/******************************************************************************* Copyright (C) 2016 Marvell International Ltd. Marvell BSD License Option If you received this File from Marvell, you may opt to use, redistribute and/or modify this File under the following licensing terms. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Marvell nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *******************************************************************************/ #include "MvSpiDxe.h" SPI_MASTER *mSpiMasterInstance; STATIC EFI_STATUS SpiSetBaudRate ( IN SPI_DEVICE *Slave, IN UINT32 CpuClock, IN UINT32 MaxFreq ) { UINT32 Spr, BestSpr, Sppr, BestSppr, ClockDivider, Match, Reg, MinBaudDiff; UINTN SpiRegBase = Slave->HostRegisterBaseAddress; MinBaudDiff = 0xFFFFFFFF; BestSppr = 0; //Spr is in range 1-15 and Sppr in range 0-8 for (Spr = 1; Spr <= 15; Spr++) { for (Sppr = 0; Sppr <= 7; Sppr++) { ClockDivider = Spr * (1 << Sppr); if ((CpuClock / ClockDivider) > MaxFreq) { continue; } if ((CpuClock / ClockDivider) == MaxFreq) { BestSpr = Spr; BestSppr = Sppr; Match = 1; break; } if ((MaxFreq - (CpuClock / ClockDivider)) < MinBaudDiff) { MinBaudDiff = (MaxFreq - (CpuClock / ClockDivider)); BestSpr = Spr; BestSppr = Sppr; } } if (Match == 1) { break; } } if (BestSpr == 0) { return (EFI_INVALID_PARAMETER); } Reg = MmioRead32 (SpiRegBase + SPI_CONF_REG); Reg &= ~(SPI_SPR_MASK | SPI_SPPR_0_MASK | SPI_SPPR_HI_MASK); Reg |= (BestSpr << SPI_SPR_OFFSET) | ((BestSppr & 0x1) << SPI_SPPR_0_OFFSET) | ((BestSppr >> 1) << SPI_SPPR_HI_OFFSET); MmioWrite32 (SpiRegBase + SPI_CONF_REG, Reg); return EFI_SUCCESS; } STATIC VOID SpiSetCs ( IN SPI_DEVICE *Slave ) { UINT32 Reg; UINTN SpiRegBase = Slave->HostRegisterBaseAddress; Reg = MmioRead32 (SpiRegBase + SPI_CTRL_REG); Reg &= ~SPI_CS_NUM_MASK; Reg |= (Slave->Cs << SPI_CS_NUM_OFFSET); MmioWrite32 (SpiRegBase + SPI_CTRL_REG, Reg); } STATIC VOID SpiActivateCs ( IN SPI_DEVICE *Slave ) { UINT32 Reg; UINTN SpiRegBase = Slave->HostRegisterBaseAddress; SpiSetCs(Slave); Reg = MmioRead32 (SpiRegBase + SPI_CTRL_REG); Reg |= SPI_CS_EN_MASK; MmioWrite32(SpiRegBase + SPI_CTRL_REG, Reg); } STATIC VOID SpiDeactivateCs ( IN SPI_DEVICE *Slave ) { UINT32 Reg; UINTN SpiRegBase = Slave->HostRegisterBaseAddress; Reg = MmioRead32 (SpiRegBase + SPI_CTRL_REG); Reg &= ~SPI_CS_EN_MASK; MmioWrite32(SpiRegBase + SPI_CTRL_REG, Reg); } STATIC VOID SpiSetupTransfer ( IN MARVELL_SPI_MASTER_PROTOCOL *This, IN SPI_DEVICE *Slave ) { SPI_MASTER *SpiMaster; UINT32 Reg, CoreClock, SpiMaxFreq; UINTN SpiRegBase; SpiMaster = SPI_MASTER_FROM_SPI_MASTER_PROTOCOL (This); // Initialize values from PCDs SpiRegBase = Slave->HostRegisterBaseAddress; CoreClock = Slave->CoreClock; SpiMaxFreq = Slave->MaxFreq; EfiAcquireLock (&SpiMaster->Lock); Reg = MmioRead32 (SpiRegBase + SPI_CONF_REG); Reg |= SPI_BYTE_LENGTH; MmioWrite32 (SpiRegBase + SPI_CONF_REG, Reg); SpiSetCs(Slave); SpiSetBaudRate (Slave, CoreClock, SpiMaxFreq); Reg = MmioRead32 (SpiRegBase + SPI_CONF_REG); Reg &= ~(SPI_CPOL_MASK | SPI_CPHA_MASK | SPI_TXLSBF_MASK | SPI_RXLSBF_MASK); switch (Slave->Mode) { case SPI_MODE0: break; case SPI_MODE1: Reg |= SPI_CPHA_MASK; break; case SPI_MODE2: Reg |= SPI_CPOL_MASK; break; case SPI_MODE3: Reg |= SPI_CPOL_MASK; Reg |= SPI_CPHA_MASK; break; } MmioWrite32 (SpiRegBase + SPI_CONF_REG, Reg); EfiReleaseLock (&SpiMaster->Lock); } EFI_STATUS EFIAPI MvSpiTransfer ( IN MARVELL_SPI_MASTER_PROTOCOL *This, IN SPI_DEVICE *Slave, IN UINTN DataByteCount, IN VOID *DataOut, IN VOID *DataIn, IN UINTN Flag ) { SPI_MASTER *SpiMaster; UINT64 Length; UINT32 Iterator, Reg; UINT8 *DataOutPtr = (UINT8 *)DataOut; UINT8 *DataInPtr = (UINT8 *)DataIn; UINT8 DataToSend = 0; UINTN SpiRegBase; SpiMaster = SPI_MASTER_FROM_SPI_MASTER_PROTOCOL (This); SpiRegBase = Slave->HostRegisterBaseAddress; Length = 8 * DataByteCount; if (!EfiAtRuntime ()) { EfiAcquireLock (&SpiMaster->Lock); } if (Flag & SPI_TRANSFER_BEGIN) { SpiActivateCs (Slave); } // Set 8-bit mode Reg = MmioRead32 (SpiRegBase + SPI_CONF_REG); Reg &= ~SPI_BYTE_LENGTH; MmioWrite32 (SpiRegBase + SPI_CONF_REG, Reg); while (Length > 0) { if (DataOut != NULL) { DataToSend = *DataOutPtr & 0xFF; } // Transmit Data MmioWrite32 (SpiRegBase + SPI_INT_CAUSE_REG, 0x0); MmioWrite32 (SpiRegBase + SPI_DATA_OUT_REG, DataToSend); // Wait for memory ready for (Iterator = 0; Iterator < SPI_TIMEOUT; Iterator++) { if (MmioRead32 (SpiRegBase + SPI_INT_CAUSE_REG)) { if (DataInPtr != NULL) { *DataInPtr = MmioRead32 (SpiRegBase + SPI_DATA_IN_REG); DataInPtr++; } if (DataOutPtr != NULL) { DataOutPtr++; } Length -= 8; break; } } if (Iterator >= SPI_TIMEOUT) { DEBUG ((DEBUG_ERROR, "%a: Timeout\n", __FUNCTION__)); return EFI_TIMEOUT; } } if (Flag & SPI_TRANSFER_END) { SpiDeactivateCs (Slave); } if (!EfiAtRuntime ()) { EfiReleaseLock (&SpiMaster->Lock); } return EFI_SUCCESS; } EFI_STATUS EFIAPI MvSpiReadWrite ( IN MARVELL_SPI_MASTER_PROTOCOL *This, IN SPI_DEVICE *Slave, IN UINT8 *Cmd, IN UINTN CmdSize, IN UINT8 *DataOut, OUT UINT8 *DataIn, IN UINTN DataSize ) { EFI_STATUS Status; Status = MvSpiTransfer (This, Slave, CmdSize, Cmd, NULL, SPI_TRANSFER_BEGIN); if (EFI_ERROR (Status)) { Print (L"Spi Transfer Error\n"); return EFI_DEVICE_ERROR; } Status = MvSpiTransfer (This, Slave, DataSize, DataOut, DataIn, SPI_TRANSFER_END); if (EFI_ERROR (Status)) { Print (L"Spi Transfer Error\n"); return EFI_DEVICE_ERROR; } return EFI_SUCCESS; } EFI_STATUS EFIAPI MvSpiInit ( IN MARVELL_SPI_MASTER_PROTOCOL * This ) { return EFI_SUCCESS; } SPI_DEVICE * EFIAPI MvSpiSetupSlave ( IN MARVELL_SPI_MASTER_PROTOCOL *This, IN SPI_DEVICE *Slave, IN UINTN Cs, IN SPI_MODE Mode ) { if (!Slave) { Slave = AllocateZeroPool (sizeof(SPI_DEVICE)); if (Slave == NULL) { DEBUG((DEBUG_ERROR, "Cannot allocate memory\n")); return NULL; } Slave->Cs = Cs; Slave->Mode = Mode; } Slave->HostRegisterBaseAddress = PcdGet32 (PcdSpiRegBase); Slave->CoreClock = PcdGet32 (PcdSpiClockFrequency); Slave->MaxFreq = PcdGet32 (PcdSpiMaxFrequency); SpiSetupTransfer (This, Slave); return Slave; } EFI_STATUS EFIAPI MvSpiFreeSlave ( IN SPI_DEVICE *Slave ) { FreePool (Slave); return EFI_SUCCESS; } EFI_STATUS EFIAPI MvSpiConfigRuntime ( IN SPI_DEVICE *Slave ) { EFI_STATUS Status; UINTN AlignedAddress; // // Host register base may be not aligned to the page size, // which is not accepted when setting memory space attributes. // Add one aligned page of memory space which covers the host // controller registers. // AlignedAddress = Slave->HostRegisterBaseAddress & ~(SIZE_4KB - 1); Status = gDS->AddMemorySpace (EfiGcdMemoryTypeMemoryMappedIo, AlignedAddress, SIZE_4KB, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Failed to add memory space\n", __FUNCTION__)); return Status; } Status = gDS->SetMemorySpaceAttributes (AlignedAddress, SIZE_4KB, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Failed to set memory attributes\n", __FUNCTION__)); gDS->RemoveMemorySpace (AlignedAddress, SIZE_4KB); return Status; } return EFI_SUCCESS; } STATIC EFI_STATUS SpiMasterInitProtocol ( IN MARVELL_SPI_MASTER_PROTOCOL *SpiMasterProtocol ) { SpiMasterProtocol->Init = MvSpiInit; SpiMasterProtocol->SetupDevice = MvSpiSetupSlave; SpiMasterProtocol->FreeDevice = MvSpiFreeSlave; SpiMasterProtocol->Transfer = MvSpiTransfer; SpiMasterProtocol->ReadWrite = MvSpiReadWrite; SpiMasterProtocol->ConfigRuntime = MvSpiConfigRuntime; return EFI_SUCCESS; } EFI_STATUS EFIAPI SpiMasterEntryPoint ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; mSpiMasterInstance = AllocateRuntimeZeroPool (sizeof (SPI_MASTER)); if (mSpiMasterInstance == NULL) { return EFI_OUT_OF_RESOURCES; } EfiInitializeLock (&mSpiMasterInstance->Lock, TPL_NOTIFY); SpiMasterInitProtocol (&mSpiMasterInstance->SpiMasterProtocol); mSpiMasterInstance->Signature = SPI_MASTER_SIGNATURE; Status = gBS->InstallMultipleProtocolInterfaces ( &(mSpiMasterInstance->Handle), &gMarvellSpiMasterProtocolGuid, &(mSpiMasterInstance->SpiMasterProtocol), NULL ); if (EFI_ERROR (Status)) { FreePool (mSpiMasterInstance); return EFI_DEVICE_ERROR; } return EFI_SUCCESS; }