/** @file Implement authentication services for the authenticated variable service in UEFI2.2. Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "Variable.h" #include "AuthService.h" /// /// Global database array for scratch /// UINT8 mPubKeyStore[MAX_KEYDB_SIZE]; UINT32 mPubKeyNumber; UINT32 mPlatformMode; EFI_GUID mSignatureSupport[] = {EFI_CERT_SHA1_GUID, EFI_CERT_SHA256_GUID, EFI_CERT_RSA2048_GUID, EFI_CERT_X509_GUID}; // // Public Exponent of RSA Key. // CONST UINT8 mRsaE[] = { 0x01, 0x00, 0x01 }; // // Hash context pointer // VOID *mHashCtx = NULL; // // Pointer to runtime buffer. // For "Append" operation to an existing variable, a read/modify/write operation // is supported by firmware internally. Reserve runtime buffer to cache previous // variable data in runtime phase because memory allocation is forbidden in virtual mode. // VOID *mStorageArea = NULL; // // The serialization of the values of the VariableName, VendorGuid and Attributes // parameters of the SetVariable() call and the TimeStamp component of the // EFI_VARIABLE_AUTHENTICATION_2 descriptor followed by the variable's new value // i.e. (VariableName, VendorGuid, Attributes, TimeStamp, Data) // UINT8 *mSerializationRuntimeBuffer = NULL; // // Requirement for different signature type which have been defined in UEFI spec. // These data are used to peform SignatureList format check while setting PK/KEK variable. // EFI_SIGNATURE_ITEM mSupportSigItem[] = { //{SigType, SigHeaderSize, SigDataSize } {EFI_CERT_SHA256_GUID, 0, 32 }, {EFI_CERT_RSA2048_GUID, 0, 256 }, {EFI_CERT_RSA2048_SHA256_GUID, 0, 256 }, {EFI_CERT_SHA1_GUID, 0, 20 }, {EFI_CERT_RSA2048_SHA1_GUID, 0, 256 }, {EFI_CERT_X509_GUID, 0, ((UINT32) ~0)}, {EFI_CERT_SHA224_GUID, 0, 28 }, {EFI_CERT_SHA384_GUID, 0, 48 }, {EFI_CERT_SHA512_GUID, 0, 64 } }; /** Determine whether this operation needs a physical present user. @param[in] VariableName Name of the Variable. @param[in] VendorGuid GUID of the Variable. @retval TRUE This variable is protected, only a physical present user could set this variable. @retval FALSE This variable is not protected. **/ BOOLEAN NeedPhysicallyPresent( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid ) { if ((CompareGuid (VendorGuid, &gEfiSecureBootEnableDisableGuid) && (StrCmp (VariableName, EFI_SECURE_BOOT_ENABLE_NAME) == 0)) || (CompareGuid (VendorGuid, &gEfiCustomModeEnableGuid) && (StrCmp (VariableName, EFI_CUSTOM_MODE_NAME) == 0))) { return TRUE; } return FALSE; } /** Determine whether the platform is operating in Custom Secure Boot mode. @retval TRUE The platform is operating in Custom mode. @retval FALSE The platform is operating in Standard mode. **/ BOOLEAN InCustomMode ( VOID ) { VARIABLE_POINTER_TRACK Variable; FindVariable (EFI_CUSTOM_MODE_NAME, &gEfiCustomModeEnableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (Variable.CurrPtr != NULL && *(GetVariableDataPtr (Variable.CurrPtr)) == CUSTOM_SECURE_BOOT_MODE) { return TRUE; } return FALSE; } /** Internal function to delete a Variable given its name and GUID, no authentication required. @param[in] VariableName Name of the Variable. @param[in] VendorGuid GUID of the Variable. @retval EFI_SUCCESS Variable deleted successfully. @retval Others The driver failded to start the device. **/ EFI_STATUS DeleteVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid ) { EFI_STATUS Status; VARIABLE_POINTER_TRACK Variable; Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (EFI_ERROR (Status)) { return EFI_SUCCESS; } ASSERT (Variable.CurrPtr != NULL); return UpdateVariable (VariableName, VendorGuid, NULL, 0, 0, 0, 0, &Variable, NULL); } /** Initializes for authenticated varibale service. @retval EFI_SUCCESS Function successfully executed. @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resources. **/ EFI_STATUS AutenticatedVariableServiceInitialize ( VOID ) { EFI_STATUS Status; VARIABLE_POINTER_TRACK Variable; VARIABLE_POINTER_TRACK PkVariable; UINT8 VarValue; UINT32 VarAttr; UINT8 *Data; UINTN DataSize; UINTN CtxSize; UINT8 SecureBootMode; UINT8 SecureBootEnable; UINT8 CustomMode; // // Initialize hash context. // CtxSize = Sha256GetContextSize (); mHashCtx = AllocateRuntimePool (CtxSize); if (mHashCtx == NULL) { return EFI_OUT_OF_RESOURCES; } // // Reserved runtime buffer for "Append" operation in virtual mode. // mStorageArea = AllocateRuntimePool (PcdGet32 (PcdMaxVariableSize)); if (mStorageArea == NULL) { return EFI_OUT_OF_RESOURCES; } // // Prepare runtime buffer for serialized data of time-based authenticated // Variable, i.e. (VariableName, VendorGuid, Attributes, TimeStamp, Data). // mSerializationRuntimeBuffer = AllocateRuntimePool (PcdGet32 (PcdMaxVariableSize) + sizeof (EFI_GUID) + sizeof (UINT32) + sizeof (EFI_TIME)); if (mSerializationRuntimeBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Check "AuthVarKeyDatabase" variable's existence. // If it doesn't exist, create a new one with initial value of 0 and EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set. // Status = FindVariable ( AUTHVAR_KEYDB_NAME, &gEfiAuthenticatedVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE ); if (Variable.CurrPtr == NULL) { VarAttr = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS; VarValue = 0; mPubKeyNumber = 0; Status = UpdateVariable ( AUTHVAR_KEYDB_NAME, &gEfiAuthenticatedVariableGuid, &VarValue, sizeof(UINT8), VarAttr, 0, 0, &Variable, NULL ); if (EFI_ERROR (Status)) { return Status; } } else { // // Load database in global variable for cache. // DataSize = DataSizeOfVariable (Variable.CurrPtr); Data = GetVariableDataPtr (Variable.CurrPtr); ASSERT ((DataSize != 0) && (Data != NULL)); CopyMem (mPubKeyStore, (UINT8 *) Data, DataSize); mPubKeyNumber = (UINT32) (DataSize / EFI_CERT_TYPE_RSA2048_SIZE); } FindVariable (EFI_PLATFORM_KEY_NAME, &gEfiGlobalVariableGuid, &PkVariable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (PkVariable.CurrPtr == NULL) { DEBUG ((EFI_D_INFO, "Variable %s does not exist.\n", EFI_PLATFORM_KEY_NAME)); } else { DEBUG ((EFI_D_INFO, "Variable %s exists.\n", EFI_PLATFORM_KEY_NAME)); } // // Check "SetupMode" variable's existence. // If it doesn't exist, check PK database's existence to determine the value. // Then create a new one with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set. // Status = FindVariable ( EFI_SETUP_MODE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE ); if (Variable.CurrPtr == NULL) { if (PkVariable.CurrPtr == NULL) { mPlatformMode = SETUP_MODE; } else { mPlatformMode = USER_MODE; } VarAttr = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS; Status = UpdateVariable ( EFI_SETUP_MODE_NAME, &gEfiGlobalVariableGuid, &mPlatformMode, sizeof(UINT8), VarAttr, 0, 0, &Variable, NULL ); if (EFI_ERROR (Status)) { return Status; } } else { mPlatformMode = *(GetVariableDataPtr (Variable.CurrPtr)); } // // Check "SignatureSupport" variable's existence. // If it doesn't exist, then create a new one with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set. // Status = FindVariable ( EFI_SIGNATURE_SUPPORT_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE ); if (Variable.CurrPtr == NULL) { VarAttr = EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS; Status = UpdateVariable ( EFI_SIGNATURE_SUPPORT_NAME, &gEfiGlobalVariableGuid, mSignatureSupport, sizeof(mSignatureSupport), VarAttr, 0, 0, &Variable, NULL ); } // // If "SecureBootEnable" variable exists, then update "SecureBoot" variable. // If "SecureBootEnable" variable is SECURE_BOOT_ENABLE and in USER_MODE, Set "SecureBoot" variable to SECURE_BOOT_MODE_ENABLE. // If "SecureBootEnable" variable is SECURE_BOOT_DISABLE, Set "SecureBoot" variable to SECURE_BOOT_MODE_DISABLE. // SecureBootEnable = SECURE_BOOT_MODE_DISABLE; FindVariable (EFI_SECURE_BOOT_ENABLE_NAME, &gEfiSecureBootEnableDisableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (Variable.CurrPtr != NULL) { SecureBootEnable = *(GetVariableDataPtr (Variable.CurrPtr)); } else if (mPlatformMode == USER_MODE) { // // "SecureBootEnable" not exist, initialize it in USER_MODE. // SecureBootEnable = SECURE_BOOT_MODE_ENABLE; Status = UpdateVariable ( EFI_SECURE_BOOT_ENABLE_NAME, &gEfiSecureBootEnableDisableGuid, &SecureBootEnable, sizeof (UINT8), EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS, 0, 0, &Variable, NULL ); if (EFI_ERROR (Status)) { return Status; } } if (SecureBootEnable == SECURE_BOOT_ENABLE && mPlatformMode == USER_MODE) { SecureBootMode = SECURE_BOOT_MODE_ENABLE; } else { SecureBootMode = SECURE_BOOT_MODE_DISABLE; } FindVariable (EFI_SECURE_BOOT_MODE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); Status = UpdateVariable ( EFI_SECURE_BOOT_MODE_NAME, &gEfiGlobalVariableGuid, &SecureBootMode, sizeof (UINT8), EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, 0, 0, &Variable, NULL ); if (EFI_ERROR (Status)) { return Status; } DEBUG ((EFI_D_INFO, "Variable %s is %x\n", EFI_SETUP_MODE_NAME, mPlatformMode)); DEBUG ((EFI_D_INFO, "Variable %s is %x\n", EFI_SECURE_BOOT_MODE_NAME, SecureBootMode)); DEBUG ((EFI_D_INFO, "Variable %s is %x\n", EFI_SECURE_BOOT_ENABLE_NAME, SecureBootEnable)); // // Check "CustomMode" variable's existence. // FindVariable (EFI_CUSTOM_MODE_NAME, &gEfiCustomModeEnableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE); if (Variable.CurrPtr != NULL) { CustomMode = *(GetVariableDataPtr (Variable.CurrPtr)); } else { // // "CustomMode" not exist, initialize it in STANDARD_SECURE_BOOT_MODE. // CustomMode = STANDARD_SECURE_BOOT_MODE; Status = UpdateVariable ( EFI_CUSTOM_MODE_NAME, &gEfiCustomModeEnableGuid, &CustomMode, sizeof (UINT8), EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS, 0, 0, &Variable, NULL ); if (EFI_ERROR (Status)) { return Status; } } DEBUG ((EFI_D_INFO, "Variable %s is %x\n", EFI_CUSTOM_MODE_NAME, CustomMode)); return Status; } /** Add public key in store and return its index. @param[in] PubKey Input pointer to Public Key data @return Index of new added item **/ UINT32 AddPubKeyInStore ( IN UINT8 *PubKey ) { EFI_STATUS Status; BOOLEAN IsFound; UINT32 Index; VARIABLE_POINTER_TRACK Variable; UINT8 *Ptr; if (PubKey == NULL) { return 0; } Status = FindVariable ( AUTHVAR_KEYDB_NAME, &gEfiAuthenticatedVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE ); ASSERT_EFI_ERROR (Status); // // Check whether the public key entry does exist. // IsFound = FALSE; for (Ptr = mPubKeyStore, Index = 1; Index <= mPubKeyNumber; Index++) { if (CompareMem (Ptr, PubKey, EFI_CERT_TYPE_RSA2048_SIZE) == 0) { IsFound = TRUE; break; } Ptr += EFI_CERT_TYPE_RSA2048_SIZE; } if (!IsFound) { // // Add public key in database. // if (mPubKeyNumber == MAX_KEY_NUM) { // // Notes: Database is full, need enhancement here, currently just return 0. // return 0; } CopyMem (mPubKeyStore + mPubKeyNumber * EFI_CERT_TYPE_RSA2048_SIZE, PubKey, EFI_CERT_TYPE_RSA2048_SIZE); Index = ++mPubKeyNumber; // // Update public key database variable. // Status = UpdateVariable ( AUTHVAR_KEYDB_NAME, &gEfiAuthenticatedVariableGuid, mPubKeyStore, mPubKeyNumber * EFI_CERT_TYPE_RSA2048_SIZE, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, 0, 0, &Variable, NULL ); ASSERT_EFI_ERROR (Status); } return Index; } /** Verify data payload with AuthInfo in EFI_CERT_TYPE_RSA2048_SHA256_GUID type. Follow the steps in UEFI2.2. @param[in] Data Pointer to data with AuthInfo. @param[in] DataSize Size of Data. @param[in] PubKey Public key used for verification. @retval EFI_INVALID_PARAMETER Invalid parameter. @retval EFI_SECURITY_VIOLATION If authentication failed. @retval EFI_SUCCESS Authentication successful. **/ EFI_STATUS VerifyCounterBasedPayload ( IN UINT8 *Data, IN UINTN DataSize, IN UINT8 *PubKey ) { BOOLEAN Status; EFI_VARIABLE_AUTHENTICATION *CertData; EFI_CERT_BLOCK_RSA_2048_SHA256 *CertBlock; UINT8 Digest[SHA256_DIGEST_SIZE]; VOID *Rsa; Rsa = NULL; CertData = NULL; CertBlock = NULL; if (Data == NULL || PubKey == NULL) { return EFI_INVALID_PARAMETER; } CertData = (EFI_VARIABLE_AUTHENTICATION *) Data; CertBlock = (EFI_CERT_BLOCK_RSA_2048_SHA256 *) (CertData->AuthInfo.CertData); // // wCertificateType should be WIN_CERT_TYPE_EFI_GUID. // Cert type should be EFI_CERT_TYPE_RSA2048_SHA256_GUID. // if ((CertData->AuthInfo.Hdr.wCertificateType != WIN_CERT_TYPE_EFI_GUID) || !CompareGuid (&CertData->AuthInfo.CertType, &gEfiCertTypeRsa2048Sha256Guid) ) { // // Invalid AuthInfo type, return EFI_SECURITY_VIOLATION. // return EFI_SECURITY_VIOLATION; } // // Hash data payload with SHA256. // ZeroMem (Digest, SHA256_DIGEST_SIZE); Status = Sha256Init (mHashCtx); if (!Status) { goto Done; } Status = Sha256Update (mHashCtx, Data + AUTHINFO_SIZE, (UINTN) (DataSize - AUTHINFO_SIZE)); if (!Status) { goto Done; } // // Hash Monotonic Count. // Status = Sha256Update (mHashCtx, &CertData->MonotonicCount, sizeof (UINT64)); if (!Status) { goto Done; } Status = Sha256Final (mHashCtx, Digest); if (!Status) { goto Done; } // // Generate & Initialize RSA Context. // Rsa = RsaNew (); ASSERT (Rsa != NULL); // // Set RSA Key Components. // NOTE: Only N and E are needed to be set as RSA public key for signature verification. // Status = RsaSetKey (Rsa, RsaKeyN, PubKey, EFI_CERT_TYPE_RSA2048_SIZE); if (!Status) { goto Done; } Status = RsaSetKey (Rsa, RsaKeyE, mRsaE, sizeof (mRsaE)); if (!Status) { goto Done; } // // Verify the signature. // Status = RsaPkcs1Verify ( Rsa, Digest, SHA256_DIGEST_SIZE, CertBlock->Signature, EFI_CERT_TYPE_RSA2048_SHA256_SIZE ); Done: if (Rsa != NULL) { RsaFree (Rsa); } if (Status) { return EFI_SUCCESS; } else { return EFI_SECURITY_VIOLATION; } } /** Update platform mode. @param[in] Mode SETUP_MODE or USER_MODE. @return EFI_INVALID_PARAMETER Invalid parameter. @return EFI_SUCCESS Update platform mode successfully. **/ EFI_STATUS UpdatePlatformMode ( IN UINT32 Mode ) { EFI_STATUS Status; VARIABLE_POINTER_TRACK Variable; UINT32 VarAttr; UINT8 SecureBootMode; UINT8 SecureBootEnable; UINTN VariableDataSize; Status = FindVariable ( EFI_SETUP_MODE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE ); if (EFI_ERROR (Status)) { return Status; } mPlatformMode = Mode; VarAttr = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS; Status = UpdateVariable ( EFI_SETUP_MODE_NAME, &gEfiGlobalVariableGuid, &mPlatformMode, sizeof(UINT8), VarAttr, 0, 0, &Variable, NULL ); if (EFI_ERROR (Status)) { return Status; } if (AtRuntime ()) { // // SecureBoot Variable indicates whether the platform firmware is operating // in Secure boot mode (1) or not (0), so we should not change SecureBoot // Variable in runtime. // return Status; } // // Check "SecureBoot" variable's existence. // If it doesn't exist, firmware has no capability to perform driver signing verification, // then set "SecureBoot" to 0. // Status = FindVariable ( EFI_SECURE_BOOT_MODE_NAME, &gEfiGlobalVariableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE ); // // If "SecureBoot" variable exists, then check "SetupMode" variable update. // If "SetupMode" variable is USER_MODE, "SecureBoot" variable is set to 1. // If "SetupMode" variable is SETUP_MODE, "SecureBoot" variable is set to 0. // if (Variable.CurrPtr == NULL) { SecureBootMode = SECURE_BOOT_MODE_DISABLE; } else { if (mPlatformMode == USER_MODE) { SecureBootMode = SECURE_BOOT_MODE_ENABLE; } else if (mPlatformMode == SETUP_MODE) { SecureBootMode = SECURE_BOOT_MODE_DISABLE; } else { return EFI_NOT_FOUND; } } VarAttr = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS; Status = UpdateVariable ( EFI_SECURE_BOOT_MODE_NAME, &gEfiGlobalVariableGuid, &SecureBootMode, sizeof(UINT8), VarAttr, 0, 0, &Variable, NULL ); if (EFI_ERROR (Status)) { return Status; } // // Check "SecureBootEnable" variable's existence. It can enable/disable secure boot feature. // Status = FindVariable ( EFI_SECURE_BOOT_ENABLE_NAME, &gEfiSecureBootEnableDisableGuid, &Variable, &mVariableModuleGlobal->VariableGlobal, FALSE ); if (SecureBootMode == SECURE_BOOT_MODE_ENABLE) { // // Create the "SecureBootEnable" variable as secure boot is enabled. // SecureBootEnable = SECURE_BOOT_ENABLE; VariableDataSize = sizeof (SecureBootEnable); } else { // // Delete the "SecureBootEnable" variable if this variable exist as "SecureBoot" // variable is not in secure boot state. // if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { return EFI_SUCCESS; } SecureBootEnable = SECURE_BOOT_DISABLE; VariableDataSize = 0; } Status = UpdateVariable ( EFI_SECURE_BOOT_ENABLE_NAME, &gEfiSecureBootEnableDisableGuid, &SecureBootEnable, VariableDataSize, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS, 0, 0, &Variable, NULL ); return Status; } /** Check input data form to make sure it is a valid EFI_SIGNATURE_LIST for PK/KEK variable. @param[in] VariableName Name of Variable to be check. @param[in] VendorGuid Variable vendor GUID. @param[in] Data Point to the variable data to be checked. @param[in] DataSize Size of Data. @return EFI_INVALID_PARAMETER Invalid signature list format. @return EFI_SUCCESS Passed signature list format check successfully. **/ EFI_STATUS CheckSignatureListFormat( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN VOID *Data, IN UINTN DataSize ) { EFI_SIGNATURE_LIST *SigList; UINTN SigDataSize; UINT32 Index; UINT32 SigCount; BOOLEAN IsPk; if (DataSize == 0) { return EFI_SUCCESS; } ASSERT (VariableName != NULL && VendorGuid != NULL && Data != NULL); if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_PLATFORM_KEY_NAME) == 0)){ IsPk = TRUE; } else if (CompareGuid (VendorGuid, &gEfiGlobalVariableGuid) && (StrCmp (VariableName, EFI_KEY_EXCHANGE_KEY_NAME) == 0)) { IsPk = FALSE; } else { return EFI_SUCCESS; } SigCount = 0; SigList = (EFI_SIGNATURE_LIST *) Data; SigDataSize = DataSize; // // Walk throuth the input signature list and check the data format. // If any signature is incorrectly formed, the whole check will fail. // while ((SigDataSize > 0) && (SigDataSize >= SigList->SignatureListSize)) { for (Index = 0; Index < (sizeof (mSupportSigItem) / sizeof (EFI_SIGNATURE_ITEM)); Index++ ) { if (CompareGuid (&SigList->SignatureType, &mSupportSigItem[Index].SigType)) { // // The value of SignatureSize should always be 16 (size of SignatureOwner // component) add the data length according to signature type. // if (mSupportSigItem[Index].SigDataSize != ((UINT32) ~0) && (SigList->SignatureSize - sizeof (EFI_GUID)) != mSupportSigItem[Index].SigDataSize) { return EFI_INVALID_PARAMETER; } if (mSupportSigItem[Index].SigHeaderSize != ((UINTN) ~0) && SigList->SignatureHeaderSize != mSupportSigItem[Index].SigHeaderSize) { return EFI_INVALID_PARAMETER; } break; } } if (Index == (sizeof (mSupportSigItem) / sizeof (EFI_SIGNATURE_ITEM))) { // // Undefined signature type. // return EFI_INVALID_PARAMETER; } if ((SigList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - SigList->SignatureHeaderSize) % SigList->SignatureSize != 0) { return EFI_INVALID_PARAMETER; } SigCount += (SigList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - SigList->SignatureHeaderSize) / SigList->SignatureSize; SigDataSize -= SigList->SignatureListSize; SigList = (EFI_SIGNATURE_LIST *) ((UINT8 *) SigList + SigList->SignatureListSize); } if (((UINTN) SigList - (UINTN) Data) != DataSize) { return EFI_INVALID_PARAMETER; } if (IsPk && SigCount > 1) { return EFI_INVALID_PARAMETER; } return EFI_SUCCESS; } /** Process variable with platform key for verification. @param[in] VariableName Name of Variable to be found. @param[in] VendorGuid Variable vendor GUID. @param[in] Data Data pointer. @param[in] DataSize Size of Data found. If size is less than the data, this value contains the required size. @param[in] Variable The variable information which is used to keep track of variable usage. @param[in] Attributes Attribute value of the variable @param[in] IsPk Indicate whether it is to process pk. @return EFI_INVALID_PARAMETER Invalid parameter. @return EFI_SECURITY_VIOLATION The variable does NOT pass the validation. check carried out by the firmware. @return EFI_SUCCESS Variable passed validation successfully. **/ EFI_STATUS ProcessVarWithPk ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN VOID *Data, IN UINTN DataSize, IN VARIABLE_POINTER_TRACK *Variable, IN UINT32 Attributes OPTIONAL, IN BOOLEAN IsPk ) { EFI_STATUS Status; VARIABLE_POINTER_TRACK PkVariable; EFI_SIGNATURE_LIST *OldPkList; EFI_SIGNATURE_DATA *OldPkData; EFI_VARIABLE_AUTHENTICATION *CertData; BOOLEAN TimeBase; BOOLEAN Del; UINT8 *Payload; UINTN PayloadSize; UINT64 MonotonicCount; EFI_TIME *TimeStamp; if ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) { // // PK and KEK should set EFI_VARIABLE_NON_VOLATILE attribute. // return EFI_INVALID_PARAMETER; } if (mPlatformMode == USER_MODE && !(InCustomMode() && UserPhysicalPresent())) { if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) { // // EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute means time-based X509 Cert PK. // TimeBase = TRUE; } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { // // EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute means counter-based RSA-2048 Cert PK. // TimeBase = FALSE; } else { return EFI_INVALID_PARAMETER; } if (TimeBase) { // // Verify against X509 Cert PK. // Del = FALSE; Status = VerifyTimeBasedPayload (VariableName, VendorGuid, Data, DataSize, Variable, Attributes, TRUE, &Del); if (!EFI_ERROR (Status)) { // // If delete PK in user mode, need change to setup mode. // if (Del && IsPk) { Status = UpdatePlatformMode (SETUP_MODE); } } return Status; } else { // // Verify against RSA2048 Cert PK. // CertData = (EFI_VARIABLE_AUTHENTICATION *) Data; if ((Variable->CurrPtr != NULL) && (CertData->MonotonicCount <= Variable->CurrPtr->MonotonicCount)) { // // Monotonic count check fail, suspicious replay attack, return EFI_SECURITY_VIOLATION. // return EFI_SECURITY_VIOLATION; } // // Get platform key from variable. // Status = FindVariable ( EFI_PLATFORM_KEY_NAME, &gEfiGlobalVariableGuid, &PkVariable, &mVariableModuleGlobal->VariableGlobal, FALSE ); ASSERT_EFI_ERROR (Status); OldPkList = (EFI_SIGNATURE_LIST *) GetVariableDataPtr (PkVariable.CurrPtr); OldPkData = (EFI_SIGNATURE_DATA *) ((UINT8 *) OldPkList + sizeof (EFI_SIGNATURE_LIST) + OldPkList->SignatureHeaderSize); Status = VerifyCounterBasedPayload (Data, DataSize, OldPkData->SignatureData); if (!EFI_ERROR (Status)) { Status = CheckSignatureListFormat( VariableName, VendorGuid, (UINT8*)Data + AUTHINFO_SIZE, DataSize - AUTHINFO_SIZE); if (EFI_ERROR (Status)) { return Status; } Status = UpdateVariable ( VariableName, VendorGuid, (UINT8*)Data + AUTHINFO_SIZE, DataSize - AUTHINFO_SIZE, Attributes, 0, CertData->MonotonicCount, Variable, NULL ); if (!EFI_ERROR (Status)) { // // If delete PK in user mode, need change to setup mode. // if ((DataSize == AUTHINFO_SIZE) && IsPk) { Status = UpdatePlatformMode (SETUP_MODE); } } } } } else { // // Process PK or KEK in Setup mode or Custom Secure Boot mode. // if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Time-based Authentication descriptor. // MonotonicCount = 0; TimeStamp = &((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->TimeStamp; Payload = (UINT8 *) Data + AUTHINFO2_SIZE (Data); PayloadSize = DataSize - AUTHINFO2_SIZE (Data); } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Counter-based Authentication descriptor. // MonotonicCount = ((EFI_VARIABLE_AUTHENTICATION *) Data)->MonotonicCount; TimeStamp = NULL; Payload = (UINT8*) Data + AUTHINFO_SIZE; PayloadSize = DataSize - AUTHINFO_SIZE; } else { // // No Authentication descriptor. // MonotonicCount = 0; TimeStamp = NULL; Payload = Data; PayloadSize = DataSize; } Status = CheckSignatureListFormat(VariableName, VendorGuid, Payload, PayloadSize); if (EFI_ERROR (Status)) { return Status; } Status = UpdateVariable ( VariableName, VendorGuid, Payload, PayloadSize, Attributes, 0, MonotonicCount, Variable, TimeStamp ); if (IsPk) { if (PayloadSize != 0) { // // If enroll PK in setup mode, need change to user mode. // Status = UpdatePlatformMode (USER_MODE); } else { // // If delete PK in custom mode, need change to setup mode. // UpdatePlatformMode (SETUP_MODE); } } } return Status; } /** Process variable with key exchange key for verification. @param[in] VariableName Name of Variable to be found. @param[in] VendorGuid Variable vendor GUID. @param[in] Data Data pointer. @param[in] DataSize Size of Data found. If size is less than the data, this value contains the required size. @param[in] Variable The variable information which is used to keep track of variable usage. @param[in] Attributes Attribute value of the variable. @return EFI_INVALID_PARAMETER Invalid parameter. @return EFI_SECURITY_VIOLATION The variable does NOT pass the validation check carried out by the firmware. @return EFI_SUCCESS Variable pass validation successfully. **/ EFI_STATUS ProcessVarWithKek ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN VOID *Data, IN UINTN DataSize, IN VARIABLE_POINTER_TRACK *Variable, IN UINT32 Attributes OPTIONAL ) { EFI_STATUS Status; VARIABLE_POINTER_TRACK KekVariable; EFI_SIGNATURE_LIST *KekList; EFI_SIGNATURE_DATA *KekItem; UINT32 KekCount; EFI_VARIABLE_AUTHENTICATION *CertData; EFI_CERT_BLOCK_RSA_2048_SHA256 *CertBlock; BOOLEAN IsFound; UINT32 Index; UINT32 KekDataSize; UINT8 *Payload; UINTN PayloadSize; UINT64 MonotonicCount; EFI_TIME *TimeStamp; if ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) { // // DB and DBX should set EFI_VARIABLE_NON_VOLATILE attribute. // return EFI_INVALID_PARAMETER; } Status = EFI_SUCCESS; if (mPlatformMode == USER_MODE && !(InCustomMode() && UserPhysicalPresent())) { if (((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == 0) && ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) == 0)){ // // In user mode, should set EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS or // EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS attribute. // return EFI_INVALID_PARAMETER; } if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Time-based, verify against X509 Cert KEK. // return VerifyTimeBasedPayload (VariableName, VendorGuid, Data, DataSize, Variable, Attributes, FALSE, NULL); } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Counter-based, verify against RSA2048 Cert KEK. // CertData = (EFI_VARIABLE_AUTHENTICATION *) Data; CertBlock = (EFI_CERT_BLOCK_RSA_2048_SHA256 *) (CertData->AuthInfo.CertData); if ((Variable->CurrPtr != NULL) && (CertData->MonotonicCount <= Variable->CurrPtr->MonotonicCount)) { // // Monotonic count check fail, suspicious replay attack, return EFI_SECURITY_VIOLATION. // return EFI_SECURITY_VIOLATION; } // // Get KEK database from variable. // Status = FindVariable ( EFI_KEY_EXCHANGE_KEY_NAME, &gEfiGlobalVariableGuid, &KekVariable, &mVariableModuleGlobal->VariableGlobal, FALSE ); ASSERT_EFI_ERROR (Status); KekDataSize = KekVariable.CurrPtr->DataSize; KekList = (EFI_SIGNATURE_LIST *) GetVariableDataPtr (KekVariable.CurrPtr); // // Enumerate all Kek items in this list to verify the variable certificate data. // If anyone is authenticated successfully, it means the variable is correct! // IsFound = FALSE; while ((KekDataSize > 0) && (KekDataSize >= KekList->SignatureListSize)) { if (CompareGuid (&KekList->SignatureType, &gEfiCertRsa2048Guid)) { KekItem = (EFI_SIGNATURE_DATA *) ((UINT8 *) KekList + sizeof (EFI_SIGNATURE_LIST) + KekList->SignatureHeaderSize); KekCount = (KekList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - KekList->SignatureHeaderSize) / KekList->SignatureSize; for (Index = 0; Index < KekCount; Index++) { if (CompareMem (KekItem->SignatureData, CertBlock->PublicKey, EFI_CERT_TYPE_RSA2048_SIZE) == 0) { IsFound = TRUE; break; } KekItem = (EFI_SIGNATURE_DATA *) ((UINT8 *) KekItem + KekList->SignatureSize); } } KekDataSize -= KekList->SignatureListSize; KekList = (EFI_SIGNATURE_LIST *) ((UINT8 *) KekList + KekList->SignatureListSize); } if (!IsFound) { return EFI_SECURITY_VIOLATION; } Status = VerifyCounterBasedPayload (Data, DataSize, CertBlock->PublicKey); if (!EFI_ERROR (Status)) { Status = UpdateVariable ( VariableName, VendorGuid, (UINT8*)Data + AUTHINFO_SIZE, DataSize - AUTHINFO_SIZE, Attributes, 0, CertData->MonotonicCount, Variable, NULL ); } } } else { // // If in setup mode or custom secure boot mode, no authentication needed. // if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Time-based Authentication descriptor. // MonotonicCount = 0; TimeStamp = &((EFI_VARIABLE_AUTHENTICATION_2 *) Data)->TimeStamp; Payload = (UINT8 *) Data + AUTHINFO2_SIZE (Data); PayloadSize = DataSize - AUTHINFO2_SIZE (Data); } else if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Counter-based Authentication descriptor. // MonotonicCount = ((EFI_VARIABLE_AUTHENTICATION *) Data)->MonotonicCount; TimeStamp = NULL; Payload = (UINT8*) Data + AUTHINFO_SIZE; PayloadSize = DataSize - AUTHINFO_SIZE; } else { // // No Authentication descriptor. // MonotonicCount = 0; TimeStamp = NULL; Payload = Data; PayloadSize = DataSize; } Status = UpdateVariable ( VariableName, VendorGuid, Payload, PayloadSize, Attributes, 0, MonotonicCount, Variable, TimeStamp ); } return Status; } /** Process variable with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS/EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS set @param[in] VariableName Name of Variable to be found. @param[in] VendorGuid Variable vendor GUID. @param[in] Data Data pointer. @param[in] DataSize Size of Data found. If size is less than the data, this value contains the required size. @param[in] Variable The variable information which is used to keep track of variable usage. @param[in] Attributes Attribute value of the variable. @return EFI_INVALID_PARAMETER Invalid parameter. @return EFI_WRITE_PROTECTED Variable is write-protected and needs authentication with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set. @return EFI_SECURITY_VIOLATION The variable is with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set, but the AuthInfo does NOT pass the validation check carried out by the firmware. @return EFI_SUCCESS Variable is not write-protected or pass validation successfully. **/ EFI_STATUS ProcessVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN VOID *Data, IN UINTN DataSize, IN VARIABLE_POINTER_TRACK *Variable, IN UINT32 Attributes ) { EFI_STATUS Status; BOOLEAN IsDeletion; BOOLEAN IsFirstTime; UINT8 *PubKey; EFI_VARIABLE_AUTHENTICATION *CertData; EFI_CERT_BLOCK_RSA_2048_SHA256 *CertBlock; UINT32 KeyIndex; UINT64 MonotonicCount; KeyIndex = 0; CertData = NULL; CertBlock = NULL; PubKey = NULL; IsDeletion = FALSE; if (NeedPhysicallyPresent(VariableName, VendorGuid) && !UserPhysicalPresent()) { // // This variable is protected, only physical present user could modify its value. // return EFI_SECURITY_VIOLATION; } // // Process Time-based Authenticated variable. // if ((Attributes & EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS) != 0) { return VerifyTimeBasedPayload (VariableName, VendorGuid, Data, DataSize, Variable, Attributes, FALSE, NULL); } // // Determine if first time SetVariable with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS. // if ((Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0) { // // Determine current operation type. // if (DataSize == AUTHINFO_SIZE) { IsDeletion = TRUE; } // // Determine whether this is the first time with EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS set. // if (Variable->CurrPtr == NULL) { IsFirstTime = TRUE; } else if ((Variable->CurrPtr->Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) == 0) { IsFirstTime = TRUE; } else { KeyIndex = Variable->CurrPtr->PubKeyIndex; IsFirstTime = FALSE; } } else if ((Variable->CurrPtr != NULL) && (Variable->CurrPtr->Attributes & EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS) != 0 ) { // // If the variable is already write-protected, it always needs authentication before update. // return EFI_WRITE_PROTECTED; } else { // // If without EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, set and attributes collision. // That means it is not authenticated variable, just update variable as usual. // Status = UpdateVariable (VariableName, VendorGuid, Data, DataSize, Attributes, 0, 0, Variable, NULL); return Status; } // // Get PubKey and check Monotonic Count value corresponding to the variable. // CertData = (EFI_VARIABLE_AUTHENTICATION *) Data; CertBlock = (EFI_CERT_BLOCK_RSA_2048_SHA256 *) (CertData->AuthInfo.CertData); PubKey = CertBlock->PublicKey; // // Update Monotonic Count value. // MonotonicCount = CertData->MonotonicCount; if (!IsFirstTime) { // // Check input PubKey. // if (CompareMem (PubKey, mPubKeyStore + (KeyIndex - 1) * EFI_CERT_TYPE_RSA2048_SIZE, EFI_CERT_TYPE_RSA2048_SIZE) != 0) { return EFI_SECURITY_VIOLATION; } // // Compare the current monotonic count and ensure that it is greater than the last SetVariable // operation with the EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS attribute set. // if (CertData->MonotonicCount <= Variable->CurrPtr->MonotonicCount) { // // Monotonic count check fail, suspicious replay attack, return EFI_SECURITY_VIOLATION. // return EFI_SECURITY_VIOLATION; } } // // Verify the certificate in Data payload. // Status = VerifyCounterBasedPayload (Data, DataSize, PubKey); if (EFI_ERROR (Status)) { return Status; } // // Now, the signature has been verified! // if (IsFirstTime && !IsDeletion) { // // Update public key database variable if need. // KeyIndex = AddPubKeyInStore (PubKey); } // // Verification pass. // return UpdateVariable (VariableName, VendorGuid, (UINT8*)Data + AUTHINFO_SIZE, DataSize - AUTHINFO_SIZE, Attributes, KeyIndex, MonotonicCount, Variable, NULL); } /** Merge two buffers which formatted as EFI_SIGNATURE_LIST. Only the new EFI_SIGNATURE_DATA will be appended to the original EFI_SIGNATURE_LIST, duplicate EFI_SIGNATURE_DATA will be ignored. @param[in, out] Data Pointer to original EFI_SIGNATURE_LIST. @param[in] DataSize Size of Data buffer. @param[in] NewData Pointer to new EFI_SIGNATURE_LIST to be appended. @param[in] NewDataSize Size of NewData buffer. @return Size of the merged buffer. **/ UINTN AppendSignatureList ( IN OUT VOID *Data, IN UINTN DataSize, IN VOID *NewData, IN UINTN NewDataSize ) { EFI_SIGNATURE_LIST *CertList; EFI_SIGNATURE_DATA *Cert; UINTN CertCount; EFI_SIGNATURE_LIST *NewCertList; EFI_SIGNATURE_DATA *NewCert; UINTN NewCertCount; UINTN Index; UINTN Index2; UINTN Size; UINT8 *Tail; UINTN CopiedCount; UINTN SignatureListSize; BOOLEAN IsNewCert; Tail = (UINT8 *) Data + DataSize; NewCertList = (EFI_SIGNATURE_LIST *) NewData; while ((NewDataSize > 0) && (NewDataSize >= NewCertList->SignatureListSize)) { NewCert = (EFI_SIGNATURE_DATA *) ((UINT8 *) NewCertList + sizeof (EFI_SIGNATURE_LIST) + NewCertList->SignatureHeaderSize); NewCertCount = (NewCertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - NewCertList->SignatureHeaderSize) / NewCertList->SignatureSize; CopiedCount = 0; for (Index = 0; Index < NewCertCount; Index++) { IsNewCert = TRUE; Size = DataSize; CertList = (EFI_SIGNATURE_LIST *) Data; while ((Size > 0) && (Size >= CertList->SignatureListSize)) { if (CompareGuid (&CertList->SignatureType, &NewCertList->SignatureType) && (CertList->SignatureSize == NewCertList->SignatureSize)) { Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize); CertCount = (CertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - CertList->SignatureHeaderSize) / CertList->SignatureSize; for (Index2 = 0; Index2 < CertCount; Index2++) { // // Iterate each Signature Data in this Signature List. // if (CompareMem (NewCert, Cert, CertList->SignatureSize) == 0) { IsNewCert = FALSE; break; } Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) Cert + CertList->SignatureSize); } } if (!IsNewCert) { break; } Size -= CertList->SignatureListSize; CertList = (EFI_SIGNATURE_LIST *) ((UINT8 *) CertList + CertList->SignatureListSize); } if (IsNewCert) { // // New EFI_SIGNATURE_DATA, append it. // if (CopiedCount == 0) { // // Copy EFI_SIGNATURE_LIST header for only once. // CopyMem (Tail, NewCertList, sizeof (EFI_SIGNATURE_LIST) + NewCertList->SignatureHeaderSize); Tail = Tail + sizeof (EFI_SIGNATURE_LIST) + NewCertList->SignatureHeaderSize; } CopyMem (Tail, NewCert, NewCertList->SignatureSize); Tail += NewCertList->SignatureSize; CopiedCount++; } NewCert = (EFI_SIGNATURE_DATA *) ((UINT8 *) NewCert + NewCertList->SignatureSize); } // // Update SignatureListSize in newly appended EFI_SIGNATURE_LIST. // if (CopiedCount != 0) { SignatureListSize = sizeof (EFI_SIGNATURE_LIST) + NewCertList->SignatureHeaderSize + (CopiedCount * NewCertList->SignatureSize); CertList = (EFI_SIGNATURE_LIST *) (Tail - SignatureListSize); CertList->SignatureListSize = (UINT32) SignatureListSize; } NewDataSize -= NewCertList->SignatureListSize; NewCertList = (EFI_SIGNATURE_LIST *) ((UINT8 *) NewCertList + NewCertList->SignatureListSize); } return (Tail - (UINT8 *) Data); } /** Compare two EFI_TIME data. @param FirstTime A pointer to the first EFI_TIME data. @param SecondTime A pointer to the second EFI_TIME data. @retval TRUE The FirstTime is not later than the SecondTime. @retval FALSE The FirstTime is later than the SecondTime. **/ BOOLEAN CompareTimeStamp ( IN EFI_TIME *FirstTime, IN EFI_TIME *SecondTime ) { if (FirstTime->Year != SecondTime->Year) { return (BOOLEAN) (FirstTime->Year < SecondTime->Year); } else if (FirstTime->Month != SecondTime->Month) { return (BOOLEAN) (FirstTime->Month < SecondTime->Month); } else if (FirstTime->Day != SecondTime->Day) { return (BOOLEAN) (FirstTime->Day < SecondTime->Day); } else if (FirstTime->Hour != SecondTime->Hour) { return (BOOLEAN) (FirstTime->Hour < SecondTime->Hour); } else if (FirstTime->Minute != SecondTime->Minute) { return (BOOLEAN) (FirstTime->Minute < FirstTime->Minute); } return (BOOLEAN) (FirstTime->Second <= SecondTime->Second); } /** Process variable with EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS set @param[in] VariableName Name of Variable to be found. @param[in] VendorGuid Variable vendor GUID. @param[in] Data Data pointer. @param[in] DataSize Size of Data found. If size is less than the data, this value contains the required size. @param[in] Variable The variable information which is used to keep track of variable usage. @param[in] Attributes Attribute value of the variable. @param[in] Pk Verify against PK or KEK database. @param[out] VarDel Delete the variable or not. @retval EFI_INVALID_PARAMETER Invalid parameter. @retval EFI_SECURITY_VIOLATION The variable does NOT pass the validation check carried out by the firmware. @retval EFI_OUT_OF_RESOURCES Failed to process variable due to lack of resources. @retval EFI_SUCCESS Variable pass validation successfully. **/ EFI_STATUS VerifyTimeBasedPayload ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN VOID *Data, IN UINTN DataSize, IN VARIABLE_POINTER_TRACK *Variable, IN UINT32 Attributes, IN BOOLEAN Pk, OUT BOOLEAN *VarDel ) { UINT8 *RootCert; UINT8 *SigData; UINT8 *PayloadPtr; UINTN RootCertSize; UINTN Index; UINTN CertCount; UINTN PayloadSize; UINT32 Attr; UINT32 SigDataSize; UINT32 KekDataSize; BOOLEAN Result; BOOLEAN VerifyStatus; EFI_STATUS Status; EFI_SIGNATURE_LIST *CertList; EFI_SIGNATURE_DATA *Cert; VARIABLE_POINTER_TRACK KekVariable; EFI_VARIABLE_AUTHENTICATION_2 *CertData; UINT8 *NewData; UINTN NewDataSize; VARIABLE_POINTER_TRACK PkVariable; UINT8 *Buffer; UINTN Length; Result = FALSE; VerifyStatus = FALSE; CertData = NULL; NewData = NULL; Attr = Attributes; // // When the attribute EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_ACCESS is // set, then the Data buffer shall begin with an instance of a complete (and serialized) // EFI_VARIABLE_AUTHENTICATION_2 descriptor. The descriptor shall be followed by the new // variable value and DataSize shall reflect the combined size of the descriptor and the new // variable value. The authentication descriptor is not part of the variable data and is not // returned by subsequent calls to GetVariable(). // CertData = (EFI_VARIABLE_AUTHENTICATION_2 *) Data; // // Verify that Pad1, Nanosecond, TimeZone, Daylight and Pad2 components of the // TimeStamp value are set to zero. // if ((CertData->TimeStamp.Pad1 != 0) || (CertData->TimeStamp.Nanosecond != 0) || (CertData->TimeStamp.TimeZone != 0) || (CertData->TimeStamp.Daylight != 0) || (CertData->TimeStamp.Pad2 != 0)) { return EFI_SECURITY_VIOLATION; } if ((Variable->CurrPtr != NULL) && ((Attributes & EFI_VARIABLE_APPEND_WRITE) == 0)) { if (CompareTimeStamp (&CertData->TimeStamp, &Variable->CurrPtr->TimeStamp)) { // // TimeStamp check fail, suspicious replay attack, return EFI_SECURITY_VIOLATION. // return EFI_SECURITY_VIOLATION; } } // // wCertificateType should be WIN_CERT_TYPE_EFI_GUID. // Cert type should be EFI_CERT_TYPE_PKCS7_GUID. // if ((CertData->AuthInfo.Hdr.wCertificateType != WIN_CERT_TYPE_EFI_GUID) || !CompareGuid (&CertData->AuthInfo.CertType, &gEfiCertPkcs7Guid)) { // // Invalid AuthInfo type, return EFI_SECURITY_VIOLATION. // return EFI_SECURITY_VIOLATION; } // // Find out Pkcs7 SignedData which follows the EFI_VARIABLE_AUTHENTICATION_2 descriptor. // AuthInfo.Hdr.dwLength is the length of the entire certificate, including the length of the header. // SigData = CertData->AuthInfo.CertData; SigDataSize = CertData->AuthInfo.Hdr.dwLength - (UINT32) (OFFSET_OF (WIN_CERTIFICATE_UEFI_GUID, CertData)); // // Find out the new data payload which follows Pkcs7 SignedData directly. // PayloadPtr = SigData + SigDataSize; PayloadSize = DataSize - OFFSET_OF_AUTHINFO2_CERT_DATA - (UINTN) SigDataSize; // // Construct a buffer to fill with (VariableName, VendorGuid, Attributes, TimeStamp, Data). // NewDataSize = PayloadSize + sizeof (EFI_TIME) + sizeof (UINT32) + sizeof (EFI_GUID) + StrSize (VariableName) - sizeof (CHAR16); NewData = mSerializationRuntimeBuffer; Buffer = NewData; Length = StrLen (VariableName) * sizeof (CHAR16); CopyMem (Buffer, VariableName, Length); Buffer += Length; Length = sizeof (EFI_GUID); CopyMem (Buffer, VendorGuid, Length); Buffer += Length; Length = sizeof (UINT32); CopyMem (Buffer, &Attr, Length); Buffer += Length; Length = sizeof (EFI_TIME); CopyMem (Buffer, &CertData->TimeStamp, Length); Buffer += Length; CopyMem (Buffer, PayloadPtr, PayloadSize); if (Pk) { // // Get platform key from variable. // Status = FindVariable ( EFI_PLATFORM_KEY_NAME, &gEfiGlobalVariableGuid, &PkVariable, &mVariableModuleGlobal->VariableGlobal, FALSE ); if (EFI_ERROR (Status)) { return Status; } CertList = (EFI_SIGNATURE_LIST *) GetVariableDataPtr (PkVariable.CurrPtr); Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize); RootCert = Cert->SignatureData; RootCertSize = CertList->SignatureSize; // // Verify Pkcs7 SignedData via Pkcs7Verify library. // VerifyStatus = Pkcs7Verify ( SigData, SigDataSize, RootCert, RootCertSize, NewData, NewDataSize ); } else { // // Get KEK database from variable. // Status = FindVariable ( EFI_KEY_EXCHANGE_KEY_NAME, &gEfiGlobalVariableGuid, &KekVariable, &mVariableModuleGlobal->VariableGlobal, FALSE ); if (EFI_ERROR (Status)) { return Status; } // // Ready to verify Pkcs7 SignedData. Go through KEK Signature Database to find out X.509 CertList. // KekDataSize = KekVariable.CurrPtr->DataSize; CertList = (EFI_SIGNATURE_LIST *) GetVariableDataPtr (KekVariable.CurrPtr); while ((KekDataSize > 0) && (KekDataSize >= CertList->SignatureListSize)) { if (CompareGuid (&CertList->SignatureType, &gEfiCertX509Guid)) { Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) CertList + sizeof (EFI_SIGNATURE_LIST) + CertList->SignatureHeaderSize); CertCount = (CertList->SignatureListSize - sizeof (EFI_SIGNATURE_LIST) - CertList->SignatureHeaderSize) / CertList->SignatureSize; for (Index = 0; Index < CertCount; Index++) { // // Iterate each Signature Data Node within this CertList for a verify // RootCert = Cert->SignatureData; RootCertSize = CertList->SignatureSize; // // Verify Pkcs7 SignedData via Pkcs7Verify library. // VerifyStatus = Pkcs7Verify ( SigData, SigDataSize, RootCert, RootCertSize, NewData, NewDataSize ); if (VerifyStatus) { goto Exit; } Cert = (EFI_SIGNATURE_DATA *) ((UINT8 *) Cert + CertList->SignatureSize); } } KekDataSize -= CertList->SignatureListSize; CertList = (EFI_SIGNATURE_LIST *) ((UINT8 *) CertList + CertList->SignatureListSize); } } Exit: if (!VerifyStatus) { return EFI_SECURITY_VIOLATION; } Status = CheckSignatureListFormat(VariableName, VendorGuid, PayloadPtr, PayloadSize); if (EFI_ERROR (Status)) { return Status; } if ((PayloadSize == 0) && (VarDel != NULL)) { *VarDel = TRUE; } // // Final step: Update/Append Variable if it pass Pkcs7Verify // return UpdateVariable ( VariableName, VendorGuid, PayloadPtr, PayloadSize, Attributes, 0, 0, Variable, &CertData->TimeStamp ); }