(And(\PC12,0x0008),And(\PC12,0x0010))){ Notify(\_PR.PR12,0x81) // Eval PR12 _CST. } If(LAnd(And(\PC13,0x0008),And(\PC13,0x0010))){ Notify(\_PR.PR13,0x81) // Eval PR13 _CST. } If(LAnd(And(\PC14,0x0008),And(\PC14,0x0010))){ Notify(\_PR.PR14,0x81) // Eval PR14 _CST. } If(LAnd(And(\PC15,0x0008),And(\PC15,0x0010))){ Notify(\_PR.PR15,0x81) // Eval PR15 _CST. } } Else { Notify(\_PR.PR00,0x81) // Eval _CST. } } // end of Method(PNOT) // // Memory window to the CTDP registers starting at MCHBAR+5000h. // OperationRegion (MBAR, SystemMemory, Add(\_SB.PCI0.GMHB(),0x5000), 0x1000) Field (MBAR, ByteAcc, NoLock, Preserve) { Offset (0x938), // PACKAGE_POWER_SKU_UNIT (MCHBAR+0x5938) PWRU, 4, // Power Units [3:0] unit value is calculated by 1 W / Power(2,PWR_UNIT). The default value of 0011b corresponds to 1/8 W. Offset (0x9A0), // TURBO_POWER_LIMIT1 (MCHBAR+0x59A0) PPL1, 15, // PKG_PWR_LIM_1 [14:0] PL1E,1, // PKG_PWR_LIM1_EN [15] CLP1,1, // Package Clamping Limitation 1 } Name(CLMP, 0) // save the clamp bit Name(PLEN,0) // save the power limit enable bit Name(PLSV,0x8000) // save value of PL1 upon entering CS Name(CSEM, 0) //semaphore to avoid multiple calls to SPL1. SPL1/RPL1 must always be called in pairs, like push/pop off a stack // // SPL1 (Set PL1 to 4.5 watts with clamp bit set) // Per Legacy Thermal management CS requirements, we would like to set the PL1 limit when entering CS to 4.5W with clamp bit set via MMIO. // This can be done in the ACPI object which gets called by graphics driver during CS Entry. // Likewise, during CS exit, the BIOS must reset the PL1 value to the previous value prior to CS entry and reset the clamp bit. // // Arguments: // None // // Return Value: // None Method(SPL1,0,Serialized) { Name(PPUU,0) // units If (LEqual(CSEM, 1)) { Return() // we have already been called, must have CS exit before calling again } Store(1, CSEM) // record first call Store (PPL1, PLSV) // save PL1 value upon entering CS Store (PL1E, PLEN) // save PL1 Enable bit upon entering CS Store (CLP1, CLMP) // save PL1 Clamp bit upon entering CS If (LEqual(PWRU,0)) { // use PACKAGE_POWER_SKU_UNIT - Power Units[3:0] Store(1,PPUU) } Else { ShiftLeft(Decrement(PWRU),2,PPUU) // get units } Multiply(PLVL,PPUU,Local0) // convert SETUP value to power units in milli-watts Divide(Local0,1000,,Local1) // convert SETUP value to power units in watts Store(Local1, PPL1) // copy value to PL1 Store(1, PL1E) // set Enable bit Store(1, CLP1) // set Clamp bit } // // RPL1 (Restore the PL1 register to the values prior to CS entry) // // Arguments: // None // // Return Value: // None Method(RPL1,0,Serialized) { Store (PLSV, PPL1) // restore value of PL1 upon exiting CS Store(PLEN, PL1E) // restore the PL1 enable bit Store(CLMP, CLP1) // restore the PL1 Clamp bit Store(0, CSEM) // restore semaphore } Name(UAMS, 0) // User Absent Mode state, Zero - User Present; non-Zero - User not present Name(GLCK, 0) // a spin lock to avoid multi execution of GUAM // GUAM - Global User Absent Mode // Run when a change to User Absent mode is made, e.g. screen/display on/off events. // Any device that needs notifications of these events includes its own UAMN Control Method. // // Arguments: // Power State: // 00h = On // 01h = Standby // other value = do nothing & return // // Return Value: // None // Method(GUAM,1,Serialized) { Switch(ToInteger(Arg0)) { Case(0) // exit CS { If(LEqual(GLCK, 1)){ store(0, GLCK) P8XH(0, 0xE1) P8XH(1, 0xAB) ADBG("Exit Resiliency") // @Todo: Exit EC Low Power Mode here If(PSCP){ // if P-state Capping s enabled If (CondRefOf(\_PR.PR00._PPC)) { Store(Zero, \_PR.CPPC) PNOT() } } If(PLCS){ RPL1() // restore PL1 to pre-CS value upon exiting CS } } // end GLCK=1 } // end case(0) Case(1) // enter CS { If(LEqual(GLCK, 0)){ store(1, GLCK) P8XH(0, 0xE0) P8XH(1, 00) ADBG("Enter Resiliency") //@Todo: Enter EC Low Power Mode here If(PSCP){ // if P-state Capping is enabled If (LAnd(CondRefOf(\_PR.PR00._PSS), CondRefOf(\_PR.PR00._PPC))) { If(And(\PC00,0x0400)) { Subtract(SizeOf(\_PR.PR00.TPSS), One, \_PR.CPPC) } Else { Subtract(SizeOf(\_PR.PR00.LPSS), One, \_PR.CPPC) } PNOT() } } If(PLCS){ SPL1() // set PL1 to low value upon CS entry } } // end GLCK=0 } // end case(1) Default{ Return() // do nothing } } // end switch(arg0) Store(LAnd(Arg0, LNot(PWRS)), UAMS) // UAMS: User Absent Mode state, Zero - User Present; non-Zero - User not present P_CS() // Powergating during CS } // end method GUAM() // Power CS Powergated Devices: // Method to enable/disable power during CS Method(P_CS,0,Serialized) { // NOTE: Do not turn ON Touch devices from here. Touch does not have PUAM If(CondRefOf(\_SB.PCI0.PAUD.PUAM)){ // Notify Codec(HD-A/ADSP) \_SB.PCI0.PAUD.PUAM() } // Adding back USB powergating (ONLY for Win8) until RTD3 walkup port setup implementation is complete */ If(LEqual(OSYS,2012)){ // ONLY for Win8 OS If(CondRefOf(\_SB.PCI0.XHC.DUAM)){ // Notify USB port- RVP \_SB.PCI0.XHC.DUAM() } } // TODO: Add calls to UAMN methods for // * USB controller(s) // * Embedded Controller // * Sensor devices // * Audio DSP? // * Any other devices dependent on User Absent mode for power controls } // SMI I/O Trap: // Generate a Mutex protected SMI I/O Trap. // // Arguments: // Arg0: I/O Trap type. // 2 - For DTS // 3 - For IGD // 4 - For BIOS Guard Tools // Arg1: SMI I/O Trap Function to call. // // Return Value: // SMI I/O Trap Return value. // 0 = Success. Non-zero = Failure. Scope(\) { // // The IO address in this ACPI Operating Region will be updated during POST. // This address range is used as a HotKey I/O Trap SMI so that ASL and SMI can // communicate when needed. // OperationRegion(IO_H,SystemIO,0x1000,0x4) Field(IO_H,ByteAcc,NoLock,Preserve) { TRPH, 8 } } Method(TRAP,2,Serialized) { Store(Arg1,SMIF) // Store SMI Function. If(LEqual(Arg0,TRAP_TYPE_DTS)) // Is DTS IO Trap? { Store(Arg1,\_PR.DTSF) // Store the function number global NVS Store(0,\_PR.TRPD) // Generate IO Trap. Return(\_PR.DTSF) // Return status from SMI handler } If(LEqual(Arg0,TRAP_TYPE_IGD)) // Is IGD IO Trap? { Store(0,TRPH) // Generate IO Trap. } If(LEqual(Arg0,TRAP_TYPE_BGD)) // Is BIOS Guard TOOLS IO Trap? { Store(0,\_PR.TRPF) // Generate IO Trap } Return(SMIF) // Return SMIF. 0 = Success. } // Note: Only add the indicator device needed by the platform. // // System Bus // Scope(\_SB.PCI0) { Method(_INI,0, Serialized) { // Determine the OS and store the value, where: // // OSYS = 1000 = Linux. // OSYS = 2000 = WIN2000. // OSYS = 2001 = WINXP, RTM or SP1. // OSYS = 2002 = WINXP SP2. // OSYS = 2006 = Vista. // OSYS = 2009 = Windows 7 and Windows Server 2008 R2. // OSYS = 2012 = Windows 8 and Windows Server 2012. // OSYS = 2013 = Windows Blue. // // Assume Windows 2000 at a minimum. Store(2000,OSYS) // Check for a specific OS which supports _OSI. If(CondRefOf(\_OSI)) { If(\_OSI("Linux")) { Store(1000,OSYS) } If(\_OSI("Windows 2001")) // Windows XP { Store(2001,OSYS) } If(\_OSI("Windows 2001 SP1")) //Windows XP SP1 { Store(2001,OSYS) } If(\_OSI("Windows 2001 SP2")) //Windows XP SP2 { Store(2002,OSYS) } If (\_OSI( "Windows 2001.1")) //Windows Server 2003 { Store(2003,OSYS) } If(\_OSI("Windows 2006")) //Windows Vista { Store(2006,OSYS) } If(\_OSI("Windows 2009")) //Windows 7 and Windows Server 2008 R2 { Store(2009,OSYS) } If(\_OSI("Windows 2012")) //Windows 8 and Windows Server 2012 { Store(2012,OSYS) } If(\_OSI("Windows 2013")) //Windows 8.1 and Windows Server 2012 R2 { Store(2013,OSYS) } If(\_OSI("Windows 2015")) //Windows 10 { Store(2015,OSYS) } } // // Set DTS NVS data means in OS ACPI mode enabled insteads of GlobalNvs OperatingSystem (OSYS) // If(CondRefOf(\_PR.DTSE)){ If(LGreaterEqual(\_PR.DTSE, 0x01)){ Store(0x01, \_PR.DSAE) } } } Method(NHPG,0,Serialized) { Store(0,^RP01.HPEX) // clear the hot plug SCI enable bit Store(0,^RP02.HPEX) // clear the hot plug SCI enable bit Store(0,^RP03.HPEX) // clear the hot plug SCI enable bit Store(0,^RP04.HPEX) // clear the hot plug SCI enable bit Store(0,^RP05.HPEX) // clear the hot plug SCI enable bit Store(0,^RP06.HPEX) // clear the hot plug SCI enable bit Store(0,^RP07.HPEX) // clear the hot plug SCI enable bit Store(0,^RP08.HPEX) // clear the hot plug SCI enable bit Store(0,^RP09.HPEX) // clear the hot plug SCI enable bit Store(0,^RP10.HPEX) // clear the hot plug SCI enable bit Store(0,^RP11.HPEX) // clear the hot plug SCI enable bit Store(0,^RP12.HPEX) // clear the hot plug SCI enable bit Store(0,^RP13.HPEX) // clear the hot plug SCI enable bit Store(0,^RP14.HPEX) // clear the hot plug SCI enable bit Store(0,^RP15.HPEX) // clear the hot plug SCI enable bit Store(0,^RP16.HPEX) // clear the hot plug SCI enable bit Store(0,^RP17.HPEX) // clear the hot plug SCI enable bit Store(0,^RP18.HPEX) // clear the hot plug SCI enable bit Store(0,^RP19.HPEX) // clear the hot plug SCI enable bit Store(0,^RP20.HPEX) // clear the hot plug SCI enable bit Store(1,^RP01.HPSX) // clear the hot plug SCI status bit Store(1,^RP02.HPSX) // clear the hot plug SCI status bit Store(1,^RP03.HPSX) // clear the hot plug SCI status bit Store(1,^RP04.HPSX) // clear the hot plug SCI status bit Store(1,^RP05.HPSX) // clear the hot plug SCI status bit Store(1,^RP06.HPSX) // clear the hot plug SCI status bit Store(1,^RP07.HPSX) // clear the hot plug SCI status bit Store(1,^RP08.HPSX) // clear the hot plug SCI status bit Store(1,^RP09.HPSX) // clear the hot plug SCI status bit Store(1,^RP10.HPSX) // clear the hot plug SCI status bit Store(1,^RP11.HPSX) // clear the hot plug SCI status bit Store(1,^RP12.HPSX) // clear the hot plug SCI status bit Store(1,^RP13.HPSX) // clear the hot plug SCI status bit Store(1,^RP14.HPSX) // clear the hot plug SCI status bit Store(1,^RP15.HPSX) // clear the hot plug SCI status bit Store(1,^RP16.HPSX) // clear the hot plug SCI status bit Store(1,^RP17.HPSX) // clear the hot plug SCI status bit Store(1,^RP18.HPSX) // clear the hot plug SCI status bit Store(1,^RP19.HPSX) // clear the hot plug SCI status bit Store(1,^RP20.HPSX) // clear the hot plug SCI status bit } Method(NPME,0,Serialized) { Store(0,^RP01.PMEX) // clear the PME SCI enable bit Store(0,^RP02.PMEX) // clear the PME SCI enable bit Store(0,^RP03.PMEX) // clear the PME SCI enable bit Store(0,^RP04.PMEX) // clear the PME SCI enable bit Store(0,^RP05.PMEX) // clear the PME SCI enable bit Store(0,^RP06.PMEX) // clear the PME SCI enable bit Store(0,^RP07.PMEX) // clear the PME SCI enable bit Store(0,^RP08.PMEX) // clear the PME SCI enable bit Store(0,^RP09.PMEX) // clear the PME SCI enable bit Store(0,^RP10.PMEX) // clear the PME SCI enable bit Store(0,^RP11.PMEX) // clear the PME SCI enable bit Store(0,^RP12.PMEX) // clear the PME SCI enable bit Store(0,^RP13.PMEX) // clear the PME SCI enable bit Store(0,^RP14.PMEX) // clear the PME SCI enable bit Store(0,^RP15.PMEX) // clear the PME SCI enable bit Store(0,^RP16.PMEX) // clear the PME SCI enable bit Store(0,^RP17.PMEX) // clear the PME SCI enable bit Store(0,^RP18.PMEX) // clear the PME SCI enable bit Store(0,^RP19.PMEX) // clear the PME SCI enable bit Store(0,^RP20.PMEX) // clear the PME SCI enable bit Store(1,^RP01.PMSX) // clear the PME SCI status bit Store(1,^RP02.PMSX) // clear the PME SCI status bit Store(1,^RP03.PMSX) // clear the PME SCI status bit Store(1,^RP04.PMSX) // clear the PME SCI status bit Store(1,^RP05.PMSX) // clear the PME SCI status bit Store(1,^RP06.PMSX) // clear the PME SCI enable bit Store(1,^RP07.PMSX) // clear the PME SCI status bit Store(1,^RP08.PMSX) // clear the PME SCI status bit Store(1,^RP09.PMSX) // clear the PME SCI status bit Store(1,^RP10.PMSX) // clear the PME SCI status bit Store(1,^RP11.PMSX) // clear the PME SCI status bit Store(1,^RP12.PMSX) // clear the PME SCI status bit Store(1,^RP13.PMSX) // clear the PME SCI status bit Store(1,^RP14.PMSX) // clear the PME SCI status bit Store(1,^RP15.PMSX) // clear the PME SCI status bit Store(1,^RP16.PMSX) // clear the PME SCI status bit Store(1,^RP17.PMSX) // clear the PME SCI status bit Store(1,^RP18.PMSX) // clear the PME SCI status bit Store(1,^RP19.PMSX) // clear the PME SCI status bit Store(1,^RP20.PMSX) // clear the PME SCI status bit } } Scope (\) { // // Global Name, returns current Interrupt controller mode; // updated from _PIC control method // Name(PICM, 0) // // Procedure: GPRW // // Description: Generic Wake up Control Method ("Big brother") // to detect the Max Sleep State available in ASL Name scope // and Return the Package compatible with _PRW format. // Input: Arg0 = bit offset within GPE register space device event will be triggered to. // Arg1 = Max Sleep state, device can resume the System from. // If Arg1 = 0, Update Arg1 with Max _Sx state enabled in the System. // Output: _PRW package // Name(PRWP, Package(){Zero, Zero}) // _PRW Package Method(GPRW, 2) { Store(Arg0, Index(PRWP, 0)) // copy GPE# // // SS1-SS4 - enabled in BIOS Setup Sleep states // Store(ShiftLeft(SS1,1),Local0) // S1 ? Or(Local0,ShiftLeft(SS2,2),Local0) // S2 ? Or(Local0,ShiftLeft(SS3,3),Local0) // S3 ? Or(Local0,ShiftLeft(SS4,4),Local0) // S4 ? // // Local0 has a bit mask of enabled Sx(1 based) // bit mask of enabled in BIOS Setup Sleep states(1 based) // If(And(ShiftLeft(1, Arg1), Local0)) { // // Requested wake up value (Arg1) is present in Sx list of available Sleep states // Store(Arg1, Index(PRWP, 1)) // copy Sx# } Else { // // Not available -> match Wake up value to the higher Sx state // ShiftRight(Local0, 1, Local0) // If(LOr(LEqual(OSFL, 1), LEqual(OSFL, 2))) { // ??? Win9x // FindSetLeftBit(Local0, Index(PRWP,1)) // Arg1 == Max Sx // } Else { // ??? Win2k / XP FindSetLeftBit(Local0, Index(PRWP,1)) // Arg1 == Min Sx // } } Return(PRWP) } } Scope (\_SB) { Name(OSCI, 0) // \_SB._OSC DWORD2 input Name(OSCO, 0) // \_SB._OSC DWORD2 output Name(OSCP, 0) // \_SB._OSC CAPABILITIES // _OSC (Operating System Capabilities) // _OSC under \_SB scope is used to convey platform wide OSPM capabilities. // For a complete description of _OSC ACPI Control Method, refer to ACPI 5.0 // specification, section 6.2.10. // Arguments: (4) // Arg0 - A Buffer containing the UUID "0811B06E-4A27-44F9-8D60-3CBBC22E7B48" // Arg1 - An Integer containing the Revision ID of the buffer format // Arg2 - An Integer containing a count of entries in Arg3 // Arg3 - A Buffer containing a list of DWORD capabilities // Return Value: // A Buffer containing the list of capabilities // Method(_OSC,4,Serialized) { // // Point to Status DWORD in the Arg3 buffer (STATUS) // CreateDWordField(Arg3, 0, STS0) // // Point to Caps DWORDs of the Arg3 buffer (CAPABILITIES) // CreateDwordField(Arg3, 4, CAP0) // // Only set 8254 CG if Low Power S0 Idle Capability is enabled // If (LEqual(S0ID, One)) { // // Set ITSSPRC.8254CGE: Offset 3300h ITSSPRC[2] // Store(0x01, \_SB.SCGE) } // // Check UUID // If(LEqual(Arg0,ToUUID("0811B06E-4A27-44F9-8D60-3CBBC22E7B48"))) { // // Check Revision // If(LEqual(Arg1,One)) { Store(CAP0, OSCP) If(And(CAP0,0x04)) // Check _PR3 Support(BIT2) { Store(0x04, OSCO) If(LNotEqual(And(SGMD,0x0F),2)) // Check Switchable/Hybrid graphics is not enabled in bios setup [SgModeMuxless]? { If(LEqual(RTD3,0)) // Is RTD3 support disabled in Bios Setup? { // RTD3 is disabled via BIOS Setup. And(CAP0, 0x3B, CAP0) // Clear _PR3 capability Or(STS0, 0x10, STS0) // Indicate capability bit is cleared } } } } Else{ And(STS0,0xFFFFFF00,STS0) Or(STS0,0xA, STS0) // Unrecognised Revision and report OSC failure } } Else { And(STS0,0xFFFFFF00,STS0) Or (STS0,0x6, STS0) // Unrecognised UUID and report OSC failure } Return(Arg3) } // End _OSC } // End of Scope(\_SB) // // CS Wake up event support // Scope (\_SB) { // Define Sleep button to put the system in sleep Device (SLPB) { Name (_HID, EISAID ("PNP0C0E")) Name (_STA, 0x0B) // Bit0 - the device is present: Yes. // Bit1 - the device is enabled and decoding its resources: Yes. // Bit2 - the device should be shown in the UI: No. // Bit3 - the device is functioning properly: Yes. // Bit4 - the battery is present: N/A } } // End of Scope(\_SB)