/*++ @file MvFvbDxe.c Copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.
Copyright (c) 2017 Marvell International Ltd.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. --*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MvFvbDxe.h" STATIC EFI_EVENT mFvbVirtualAddrChangeEvent; STATIC FVB_DEVICE *mFvbDevice; STATIC CONST FVB_DEVICE mMvFvbFlashInstanceTemplate = { { 0, // SpiFlash Chip Select ... NEED TO BE FILLED 0, // SpiFlash Maximum Frequency ... NEED TO BE FILLED 0, // SpiFlash Transfer Mode ... NEED TO BE FILLED 0, // SpiFlash Address Size ... NEED TO BE FILLED NULL, // SpiFlash detailed information ... NEED TO BE FILLED 0, // HostRegisterBaseAddress ... NEED TO BE FILLED 0, // CoreClock ... NEED TO BE FILLED }, // SpiDevice NULL, // SpiFlashProtocol ... NEED TO BE FILLED NULL, // SpiMasterProtocol ... NEED TO BE FILLED NULL, // Handle ... NEED TO BE FILLED FVB_FLASH_SIGNATURE, // Signature 0, // DeviceBaseAddress ... NEED TO BE FILLED 0, // RegionBaseAddress ... NEED TO BE FILLED SIZE_256KB, // Size 0, // FvbOffset ... NEED TO BE FILLED 0, // FvbSize ... NEED TO BE FILLED 0, // StartLba { 0, // MediaId ... NEED TO BE FILLED FALSE, // RemovableMedia TRUE, // MediaPresent FALSE, // LogicalPartition FALSE, // ReadOnly FALSE, // WriteCaching; 0, // BlockSize ... NEED TO BE FILLED 4, // IoAlign 0, // LastBlock ... NEED TO BE FILLED 0, // LowestAlignedLba 1, // LogicalBlocksPerPhysicalBlock }, //Media; { MvFvbGetAttributes, // GetAttributes MvFvbSetAttributes, // SetAttributes MvFvbGetPhysicalAddress, // GetPhysicalAddress MvFvbGetBlockSize, // GetBlockSize MvFvbRead, // Read MvFvbWrite, // Write MvFvbEraseBlocks, // EraseBlocks NULL, // ParentHandle }, // FvbProtocol; { { { HARDWARE_DEVICE_PATH, HW_VENDOR_DP, { (UINT8)sizeof (VENDOR_DEVICE_PATH), (UINT8)((sizeof (VENDOR_DEVICE_PATH)) >> 8) } }, { 0xfc0cb972, 0x21df, 0x44d2, { 0x92, 0xa5, 0x78, 0x98, 0x99, 0xcb, 0xf6, 0x61 } } }, { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, { sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 } } } // DevicePath }; // // The Firmware Volume Block Protocol is the low-level interface // to a firmware volume. File-level access to a firmware volume // should not be done using the Firmware Volume Block Protocol. // Normal access to a firmware volume must use the Firmware // Volume Protocol. Typically, only the file system driver that // produces the Firmware Volume Protocol will bind to the // Firmware Volume Block Protocol. // /** Initialises the FV Header and Variable Store Header to support variable operations. @param[in] Ptr - Location to initialise the headers **/ STATIC EFI_STATUS MvFvbInitFvAndVariableStoreHeaders ( IN FVB_DEVICE *FlashInstance ) { EFI_FIRMWARE_VOLUME_HEADER *FirmwareVolumeHeader; VARIABLE_STORE_HEADER *VariableStoreHeader; EFI_STATUS Status; VOID* Headers; UINTN HeadersLength; UINTN BlockSize; HeadersLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER) + sizeof (EFI_FV_BLOCK_MAP_ENTRY) + sizeof (VARIABLE_STORE_HEADER); Headers = AllocateZeroPool (HeadersLength); BlockSize = FlashInstance->Media.BlockSize; // // FirmwareVolumeHeader->FvLength is declared to have the Variable area // AND the FTW working area AND the FTW Spare contiguous. // ASSERT (PcdGet32 (PcdFlashNvStorageVariableBase) + PcdGet32 (PcdFlashNvStorageVariableSize) == PcdGet32 (PcdFlashNvStorageFtwWorkingBase)); ASSERT (PcdGet32 (PcdFlashNvStorageFtwWorkingBase) + PcdGet32 (PcdFlashNvStorageFtwWorkingSize) == PcdGet32 (PcdFlashNvStorageFtwSpareBase)); // Check if the size of the area is at least one block size ASSERT ((PcdGet32 (PcdFlashNvStorageVariableSize) > 0) && (PcdGet32 (PcdFlashNvStorageVariableSize) / BlockSize > 0)); ASSERT ((PcdGet32 (PcdFlashNvStorageFtwWorkingSize) > 0) && (PcdGet32 (PcdFlashNvStorageFtwWorkingSize) / BlockSize > 0)); ASSERT ((PcdGet32 (PcdFlashNvStorageFtwSpareSize) > 0) && (PcdGet32 (PcdFlashNvStorageFtwSpareSize) / BlockSize > 0)); // Ensure the Variable areas are aligned on block size boundaries ASSERT ((PcdGet32 (PcdFlashNvStorageVariableBase) % BlockSize) == 0); ASSERT ((PcdGet32 (PcdFlashNvStorageFtwWorkingBase) % BlockSize) == 0); ASSERT ((PcdGet32 (PcdFlashNvStorageFtwSpareBase) % BlockSize) == 0); // // EFI_FIRMWARE_VOLUME_HEADER // FirmwareVolumeHeader = (EFI_FIRMWARE_VOLUME_HEADER*)Headers; CopyGuid (&FirmwareVolumeHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid); FirmwareVolumeHeader->FvLength = FlashInstance->FvbSize; FirmwareVolumeHeader->Signature = EFI_FVH_SIGNATURE; FirmwareVolumeHeader->Attributes = EFI_FVB2_READ_ENABLED_CAP | EFI_FVB2_READ_STATUS | EFI_FVB2_STICKY_WRITE | EFI_FVB2_MEMORY_MAPPED | EFI_FVB2_ERASE_POLARITY | EFI_FVB2_WRITE_STATUS | EFI_FVB2_WRITE_ENABLED_CAP; FirmwareVolumeHeader->HeaderLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER) + sizeof (EFI_FV_BLOCK_MAP_ENTRY); FirmwareVolumeHeader->Revision = EFI_FVH_REVISION; FirmwareVolumeHeader->BlockMap[0].NumBlocks = FlashInstance->Media.LastBlock + 1; FirmwareVolumeHeader->BlockMap[0].Length = FlashInstance->Media.BlockSize; FirmwareVolumeHeader->BlockMap[1].NumBlocks = 0; FirmwareVolumeHeader->BlockMap[1].Length = 0; FirmwareVolumeHeader->Checksum = CalculateCheckSum16 ( (UINT16 *)FirmwareVolumeHeader, FirmwareVolumeHeader->HeaderLength); // // VARIABLE_STORE_HEADER // VariableStoreHeader = (VOID *)((UINTN)Headers + FirmwareVolumeHeader->HeaderLength); CopyGuid (&VariableStoreHeader->Signature, &gEfiAuthenticatedVariableGuid); VariableStoreHeader->Size = PcdGet32(PcdFlashNvStorageVariableSize) - FirmwareVolumeHeader->HeaderLength; VariableStoreHeader->Format = VARIABLE_STORE_FORMATTED; VariableStoreHeader->State = VARIABLE_STORE_HEALTHY; // Install the combined super-header in the flash device Status = MvFvbWrite (&FlashInstance->FvbProtocol, 0, 0, &HeadersLength, Headers); FreePool (Headers); return Status; } /** Check the integrity of firmware volume header. @param[in] FwVolHeader - A pointer to a firmware volume header @retval EFI_SUCCESS - The firmware volume is consistent @retval EFI_NOT_FOUND - The firmware volume has been corrupted. **/ STATIC EFI_STATUS MvFvbValidateFvHeader ( IN FVB_DEVICE *FlashInstance ) { UINT16 Checksum; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; VARIABLE_STORE_HEADER *VariableStoreHeader; UINTN VariableStoreLength; FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)FlashInstance->RegionBaseAddress; // Verify the header revision, header signature, length if ((FwVolHeader->Revision != EFI_FVH_REVISION) || (FwVolHeader->Signature != EFI_FVH_SIGNATURE) || (FwVolHeader->FvLength != FlashInstance->FvbSize)) { DEBUG ((DEBUG_ERROR, "%a: No Firmware Volume header present\n", __FUNCTION__)); return EFI_NOT_FOUND; } // Check the Firmware Volume Guid if (!CompareGuid (&FwVolHeader->FileSystemGuid, &gEfiSystemNvDataFvGuid)) { DEBUG ((DEBUG_ERROR, "%a: Firmware Volume Guid non-compatible\n", __FUNCTION__)); return EFI_NOT_FOUND; } // Verify the header checksum Checksum = CalculateSum16 ((UINT16 *)FwVolHeader, FwVolHeader->HeaderLength); if (Checksum != 0) { DEBUG ((DEBUG_ERROR, "%a: FV checksum is invalid (Checksum:0x%x)\n", __FUNCTION__, Checksum)); return EFI_NOT_FOUND; } VariableStoreHeader = (VOID *)((UINTN)FwVolHeader + FwVolHeader->HeaderLength); // Check the Variable Store Guid if (!CompareGuid (&VariableStoreHeader->Signature, &gEfiVariableGuid) && !CompareGuid (&VariableStoreHeader->Signature, &gEfiAuthenticatedVariableGuid)) { DEBUG ((DEBUG_ERROR, "%a: Variable Store Guid non-compatible\n", __FUNCTION__)); return EFI_NOT_FOUND; } VariableStoreLength = PcdGet32 (PcdFlashNvStorageVariableSize) - FwVolHeader->HeaderLength; if (VariableStoreHeader->Size != VariableStoreLength) { DEBUG ((DEBUG_ERROR, "%a: Variable Store Length does not match\n", __FUNCTION__)); return EFI_NOT_FOUND; } return EFI_SUCCESS; } /** The GetAttributes() function retrieves the attributes and current settings of the block. @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and current settings are returned. Type EFI_FVB_ATTRIBUTES_2 is defined in EFI_FIRMWARE_VOLUME_HEADER. @retval EFI_SUCCESS The firmware volume attributes were returned. **/ EFI_STATUS EFIAPI MvFvbGetAttributes ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) { EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FVB_ATTRIBUTES_2 *FlashFvbAttributes; FVB_DEVICE *FlashInstance; FlashInstance = INSTANCE_FROM_FVB_THIS (This); FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)FlashInstance->RegionBaseAddress; FlashFvbAttributes = (EFI_FVB_ATTRIBUTES_2 *)&(FwVolHeader->Attributes); *Attributes = *FlashFvbAttributes; return EFI_SUCCESS; } /** The SetAttributes() function sets configurable firmware volume attributes and returns the new settings of the firmware volume. @param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Attributes On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2 that contains the desired firmware volume settings. On successful return, it contains the new settings of the firmware volume. @retval EFI_SUCCESS The firmware volume attributes were returned. @retval EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities as declared in the firmware volume header. **/ EFI_STATUS EFIAPI MvFvbSetAttributes ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) { EFI_FVB_ATTRIBUTES_2 OldAttributes; EFI_FVB_ATTRIBUTES_2 FlashFvbAttributes; EFI_FVB_ATTRIBUTES_2 UnchangedAttributes; UINT32 Capabilities; UINT32 OldStatus; UINT32 NewStatus; // // Obtain attributes from FVB header // MvFvbGetAttributes (This, &FlashFvbAttributes); OldAttributes = FlashFvbAttributes; Capabilities = OldAttributes & EFI_FVB2_CAPABILITIES; OldStatus = OldAttributes & EFI_FVB2_STATUS; NewStatus = *Attributes & EFI_FVB2_STATUS; UnchangedAttributes = EFI_FVB2_READ_DISABLED_CAP | \ EFI_FVB2_READ_ENABLED_CAP | \ EFI_FVB2_WRITE_DISABLED_CAP | \ EFI_FVB2_WRITE_ENABLED_CAP | \ EFI_FVB2_LOCK_CAP | \ EFI_FVB2_STICKY_WRITE | \ EFI_FVB2_MEMORY_MAPPED | \ EFI_FVB2_ERASE_POLARITY | \ EFI_FVB2_READ_LOCK_CAP | \ EFI_FVB2_WRITE_LOCK_CAP | \ EFI_FVB2_ALIGNMENT; // // Some attributes of FV is read only can *not* be set // if ((OldAttributes & UnchangedAttributes) ^ (*Attributes & UnchangedAttributes)) { return EFI_INVALID_PARAMETER; } // // If firmware volume is locked, no status bit can be updated // if (OldAttributes & EFI_FVB2_LOCK_STATUS) { if (OldStatus ^ NewStatus) { return EFI_ACCESS_DENIED; } } // // Test read disable // if ((Capabilities & EFI_FVB2_READ_DISABLED_CAP) == 0) { if ((NewStatus & EFI_FVB2_READ_STATUS) == 0) { return EFI_INVALID_PARAMETER; } } // // Test read enable // if ((Capabilities & EFI_FVB2_READ_ENABLED_CAP) == 0) { if (NewStatus & EFI_FVB2_READ_STATUS) { return EFI_INVALID_PARAMETER; } } // // Test write disable // if ((Capabilities & EFI_FVB2_WRITE_DISABLED_CAP) == 0) { if ((NewStatus & EFI_FVB2_WRITE_STATUS) == 0) { return EFI_INVALID_PARAMETER; } } // // Test write enable // if ((Capabilities & EFI_FVB2_WRITE_ENABLED_CAP) == 0) { if (NewStatus & EFI_FVB2_WRITE_STATUS) { return EFI_INVALID_PARAMETER; } } // // Test lock // if ((Capabilities & EFI_FVB2_LOCK_CAP) == 0) { if (NewStatus & EFI_FVB2_LOCK_STATUS) { return EFI_INVALID_PARAMETER; } } FlashFvbAttributes = FlashFvbAttributes & (0xFFFFFFFF & (~EFI_FVB2_STATUS)); FlashFvbAttributes = FlashFvbAttributes | NewStatus; *Attributes = FlashFvbAttributes; return EFI_SUCCESS; } /** The GetPhysicalAddress() function retrieves the base address of a memory-mapped firmware volume. This function should be called only for memory-mapped firmware volumes. @param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Address Pointer to a caller-allocated EFI_PHYSICAL_ADDRESS that, on successful return from GetPhysicalAddress(), contains the base address of the firmware volume. @retval EFI_SUCCESS The firmware volume base address was returned. @retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped. **/ EFI_STATUS EFIAPI MvFvbGetPhysicalAddress ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, OUT EFI_PHYSICAL_ADDRESS *Address ) { FVB_DEVICE *FlashInstance; ASSERT (Address != NULL); FlashInstance = INSTANCE_FROM_FVB_THIS (This); *Address = FlashInstance->RegionBaseAddress; return EFI_SUCCESS; } /** The GetBlockSize() function retrieves the size of the requested block. It also returns the number of additional blocks with the identical size. The GetBlockSize() function is used to retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER). @param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Lba Indicates the block whose size to return @param BlockSize Pointer to a caller-allocated UINTN in which the size of the block is returned. @param NumberOfBlocks Pointer to a caller-allocated UINTN in which the number of consecutive blocks, starting with Lba, is returned. All blocks in this range have a size of BlockSize. @retval EFI_SUCCESS The firmware volume base address was returned. @retval EFI_INVALID_PARAMETER The requested LBA is out of range. **/ EFI_STATUS EFIAPI MvFvbGetBlockSize ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN EFI_LBA Lba, OUT UINTN *BlockSize, OUT UINTN *NumberOfBlocks ) { FVB_DEVICE *FlashInstance; FlashInstance = INSTANCE_FROM_FVB_THIS (This); if (Lba > FlashInstance->Media.LastBlock) { DEBUG ((DEBUG_ERROR, "%a: Error: Requested LBA %ld is beyond the last available LBA (%ld).\n", __FUNCTION__, Lba, FlashInstance->Media.LastBlock)); return EFI_INVALID_PARAMETER; } else { // Assume equal sized blocks in all flash devices *BlockSize = (UINTN)FlashInstance->Media.BlockSize; *NumberOfBlocks = (UINTN)(FlashInstance->Media.LastBlock - Lba + 1); return EFI_SUCCESS; } } /** Reads the specified number of bytes into a buffer from the specified block. The Read() function reads the requested number of bytes from the requested block and stores them in the provided buffer. Implementations should be mindful that the firmware volume might be in the ReadDisabled state. If it is in this state, the Read() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the buffer. The Read() function must also prevent spanning block boundaries. If a read is requested that would span a block boundary, the read must read up to the boundary but not beyond. The output parameter NumBytes must be set to correctly indicate the number of bytes actually read. The caller must be aware that a read may be partially completed. @param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Lba The starting logical block index from which to read @param Offset Offset into the block at which to begin reading. @param NumBytes Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At exit, *NumBytes contains the total number of bytes read. @param Buffer Pointer to a caller-allocated buffer that will be used to hold the data that is read. @retval EFI_SUCCESS The firmware volume was read successfully, and contents are in Buffer. @retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary. On output, NumBytes contains the total number of bytes returned in Buffer. @retval EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state. @retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read. **/ EFI_STATUS EFIAPI MvFvbRead ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN OUT UINT8 *Buffer ) { FVB_DEVICE *FlashInstance; UINTN BlockSize; UINTN DataOffset; FlashInstance = INSTANCE_FROM_FVB_THIS (This); // Cache the block size to avoid de-referencing pointers all the time BlockSize = FlashInstance->Media.BlockSize; // // The read must not span block boundaries. // We need to check each variable individually because adding two large // values together overflows. // if (Offset >= BlockSize || *NumBytes > BlockSize || (Offset + *NumBytes) > BlockSize) { DEBUG ((DEBUG_ERROR, "%a: Wrong buffer size: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", __FUNCTION__, Offset, *NumBytes, BlockSize)); return EFI_BAD_BUFFER_SIZE; } // No bytes to read if (*NumBytes == 0) { return EFI_SUCCESS; } DataOffset = GET_DATA_OFFSET (FlashInstance->RegionBaseAddress + Offset, FlashInstance->StartLba + Lba, FlashInstance->Media.BlockSize); // Read the memory-mapped data CopyMem (Buffer, (UINTN *)DataOffset, *NumBytes); return EFI_SUCCESS; } /** Writes the specified number of bytes from the input buffer to the block. The Write() function writes the specified number of bytes from the provided buffer to the specified block and offset. If the firmware volume is sticky write, the caller must ensure that all the bits of the specified range to write are in the EFI_FVB_ERASE_POLARITY state before calling the Write() function, or else the result will be unpredictable. This unpredictability arises because, for a sticky-write firmware volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY state but cannot flip it back again. Before calling the Write() function, it is recommended for the caller to first call the EraseBlocks() function to erase the specified block to write. A block erase cycle will transition bits from the (NOT)EFI_FVB_ERASE_POLARITY state back to the EFI_FVB_ERASE_POLARITY state. Implementations should be mindful that the firmware volume might be in the WriteDisabled state. If it is in this state, the Write() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the firmware volume. The Write() function must also prevent spanning block boundaries. If a write is requested that spans a block boundary, the write must store up to the boundary but not beyond. The output parameter NumBytes must be set to correctly indicate the number of bytes actually written. The caller must be aware that a write may be partially completed. All writes, partial or otherwise, must be fully flushed to the hardware before the Write() service returns. @param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Lba The starting logical block index to write to. @param Offset Offset into the block at which to begin writing. @param NumBytes The pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At exit, *NumBytes contains the total number of bytes actually written. @param Buffer The pointer to a caller-allocated buffer that contains the source for the write. @retval EFI_SUCCESS The firmware volume was written successfully. @retval EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary. On output, NumBytes contains the total number of bytes actually written. @retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. @retval EFI_DEVICE_ERROR The block device is malfunctioning and could not be written. **/ EFI_STATUS EFIAPI MvFvbWrite ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN UINT8 *Buffer ) { FVB_DEVICE *FlashInstance; UINTN DataOffset; FlashInstance = INSTANCE_FROM_FVB_THIS (This); DataOffset = GET_DATA_OFFSET (FlashInstance->FvbOffset + Offset, FlashInstance->StartLba + Lba, FlashInstance->Media.BlockSize); return FlashInstance->SpiFlashProtocol->Write (&FlashInstance->SpiDevice, DataOffset, *NumBytes, Buffer); } /** Erases and initialises a firmware volume block. The EraseBlocks() function erases one or more blocks as denoted by the variable argument list. The entire parameter list of blocks must be verified before erasing any blocks. If a block is requested that does not exist within the associated firmware volume (it has a larger index than the last block of the firmware volume), the EraseBlocks() function must return the status code EFI_INVALID_PARAMETER without modifying the contents of the firmware volume. Implementations should be mindful that the firmware volume might be in the WriteDisabled state. If it is in this state, the EraseBlocks() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the firmware volume. All calls to EraseBlocks() must be fully flushed to the hardware before the EraseBlocks() service returns. @param This EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param ... The variable argument list is a list of tuples. Each tuple describes a range of LBAs to erase and consists of the following: - An EFI_LBA that indicates the starting LBA - A UINTN that indicates the number of blocks to erase. The list is terminated with an EFI_LBA_LIST_TERMINATOR. @retval EFI_SUCCESS The erase request successfully completed. @retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. @retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written. The firmware device may have been partially erased. @retval EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do not exist in the firmware volume. **/ EFI_STATUS EFIAPI MvFvbEraseBlocks ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, ... ) { EFI_FVB_ATTRIBUTES_2 FlashFvbAttributes; FVB_DEVICE *FlashInstance; EFI_STATUS Status; VA_LIST Args; UINTN BlockAddress; // Physical address of Lba to erase EFI_LBA StartingLba; // Lba from which we start erasing UINTN NumOfLba; // Number of Lba blocks to erase FlashInstance = INSTANCE_FROM_FVB_THIS (This); Status = EFI_SUCCESS; // Detect WriteDisabled state MvFvbGetAttributes (This, &FlashFvbAttributes); if ((FlashFvbAttributes & EFI_FVB2_WRITE_STATUS) == 0) { DEBUG ((DEBUG_ERROR, "%a: Device is in WriteDisabled state.\n", __FUNCTION__)); return EFI_ACCESS_DENIED; } // // Before erasing, check the entire list of parameters to ensure // all specified blocks are valid. // VA_START (Args, This); do { // Get the Lba from which we start erasing StartingLba = VA_ARG (Args, EFI_LBA); // Have we reached the end of the list? if (StartingLba == EFI_LBA_LIST_TERMINATOR) { //Exit the while loop break; } // How many Lba blocks are we requested to erase? NumOfLba = VA_ARG (Args, UINT32); // All blocks must be within range if (NumOfLba == 0 || (FlashInstance->StartLba + StartingLba + NumOfLba - 1) > FlashInstance->Media.LastBlock) { DEBUG ((DEBUG_ERROR, "%a: Error: Requested LBA are beyond the last available LBA (%ld).\n", __FUNCTION__, FlashInstance->Media.LastBlock)); VA_END (Args); return EFI_INVALID_PARAMETER; } } while (TRUE); VA_END (Args); // // Start erasing // VA_START (Args, This); do { // Get the Lba from which we start erasing StartingLba = VA_ARG (Args, EFI_LBA); // Have we reached the end of the list? if (StartingLba == EFI_LBA_LIST_TERMINATOR) { // Exit the while loop break; } // How many Lba blocks are we requested to erase? NumOfLba = VA_ARG (Args, UINT32); // Go through each one and erase it while (NumOfLba > 0) { // Get the physical address of Lba to erase BlockAddress = GET_DATA_OFFSET (FlashInstance->FvbOffset, FlashInstance->StartLba + StartingLba, FlashInstance->Media.BlockSize); // Erase single block Status = FlashInstance->SpiFlashProtocol->Erase (&FlashInstance->SpiDevice, BlockAddress, FlashInstance->Media.BlockSize); if (EFI_ERROR (Status)) { VA_END (Args); return EFI_DEVICE_ERROR; } // Move to the next Lba StartingLba++; NumOfLba--; } } while (TRUE); VA_END (Args); return EFI_SUCCESS; } /** Fixup internal data so that EFI can be call in virtual mode. Call the passed in Child Notify event and convert any pointers in lib to virtual mode. @param[in] Event The Event that is being processed @param[in] Context Event Context **/ STATIC VOID EFIAPI MvFvbVirtualNotifyEvent ( IN EFI_EVENT Event, IN VOID *Context ) { // Convert SPI memory mapped region EfiConvertPointer (0x0, (VOID**)&mFvbDevice->RegionBaseAddress); // Convert SPI device description EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiDevice.Info); EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiDevice.HostRegisterBaseAddress); EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiDevice); // Convert SpiFlashProtocol EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol->Erase); EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol->Write); EfiConvertPointer (0x0, (VOID**)&mFvbDevice->SpiFlashProtocol); return; } STATIC EFI_STATUS MvFvbFlashProbe ( IN FVB_DEVICE *FlashInstance ) { MARVELL_SPI_FLASH_PROTOCOL *SpiFlashProtocol; EFI_STATUS Status; SpiFlashProtocol = FlashInstance->SpiFlashProtocol; // Read SPI flash ID Status = SpiFlashProtocol->ReadId (&FlashInstance->SpiDevice, TRUE); if (EFI_ERROR (Status)) { return EFI_NOT_FOUND; } Status = SpiFlashProtocol->Init (SpiFlashProtocol, &FlashInstance->SpiDevice); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Cannot initialize flash device\n", __FUNCTION__)); return EFI_DEVICE_ERROR; } // // SPI flash may require 20ms interval between enabling it and // accessing in Direct Mode to its memory mapped content. // gBS->Stall (20000); return EFI_SUCCESS; } STATIC EFI_STATUS MvFvbPrepareFvHeader ( IN FVB_DEVICE *FlashInstance ) { EFI_BOOT_MODE BootMode; EFI_STATUS Status; // Check if it is required to use default environment BootMode = GetBootModeHob (); if (BootMode == BOOT_WITH_DEFAULT_SETTINGS) { Status = EFI_INVALID_PARAMETER; } else { // Validate header at the beginning of FV region Status = MvFvbValidateFvHeader (FlashInstance); } // Install the default FVB header if required if (EFI_ERROR (Status)) { // There is no valid header, so time to install one. DEBUG ((DEBUG_ERROR, "%a: The FVB Header is not valid.\n", __FUNCTION__)); DEBUG ((DEBUG_ERROR, "%a: Installing a correct one for this volume.\n", __FUNCTION__)); // Erase entire region that is reserved for variable storage Status = FlashInstance->SpiFlashProtocol->Erase (&FlashInstance->SpiDevice, FlashInstance->FvbOffset, FlashInstance->FvbSize); if (EFI_ERROR (Status)) { return Status; } // Install all appropriate headers Status = MvFvbInitFvAndVariableStoreHeaders (FlashInstance); if (EFI_ERROR (Status)) { return Status; } } return EFI_SUCCESS; } STATIC EFI_STATUS MvFvbConfigureFlashInstance ( IN OUT FVB_DEVICE *FlashInstance ) { EFI_STATUS Status; // Locate SPI protocols Status = gBS->LocateProtocol (&gMarvellSpiFlashProtocolGuid, NULL, (VOID **)&FlashInstance->SpiFlashProtocol); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Cannot locate SpiFlash protocol\n", __FUNCTION__)); return Status; } Status = gBS->LocateProtocol (&gMarvellSpiMasterProtocolGuid, NULL, (VOID **)&FlashInstance->SpiMasterProtocol); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Cannot locate SpiMaster protocol\n", __FUNCTION__)); return Status; } // Setup and probe SPI flash FlashInstance->SpiMasterProtocol->SetupDevice (FlashInstance->SpiMasterProtocol, &FlashInstance->SpiDevice, 0, 0); Status = MvFvbFlashProbe (FlashInstance); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Error while performing SPI flash probe\n", __FUNCTION__)); return Status; } // Fill remaining flash description FlashInstance->DeviceBaseAddress = PcdGet32 (PcdSpiMemoryBase); FlashInstance->RegionBaseAddress = FixedPcdGet32 (PcdFlashNvStorageVariableBase); FlashInstance->FvbOffset = FlashInstance->RegionBaseAddress - FlashInstance->DeviceBaseAddress; FlashInstance->FvbSize = PcdGet32(PcdFlashNvStorageVariableSize) + PcdGet32(PcdFlashNvStorageFtwWorkingSize) + PcdGet32(PcdFlashNvStorageFtwSpareSize); FlashInstance->Media.MediaId = 0; FlashInstance->Media.BlockSize = FlashInstance->SpiDevice.Info->SectorSize; FlashInstance->Media.LastBlock = FlashInstance->Size / FlashInstance->Media.BlockSize - 1; Status = gBS->InstallMultipleProtocolInterfaces (&FlashInstance->Handle, &gEfiDevicePathProtocolGuid, &FlashInstance->DevicePath, &gEfiFirmwareVolumeBlockProtocolGuid, &FlashInstance->FvbProtocol, NULL); if (EFI_ERROR (Status)) { return Status; } Status = MvFvbPrepareFvHeader (FlashInstance); if (EFI_ERROR (Status)) { goto ErrorPrepareFvbHeader; } return EFI_SUCCESS; ErrorPrepareFvbHeader: gBS->UninstallMultipleProtocolInterfaces (&FlashInstance->Handle, &gEfiDevicePathProtocolGuid, &gEfiFirmwareVolumeBlockProtocolGuid, NULL); return Status; } EFI_STATUS EFIAPI MvFvbEntryPoint ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; UINTN RuntimeMmioRegionSize; UINTN RegionBaseAddress; // // Create FVB flash device // mFvbDevice = AllocateRuntimeCopyPool (sizeof (mMvFvbFlashInstanceTemplate), &mMvFvbFlashInstanceTemplate); if (mFvbDevice == NULL) { DEBUG ((DEBUG_ERROR, "%a: Cannot allocate memory\n", __FUNCTION__)); return EFI_OUT_OF_RESOURCES; } // // Detect and configure flash device // Status = MvFvbConfigureFlashInstance (mFvbDevice); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Fail to configure Fvb SPI device\n", __FUNCTION__)); goto ErrorConfigureFlash; } // // Declare the Non-Volatile storage as EFI_MEMORY_RUNTIME // RuntimeMmioRegionSize = mFvbDevice->FvbSize; RegionBaseAddress = mFvbDevice->RegionBaseAddress; Status = gDS->AddMemorySpace (EfiGcdMemoryTypeMemoryMappedIo, RegionBaseAddress, RuntimeMmioRegionSize, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Failed to add memory space\n", __FUNCTION__)); goto ErrorAddSpace; } Status = gDS->SetMemorySpaceAttributes (RegionBaseAddress, RuntimeMmioRegionSize, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Failed to set memory attributes\n", __FUNCTION__)); goto ErrorSetMemAttr; } // // Register for the virtual address change event // Status = gBS->CreateEventEx (EVT_NOTIFY_SIGNAL, TPL_NOTIFY, MvFvbVirtualNotifyEvent, NULL, &gEfiEventVirtualAddressChangeGuid, &mFvbVirtualAddrChangeEvent); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: Failed to register VA change event\n", __FUNCTION__)); goto ErrorSetMemAttr; } // // Configure runtime access to host controller registers // Status = mFvbDevice->SpiMasterProtocol->ConfigRuntime (&mFvbDevice->SpiDevice); if (EFI_ERROR (Status)) { goto ErrorSetMemAttr; } return Status; ErrorSetMemAttr: gDS->RemoveMemorySpace (RegionBaseAddress, RuntimeMmioRegionSize); ErrorAddSpace: gBS->UninstallMultipleProtocolInterfaces (&mFvbDevice->Handle, &gEfiDevicePathProtocolGuid, &gEfiFirmwareVolumeBlockProtocolGuid, NULL); ErrorConfigureFlash: FreePool (mFvbDevice); return Status; }