/** @file Copyright (c) 2017, Linaro, Ltd. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "SynQuacerI2cDxe.h" // // We cannot use Stall () or timer events at runtime, so we need to busy-wait // for the controller to signal the completion interrupts. This value was // arbitrarily chosen, and does not appear to produce any premature timeouts // nor does it result in noticeable stalls in case of bus errors. // #define WAIT_FOR_INTERRUPT_TIMEOUT 50000 /** Set the frequency for the I2C clock line. This routine must be called at or below TPL_NOTIFY. The software and controller do a best case effort of using the specified frequency for the I2C bus. If the frequency does not match exactly then the I2C master protocol selects the next lower frequency to avoid exceeding the operating conditions for any of the I2C devices on the bus. For example if 400 KHz was specified and the controller's divide network only supports 402 KHz or 398 KHz then the I2C master protocol selects 398 KHz. If there are not lower frequencies available, then return EFI_UNSUPPORTED. @param[in] This Pointer to an EFI_I2C_MASTER_PROTOCOL structure @param[in] BusClockHertz Pointer to the requested I2C bus clock frequency in Hertz. Upon return this value contains the actual frequency in use by the I2C controller. @retval EFI_SUCCESS The bus frequency was set successfully. @retval EFI_ALREADY_STARTED The controller is busy with another transaction. @retval EFI_INVALID_PARAMETER BusClockHertz is NULL @retval EFI_UNSUPPORTED The controller does not support this frequency. **/ STATIC EFI_STATUS EFIAPI SynQuacerI2cSetBusFrequency ( IN CONST EFI_I2C_MASTER_PROTOCOL *This, IN OUT UINTN *BusClockHertz ) { SYNQUACER_I2C_MASTER *I2c; UINT8 Ccr, Csr; I2c = SYNQUACER_I2C_FROM_THIS (This); if (BusClockHertz == NULL) { return EFI_INVALID_PARAMETER; } if (*BusClockHertz >= F_I2C_SPEED_FM) { if (REFCLK_RATE <= F_I2C_CLK_RATE_18M) { Ccr = F_I2C_CCR_CS_FAST_MAX_18M (REFCLK_RATE); Csr = F_I2C_CSR_CS_FAST_MAX_18M (REFCLK_RATE); } else { Ccr = F_I2C_CCR_CS_FAST_MIN_18M (REFCLK_RATE); Csr = F_I2C_CSR_CS_FAST_MIN_18M (REFCLK_RATE); } // Set Clock and enable, Set fast mode MmioWrite8 (I2c->MmioBase + F_I2C_REG_CCR, Ccr | F_I2C_CCR_FM | F_I2C_CCR_EN); MmioWrite8 (I2c->MmioBase + F_I2C_REG_CSR, Csr); *BusClockHertz = F_I2C_SPEED_FM; } else if (*BusClockHertz >= F_I2C_SPEED_SM) { if (REFCLK_RATE <= F_I2C_CLK_RATE_18M) { Ccr = F_I2C_CCR_CS_STANDARD_MAX_18M (REFCLK_RATE); Csr = F_I2C_CSR_CS_STANDARD_MAX_18M (REFCLK_RATE); } else { Ccr = F_I2C_CCR_CS_STANDARD_MIN_18M (REFCLK_RATE); Csr = F_I2C_CSR_CS_STANDARD_MIN_18M (REFCLK_RATE); } // Set Clock and enable, Set standard mode MmioWrite8 (I2c->MmioBase + F_I2C_REG_CCR, Ccr | F_I2C_CCR_EN); MmioWrite8 (I2c->MmioBase + F_I2C_REG_CSR, Csr); *BusClockHertz = F_I2C_SPEED_SM; } else { return EFI_UNSUPPORTED; } MemoryFence (); return EFI_SUCCESS; } /** Reset the I2C controller and configure it for use This routine must be called at or below TPL_NOTIFY. The I2C controller is reset. The caller must call SetBusFrequench() after calling Reset(). @param[in] This Pointer to an EFI_I2C_MASTER_PROTOCOL structure. @retval EFI_SUCCESS The reset completed successfully. @retval EFI_ALREADY_STARTED The controller is busy with another transaction. @retval EFI_DEVICE_ERROR The reset operation failed. **/ STATIC EFI_STATUS EFIAPI SynQuacerI2cReset ( IN CONST EFI_I2C_MASTER_PROTOCOL *This ) { SYNQUACER_I2C_MASTER *I2c; I2c = SYNQUACER_I2C_FROM_THIS (This); // Disable the clock MmioWrite8 (I2c->MmioBase + F_I2C_REG_CCR, 0); MmioWrite8 (I2c->MmioBase + F_I2C_REG_CSR, 0); MemoryFence (); // Set own Address MmioWrite8 (I2c->MmioBase + F_I2C_REG_ADR, 0); // Set PCLK frequency MmioWrite8 (I2c->MmioBase + F_I2C_REG_FSR, F_I2C_BUS_CLK_FR (REFCLK_RATE)); // clear IRQ (INT=0, BER=0), Interrupt Disable MmioWrite8 (I2c->MmioBase + F_I2C_REG_BCR, 0); MmioWrite8 (I2c->MmioBase + F_I2C_REG_BC2R, 0); MemoryFence (); return EFI_SUCCESS; } STATIC EFI_STATUS SynQuacerI2cMasterStart ( IN SYNQUACER_I2C_MASTER *I2c, IN UINTN SlaveAddress, IN EFI_I2C_OPERATION *Op ) { UINT8 Bsr; UINT8 Bcr; if (Op->Flags & I2C_FLAG_READ) { MmioWrite8 (I2c->MmioBase + F_I2C_REG_DAR, (SlaveAddress << 1) | 1); } else { MmioWrite8 (I2c->MmioBase + F_I2C_REG_DAR, SlaveAddress << 1); } DEBUG ((DEBUG_INFO, "%a: slave:0x%02x\n", __FUNCTION__, SlaveAddress)); Bsr = MmioRead8 (I2c->MmioBase + F_I2C_REG_BSR); Bcr = MmioRead8 (I2c->MmioBase + F_I2C_REG_BCR); if ((Bsr & F_I2C_BSR_BB) && !(Bcr & F_I2C_BCR_MSS)) { DEBUG ((DEBUG_INFO, "%a: bus is busy\n", __FUNCTION__)); return EFI_ALREADY_STARTED; } if (Bsr & F_I2C_BSR_BB) { // Bus is busy DEBUG ((DEBUG_INFO, "%a: Continuous Start\n", __FUNCTION__)); MmioWrite8 (I2c->MmioBase + F_I2C_REG_BCR, Bcr | F_I2C_BCR_SCC); } else { if (Bcr & F_I2C_BCR_MSS) { DEBUG ((DEBUG_WARN, "%a: is not in master mode\n", __FUNCTION__)); return EFI_DEVICE_ERROR; } DEBUG ((DEBUG_INFO, "%a: Start Condition\n", __FUNCTION__)); MmioWrite8 (I2c->MmioBase + F_I2C_REG_BCR, Bcr | F_I2C_BCR_MSS | F_I2C_BCR_INTE | F_I2C_BCR_BEIE); } return EFI_SUCCESS; } STATIC EFI_STATUS WaitForInterrupt ( IN SYNQUACER_I2C_MASTER *I2c ) { UINT8 Bsr; UINTN Timeout = WAIT_FOR_INTERRUPT_TIMEOUT; do { MemoryFence (); Bsr = MmioRead8 (I2c->MmioBase + F_I2C_REG_BCR); if (Bsr & F_I2C_BCR_INT) { return EFI_SUCCESS; } } while (Timeout--); return EFI_DEVICE_ERROR; } /** Start an I2C transaction on the host controller. This routine must be called at or below TPL_NOTIFY. For synchronous requests this routine must be called at or below TPL_CALLBACK. This function initiates an I2C transaction on the controller. To enable proper error handling by the I2C protocol stack, the I2C master protocol does not support queuing but instead only manages one I2C transaction at a time. This API requires that the I2C bus is in the correct configuration for the I2C transaction. The transaction is performed by sending a start-bit and selecting the I2C device with the specified I2C slave address and then performing the specified I2C operations. When multiple operations are requested they are separated with a repeated start bit and the slave address. The transaction is terminated with a stop bit. When Event is NULL, StartRequest operates synchronously and returns the I2C completion status as its return value. When Event is not NULL, StartRequest synchronously returns EFI_SUCCESS indicating that the I2C transaction was started asynchronously. The transaction status value is returned in the buffer pointed to by I2cStatus upon the completion of the I2C transaction when I2cStatus is not NULL. After the transaction status is returned the Event is signaled. Note: The typical consumer of this API is the I2C host protocol. Extreme care must be taken by other consumers of this API to prevent confusing the third party I2C drivers due to a state change at the I2C device which the third party I2C drivers did not initiate. I2C platform specific code may use this API within these guidelines. @param[in] This Pointer to an EFI_I2C_MASTER_PROTOCOL structure. @param[in] SlaveAddress Address of the device on the I2C bus. Set the I2C_ADDRESSING_10_BIT when using 10-bit addresses, clear this bit for 7-bit addressing. Bits 0-6 are used for 7-bit I2C slave addresses and bits 0-9 are used for 10-bit I2C slave addresses. @param[in] RequestPacket Pointer to an EFI_I2C_REQUEST_PACKET structure describing the I2C transaction. @param[in] Event Event to signal for asynchronous transactions, NULL for synchronous transactions @param[out] I2cStatus Optional buffer to receive the I2C transaction completion status @retval EFI_SUCCESS The asynchronous transaction was successfully started when Event is not NULL. @retval EFI_SUCCESS The transaction completed successfully when Event is NULL. @retval EFI_ALREADY_STARTED The controller is busy with another transaction. @retval EFI_BAD_BUFFER_SIZE The RequestPacket->LengthInBytes value is too large. @retval EFI_DEVICE_ERROR There was an I2C error (NACK) during the transaction. @retval EFI_INVALID_PARAMETER RequestPacket is NULL @retval EFI_NOT_FOUND Reserved bit set in the SlaveAddress parameter @retval EFI_NO_RESPONSE The I2C device is not responding to the slave address. EFI_DEVICE_ERROR will be returned if the controller cannot distinguish when the NACK occurred. @retval EFI_OUT_OF_RESOURCES Insufficient memory for I2C transaction @retval EFI_UNSUPPORTED The controller does not support the requested transaction. **/ STATIC EFI_STATUS EFIAPI SynQuacerI2cStartRequest ( IN CONST EFI_I2C_MASTER_PROTOCOL *This, IN UINTN SlaveAddress, IN EFI_I2C_REQUEST_PACKET *RequestPacket, IN EFI_EVENT Event OPTIONAL, OUT EFI_STATUS *I2cStatus OPTIONAL ) { SYNQUACER_I2C_MASTER *I2c; UINTN Idx; EFI_I2C_OPERATION *Op; UINTN BufIdx; EFI_STATUS Status; EFI_TPL Tpl; BOOLEAN AtRuntime; UINT8 Bsr; UINT8 Bcr; I2c = SYNQUACER_I2C_FROM_THIS (This); // // We can only do synchronous operations at runtime // AtRuntime = EfiAtRuntime (); if (AtRuntime && Event != NULL) { return EFI_UNSUPPORTED; } if (!AtRuntime) { Tpl = gBS->RaiseTPL (TPL_HIGH_LEVEL); } for (Idx = 0, Op = RequestPacket->Operation, Status = EFI_SUCCESS; Idx < RequestPacket->OperationCount && !EFI_ERROR (Status); Idx++, Op++) { Status = SynQuacerI2cMasterStart (I2c, SlaveAddress, Op); if (EFI_ERROR (Status)) { break; } Status = WaitForInterrupt (I2c); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_WARN, "%a: Timeout waiting for interrupt - %r\n", __FUNCTION__, Status)); break; } if (MmioRead8 (I2c->MmioBase + F_I2C_REG_BSR) & F_I2C_BSR_LRB) { DEBUG ((DEBUG_WARN, "%a: No ack received\n", __FUNCTION__)); Status = EFI_DEVICE_ERROR; break; } BufIdx = 0; do { Bsr = MmioRead8 (I2c->MmioBase + F_I2C_REG_BSR); Bcr = MmioRead8 (I2c->MmioBase + F_I2C_REG_BCR); if (Bcr & F_I2C_BCR_BER) { DEBUG ((DEBUG_WARN, "%a: Bus error detected\n", __FUNCTION__)); Status = EFI_DEVICE_ERROR; break; } if ((Bsr & F_I2C_BSR_AL) || !(Bcr & F_I2C_BCR_MSS)) { DEBUG ((DEBUG_WARN, "%a: Arbitration lost\n", __FUNCTION__)); Status = EFI_DEVICE_ERROR; break; } if (Op->Flags & I2C_FLAG_READ) { if (BufIdx == Op->LengthInBytes - 1) { MmioWrite8 (I2c->MmioBase + F_I2C_REG_BCR, F_I2C_BCR_MSS | F_I2C_BCR_INTE | F_I2C_BCR_BEIE); } else { MmioWrite8 (I2c->MmioBase + F_I2C_REG_BCR, F_I2C_BCR_MSS | F_I2C_BCR_INTE | F_I2C_BCR_BEIE | F_I2C_BCR_ACK); } Status = WaitForInterrupt (I2c); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_WARN, "%a: Timeout waiting for interrupt - %r\n", __FUNCTION__, Status)); break; } if (!(MmioRead8 (I2c->MmioBase + F_I2C_REG_BSR) & F_I2C_BSR_FBT)) { Op->Buffer [BufIdx++] = MmioRead8 (I2c->MmioBase + F_I2C_REG_DAR); } } else { MmioWrite8 (I2c->MmioBase + F_I2C_REG_DAR, Op->Buffer [BufIdx++]); MmioWrite8 (I2c->MmioBase + F_I2C_REG_BCR, F_I2C_BCR_MSS | F_I2C_BCR_INTE | F_I2C_BCR_BEIE); Status = WaitForInterrupt (I2c); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_WARN, "%a: Timeout waiting for interrupt - %r\n", __FUNCTION__, Status)); break; } if (MmioRead8 (I2c->MmioBase + F_I2C_REG_BSR) & F_I2C_BSR_LRB) { DEBUG ((DEBUG_WARN, "%a: No ack received\n", __FUNCTION__)); Status = EFI_DEVICE_ERROR; break; } } } while (BufIdx < Op->LengthInBytes); } // Force bus state to idle, terminating any ongoing transfer MmioWrite8 (I2c->MmioBase + F_I2C_REG_BCR, 0); if (!AtRuntime) { gBS->RestoreTPL (Tpl); } if (Event) { *I2cStatus = Status; gBS->SignalEvent (Event); } return Status; } STATIC CONST EFI_I2C_CONTROLLER_CAPABILITIES mI2cControllerCapabilities = { sizeof (EFI_I2C_CONTROLLER_CAPABILITIES), // StructureSizeInBytes MAX_UINT32, // MaximumReceiveBytes MAX_UINT32, // MaximumTransmitBytes MAX_UINT32, // MaximumTotalBytes }; STATIC VOID EFIAPI SynQuacerI2cVirtualNotifyEvent ( IN EFI_EVENT Event, IN VOID *Context ) { SYNQUACER_I2C_MASTER *I2c = Context; EfiConvertPointer (0x0, (VOID **)&I2c->I2cMaster.SetBusFrequency); EfiConvertPointer (0x0, (VOID **)&I2c->I2cMaster.Reset); EfiConvertPointer (0x0, (VOID **)&I2c->I2cMaster.StartRequest); EfiConvertPointer (0x0, (VOID **)&I2c->I2cMaster.I2cControllerCapabilities); EfiConvertPointer (0x0, (VOID **)&I2c->MmioBase); } EFI_STATUS SynQuacerI2cInit ( IN EFI_HANDLE DriverBindingHandle, IN EFI_HANDLE ControllerHandle ) { EFI_STATUS Status; NON_DISCOVERABLE_DEVICE *Dev; SYNQUACER_I2C_MASTER *I2c; BOOLEAN Runtime; Status = gBS->OpenProtocol (ControllerHandle, &gEdkiiNonDiscoverableDeviceProtocolGuid, (VOID **)&Dev, DriverBindingHandle, ControllerHandle, EFI_OPEN_PROTOCOL_BY_DRIVER); if (EFI_ERROR (Status)) { return Status; } Runtime = CompareGuid (Dev->Type, &gSynQuacerNonDiscoverableRuntimeI2cMasterGuid); // Allocate Resources if (Runtime) { I2c = AllocateRuntimeZeroPool (sizeof (SYNQUACER_I2C_MASTER)); } else { I2c = AllocateZeroPool (sizeof (SYNQUACER_I2C_MASTER)); } if (I2c == NULL) { Status = EFI_OUT_OF_RESOURCES; goto CloseProtocol; } I2c->Signature = SYNQUACER_I2C_SIGNATURE; I2c->I2cMaster.SetBusFrequency = SynQuacerI2cSetBusFrequency; I2c->I2cMaster.Reset = SynQuacerI2cReset; I2c->I2cMaster.StartRequest = SynQuacerI2cStartRequest; I2c->I2cMaster.I2cControllerCapabilities = &mI2cControllerCapabilities; I2c->MmioBase = Dev->Resources[0].AddrRangeMin; I2c->Dev = Dev; if (Runtime) { I2c->Runtime = TRUE; // Declare the controller as EFI_MEMORY_RUNTIME Status = gDS->AddMemorySpace ( EfiGcdMemoryTypeMemoryMappedIo, Dev->Resources[0].AddrRangeMin, Dev->Resources[0].AddrLen, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_WARN, "%a: failed to add memory space - %r\n", __FUNCTION__, Status)); } Status = gDS->SetMemorySpaceAttributes ( Dev->Resources[0].AddrRangeMin, Dev->Resources[0].AddrLen, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME); if (EFI_ERROR (Status)) { goto FreeDevice; } // // Register for the virtual address change event // Status = gBS->CreateEventEx (EVT_NOTIFY_SIGNAL, TPL_NOTIFY, SynQuacerI2cVirtualNotifyEvent, I2c, &gEfiEventVirtualAddressChangeGuid, &I2c->VirtualAddressChangeEvent); if (EFI_ERROR (Status)) { goto FreeDevice; } } CopyGuid (&I2c->DevicePath.Vendor.Guid, &gEfiCallerIdGuid); I2c->DevicePath.MmioBase = I2c->MmioBase; SetDevicePathNodeLength (&I2c->DevicePath.Vendor, sizeof (I2c->DevicePath) - sizeof (I2c->DevicePath.End)); SetDevicePathEndNode (&I2c->DevicePath.End); Status = gBS->InstallMultipleProtocolInterfaces (&ControllerHandle, &gEfiI2cMasterProtocolGuid, &I2c->I2cMaster, &gEfiDevicePathProtocolGuid, &I2c->DevicePath, NULL); if (EFI_ERROR (Status)) { goto CloseEvent; } return EFI_SUCCESS; CloseEvent: if (Runtime) { gBS->CloseEvent (I2c->VirtualAddressChangeEvent); } FreeDevice: FreePool (I2c); CloseProtocol: gBS->CloseProtocol (ControllerHandle, &gEdkiiNonDiscoverableDeviceProtocolGuid, DriverBindingHandle, ControllerHandle); return Status; } EFI_STATUS SynQuacerI2cRelease ( IN EFI_HANDLE DriverBindingHandle, IN EFI_HANDLE ControllerHandle ) { EFI_I2C_MASTER_PROTOCOL *I2cMaster; SYNQUACER_I2C_MASTER *I2c; EFI_STATUS Status; Status = gBS->HandleProtocol (ControllerHandle, &gEfiI2cMasterProtocolGuid, (VOID **)&I2cMaster); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { return Status; } I2c = SYNQUACER_I2C_FROM_THIS (I2cMaster); Status = gBS->UninstallMultipleProtocolInterfaces (ControllerHandle, &gEfiI2cMasterProtocolGuid, I2cMaster, &gEfiDevicePathProtocolGuid, &I2c->DevicePath, NULL); if (EFI_ERROR (Status)) { return Status; } if (I2c->Runtime) { gBS->CloseEvent (I2c->VirtualAddressChangeEvent); } Status = gBS->CloseProtocol (ControllerHandle, &gEdkiiNonDiscoverableDeviceProtocolGuid, DriverBindingHandle, ControllerHandle); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { return Status; } gBS->FreePool (I2c); return EFI_SUCCESS; }