/** @file CPU PEI Module installs CPU Multiple Processor PPI. Copyright (c) 2015 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "CpuMpPei.h" // // Global Descriptor Table (GDT) // GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT mGdtEntries[] = { /* selector { Global Segment Descriptor } */ /* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //null descriptor /* 0x08 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear data segment descriptor /* 0x10 */ {{0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear code segment descriptor /* 0x18 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor /* 0x20 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system code segment descriptor /* 0x28 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor /* 0x30 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor /* 0x38 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 1, 0, 1, 0}}, //system code segment descriptor /* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor }; // // IA32 Gdt register // GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR mGdt = { sizeof (mGdtEntries) - 1, (UINTN) mGdtEntries }; GLOBAL_REMOVE_IF_UNREFERENCED EFI_PEI_NOTIFY_DESCRIPTOR mNotifyList = { (EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiEndOfPeiSignalPpiGuid, CpuMpEndOfPeiCallback }; /** Sort the APIC ID of all processors. This function sorts the APIC ID of all processors so that processor number is assigned in the ascending order of APIC ID which eases MP debugging. @param PeiCpuMpData Pointer to PEI CPU MP Data **/ VOID SortApicId ( IN PEI_CPU_MP_DATA *PeiCpuMpData ) { UINTN Index1; UINTN Index2; UINTN Index3; UINT32 ApicId; PEI_CPU_DATA CpuData; UINT32 ApCount; ApCount = PeiCpuMpData->CpuCount - 1; if (ApCount != 0) { for (Index1 = 0; Index1 < ApCount; Index1++) { Index3 = Index1; // // Sort key is the hardware default APIC ID // ApicId = PeiCpuMpData->CpuData[Index1].ApicId; for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) { if (ApicId > PeiCpuMpData->CpuData[Index2].ApicId) { Index3 = Index2; ApicId = PeiCpuMpData->CpuData[Index2].ApicId; } } if (Index3 != Index1) { CopyMem (&CpuData, &PeiCpuMpData->CpuData[Index3], sizeof (PEI_CPU_DATA)); CopyMem ( &PeiCpuMpData->CpuData[Index3], &PeiCpuMpData->CpuData[Index1], sizeof (PEI_CPU_DATA) ); CopyMem (&PeiCpuMpData->CpuData[Index1], &CpuData, sizeof (PEI_CPU_DATA)); } } // // Get the processor number for the BSP // ApicId = GetInitialApicId (); for (Index1 = 0; Index1 < PeiCpuMpData->CpuCount; Index1++) { if (PeiCpuMpData->CpuData[Index1].ApicId == ApicId) { PeiCpuMpData->BspNumber = (UINT32) Index1; break; } } } } /** Enable x2APIC mode on APs. @param Buffer Pointer to private data buffer. **/ VOID EFIAPI ApFuncEnableX2Apic ( IN OUT VOID *Buffer ) { SetApicMode (LOCAL_APIC_MODE_X2APIC); } /** Get AP loop mode. @param MonitorFilterSize Returns the largest monitor-line size in bytes. @return The AP loop mode. **/ UINT8 GetApLoopMode ( OUT UINT16 *MonitorFilterSize ) { UINT8 ApLoopMode; UINT32 RegEbx; UINT32 RegEcx; UINT32 RegEdx; ASSERT (MonitorFilterSize != NULL); ApLoopMode = PcdGet8 (PcdCpuApLoopMode); ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop); if (ApLoopMode == ApInMwaitLoop) { AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &RegEcx, NULL); if ((RegEcx & BIT3) == 0) { // // If processor does not support MONITOR/MWAIT feature // by CPUID.[EAX=01H]:ECX.BIT3, force AP in Hlt-loop mode // ApLoopMode = ApInHltLoop; } } if (ApLoopMode == ApInHltLoop) { *MonitorFilterSize = 0; } else if (ApLoopMode == ApInRunLoop) { *MonitorFilterSize = sizeof (UINT32); } else if (ApLoopMode == ApInMwaitLoop) { // // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes // CPUID.[EAX=05H].EDX: C-states supported using MWAIT // AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &RegEbx, NULL, &RegEdx); *MonitorFilterSize = RegEbx & 0xFFFF; } return ApLoopMode; } /** Get CPU MP Data pointer from the Guided HOB. @return Pointer to Pointer to PEI CPU MP Data **/ PEI_CPU_MP_DATA * GetMpHobData ( VOID ) { EFI_HOB_GUID_TYPE *GuidHob; VOID *DataInHob; PEI_CPU_MP_DATA *CpuMpData; CpuMpData = NULL; GuidHob = GetFirstGuidHob (&gEfiCallerIdGuid); if (GuidHob != NULL) { DataInHob = GET_GUID_HOB_DATA (GuidHob); CpuMpData = (PEI_CPU_MP_DATA *)(*(UINTN *)DataInHob); } ASSERT (CpuMpData != NULL); return CpuMpData; } /** Save the volatile registers required to be restored following INIT IPI. @param VolatileRegisters Returns buffer saved the volatile resisters **/ VOID SaveVolatileRegisters ( OUT CPU_VOLATILE_REGISTERS *VolatileRegisters ) { UINT32 RegEdx; VolatileRegisters->Cr0 = AsmReadCr0 (); VolatileRegisters->Cr3 = AsmReadCr3 (); VolatileRegisters->Cr4 = AsmReadCr4 (); AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT2) != 0) { // // If processor supports Debugging Extensions feature // by CPUID.[EAX=01H]:EDX.BIT2 // VolatileRegisters->Dr0 = AsmReadDr0 (); VolatileRegisters->Dr1 = AsmReadDr1 (); VolatileRegisters->Dr2 = AsmReadDr2 (); VolatileRegisters->Dr3 = AsmReadDr3 (); VolatileRegisters->Dr6 = AsmReadDr6 (); VolatileRegisters->Dr7 = AsmReadDr7 (); } } /** Restore the volatile registers following INIT IPI. @param VolatileRegisters Pointer to volatile resisters @param IsRestoreDr TRUE: Restore DRx if supported FALSE: Do not restore DRx **/ VOID RestoreVolatileRegisters ( IN CPU_VOLATILE_REGISTERS *VolatileRegisters, IN BOOLEAN IsRestoreDr ) { UINT32 RegEdx; AsmWriteCr0 (VolatileRegisters->Cr0); AsmWriteCr3 (VolatileRegisters->Cr3); AsmWriteCr4 (VolatileRegisters->Cr4); if (IsRestoreDr) { AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT2) != 0) { // // If processor supports Debugging Extensions feature // by CPUID.[EAX=01H]:EDX.BIT2 // AsmWriteDr0 (VolatileRegisters->Dr0); AsmWriteDr1 (VolatileRegisters->Dr1); AsmWriteDr2 (VolatileRegisters->Dr2); AsmWriteDr3 (VolatileRegisters->Dr3); AsmWriteDr6 (VolatileRegisters->Dr6); AsmWriteDr7 (VolatileRegisters->Dr7); } } } /** This function will be called from AP reset code if BSP uses WakeUpAP. @param ExchangeInfo Pointer to the MP exchange info buffer @param NumApsExecuting Number of current executing AP **/ VOID EFIAPI ApCFunction ( IN MP_CPU_EXCHANGE_INFO *ExchangeInfo, IN UINTN NumApsExecuting ) { PEI_CPU_MP_DATA *PeiCpuMpData; UINTN ProcessorNumber; EFI_AP_PROCEDURE Procedure; UINTN BistData; volatile UINT32 *ApStartupSignalBuffer; PeiCpuMpData = ExchangeInfo->PeiCpuMpData; while (TRUE) { if (PeiCpuMpData->InitFlag) { ProcessorNumber = NumApsExecuting; // // Sync BSP's Control registers to APs // RestoreVolatileRegisters (&PeiCpuMpData->CpuData[0].VolatileRegisters, FALSE); // // This is first time AP wakeup, get BIST information from AP stack // BistData = *(UINTN *) (PeiCpuMpData->Buffer + ProcessorNumber * PeiCpuMpData->CpuApStackSize - sizeof (UINTN)); PeiCpuMpData->CpuData[ProcessorNumber].Health.Uint32 = (UINT32) BistData; PeiCpuMpData->CpuData[ProcessorNumber].ApicId = GetInitialApicId (); if (PeiCpuMpData->CpuData[ProcessorNumber].ApicId >= 0xFF) { // // Set x2APIC mode if there are any logical processor reporting // an APIC ID of 255 or greater. // AcquireSpinLock(&PeiCpuMpData->MpLock); PeiCpuMpData->X2ApicEnable = TRUE; ReleaseSpinLock(&PeiCpuMpData->MpLock); } // // Sync BSP's Mtrr table to all wakeup APs and load microcode on APs. // MtrrSetAllMtrrs (&PeiCpuMpData->MtrrTable); MicrocodeDetect (); PeiCpuMpData->CpuData[ProcessorNumber].State = CpuStateIdle; } else { // // Execute AP function if AP is not disabled // GetProcessorNumber (PeiCpuMpData, &ProcessorNumber); if (PeiCpuMpData->ApLoopMode == ApInHltLoop) { // // Restore AP's volatile registers saved // RestoreVolatileRegisters (&PeiCpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE); } if ((PeiCpuMpData->CpuData[ProcessorNumber].State != CpuStateDisabled) && (PeiCpuMpData->ApFunction != 0)) { PeiCpuMpData->CpuData[ProcessorNumber].State = CpuStateBusy; Procedure = (EFI_AP_PROCEDURE)(UINTN)PeiCpuMpData->ApFunction; // // Invoke AP function here // Procedure ((VOID *)(UINTN)PeiCpuMpData->ApFunctionArgument); // // Re-get the processor number due to BSP/AP maybe exchange in AP function // GetProcessorNumber (PeiCpuMpData, &ProcessorNumber); PeiCpuMpData->CpuData[ProcessorNumber].State = CpuStateIdle; } } // // AP finished executing C code // InterlockedIncrement ((UINT32 *)&PeiCpuMpData->FinishedCount); // // Place AP is specified loop mode // if (PeiCpuMpData->ApLoopMode == ApInHltLoop) { // // Save AP volatile registers // SaveVolatileRegisters (&PeiCpuMpData->CpuData[ProcessorNumber].VolatileRegisters); // // Place AP in Hlt-loop // while (TRUE) { DisableInterrupts (); CpuSleep (); CpuPause (); } } ApStartupSignalBuffer = PeiCpuMpData->CpuData[ProcessorNumber].StartupApSignal; while (TRUE) { DisableInterrupts (); if (PeiCpuMpData->ApLoopMode == ApInMwaitLoop) { // // Place AP in Mwait-loop // AsmMonitor ((UINTN)ApStartupSignalBuffer, 0, 0); if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) { // // If AP start-up signal is not set, place AP into // the maximum C-state // AsmMwait (PeiCpuMpData->ApTargetCState << 4, 0); } } else if (PeiCpuMpData->ApLoopMode == ApInRunLoop) { // // Place AP in Run-loop // CpuPause (); } else { ASSERT (FALSE); } // // If AP start-up signal is written, AP is waken up // otherwise place AP in loop again // if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) { // // Clear AP start-up signal when AP waken up // InterlockedCompareExchange32 ( (UINT32 *)ApStartupSignalBuffer, WAKEUP_AP_SIGNAL, 0 ); break; } } } } /** Write AP start-up signal to wakeup AP. @param ApStartupSignalBuffer Pointer to AP wakeup signal **/ VOID WriteStartupSignal ( IN volatile UINT32 *ApStartupSignalBuffer ) { *ApStartupSignalBuffer = WAKEUP_AP_SIGNAL; // // If AP is waken up, StartupApSignal should be cleared. // Otherwise, write StartupApSignal again till AP waken up. // while (InterlockedCompareExchange32 ( (UINT32 *)ApStartupSignalBuffer, WAKEUP_AP_SIGNAL, WAKEUP_AP_SIGNAL ) != 0) { CpuPause (); } } /** This function will be called by BSP to wakeup AP. @param PeiCpuMpData Pointer to PEI CPU MP Data @param Broadcast TRUE: Send broadcast IPI to all APs FALSE: Send IPI to AP by ApicId @param ProcessorNumber The handle number of specified processor @param Procedure The function to be invoked by AP @param ProcedureArgument The argument to be passed into AP function **/ VOID WakeUpAP ( IN PEI_CPU_MP_DATA *PeiCpuMpData, IN BOOLEAN Broadcast, IN UINTN ProcessorNumber, IN EFI_AP_PROCEDURE Procedure, OPTIONAL IN VOID *ProcedureArgument OPTIONAL ) { volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo; UINTN Index; PeiCpuMpData->ApFunction = (UINTN) Procedure; PeiCpuMpData->ApFunctionArgument = (UINTN) ProcedureArgument; PeiCpuMpData->FinishedCount = 0; ExchangeInfo = PeiCpuMpData->MpCpuExchangeInfo; ExchangeInfo->Lock = 0; ExchangeInfo->StackStart = PeiCpuMpData->Buffer; ExchangeInfo->StackSize = PeiCpuMpData->CpuApStackSize; ExchangeInfo->BufferStart = PeiCpuMpData->WakeupBuffer; ExchangeInfo->PmodeOffset = PeiCpuMpData->AddressMap.PModeEntryOffset; ExchangeInfo->LmodeOffset = PeiCpuMpData->AddressMap.LModeEntryOffset; ExchangeInfo->Cr3 = AsmReadCr3 (); ExchangeInfo->CFunction = (UINTN) ApCFunction; ExchangeInfo->NumApsExecuting = 0; ExchangeInfo->PeiCpuMpData = PeiCpuMpData; // // Get the BSP's data of GDT and IDT // CopyMem ((VOID *)&ExchangeInfo->GdtrProfile, &mGdt, sizeof(mGdt)); AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile); if (PeiCpuMpData->ApLoopMode == ApInMwaitLoop) { // // Get AP target C-state each time when waking up AP, // for it maybe updated by platform again // PeiCpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate); } // // Wakeup APs per AP loop state // if (PeiCpuMpData->ApLoopMode == ApInHltLoop || PeiCpuMpData->InitFlag) { if (Broadcast) { SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart); } else { SendInitSipiSipi ( PeiCpuMpData->CpuData[ProcessorNumber].ApicId, (UINT32) ExchangeInfo->BufferStart ); } } else if ((PeiCpuMpData->ApLoopMode == ApInMwaitLoop) || (PeiCpuMpData->ApLoopMode == ApInRunLoop)) { if (Broadcast) { for (Index = 0; Index < PeiCpuMpData->CpuCount; Index++) { if (Index != PeiCpuMpData->BspNumber) { WriteStartupSignal (PeiCpuMpData->CpuData[Index].StartupApSignal); } } } else { WriteStartupSignal (PeiCpuMpData->CpuData[ProcessorNumber].StartupApSignal); } } else { ASSERT (FALSE); } return ; } /** Get available system memory below 1MB by specified size. @param WakeupBufferSize Wakeup buffer size required @retval other Return wakeup buffer address below 1MB. @retval -1 Cannot find free memory below 1MB. **/ UINTN GetWakeupBuffer ( IN UINTN WakeupBufferSize ) { EFI_PEI_HOB_POINTERS Hob; UINTN WakeupBufferStart; UINTN WakeupBufferEnd; // // Get the HOB list for processing // Hob.Raw = GetHobList (); // // Collect memory ranges // while (!END_OF_HOB_LIST (Hob)) { if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { if ((Hob.ResourceDescriptor->PhysicalStart < BASE_1MB) && (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) && ((Hob.ResourceDescriptor->ResourceAttribute & (EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED | EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED | EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED )) == 0) ) { // // Need memory under 1MB to be collected here // WakeupBufferEnd = (UINTN) (Hob.ResourceDescriptor->PhysicalStart + Hob.ResourceDescriptor->ResourceLength); if (WakeupBufferEnd > BASE_1MB) { // // Wakeup buffer should be under 1MB // WakeupBufferEnd = BASE_1MB; } // // Wakeup buffer should be aligned on 4KB // WakeupBufferStart = (WakeupBufferEnd - WakeupBufferSize) & ~(SIZE_4KB - 1); if (WakeupBufferStart < Hob.ResourceDescriptor->PhysicalStart) { continue; } // // Create a memory allocation HOB. // BuildMemoryAllocationHob ( WakeupBufferStart, WakeupBufferSize, EfiBootServicesData ); return WakeupBufferStart; } } // // Find the next HOB // Hob.Raw = GET_NEXT_HOB (Hob); } return (UINTN) -1; } /** Get available system memory below 1MB by specified size. @param PeiCpuMpData Pointer to PEI CPU MP Data **/ VOID BackupAndPrepareWakeupBuffer( IN PEI_CPU_MP_DATA *PeiCpuMpData ) { CopyMem ( (VOID *) PeiCpuMpData->BackupBuffer, (VOID *) PeiCpuMpData->WakeupBuffer, PeiCpuMpData->BackupBufferSize ); CopyMem ( (VOID *) PeiCpuMpData->WakeupBuffer, (VOID *) PeiCpuMpData->AddressMap.RendezvousFunnelAddress, PeiCpuMpData->AddressMap.RendezvousFunnelSize ); } /** Restore wakeup buffer data. @param PeiCpuMpData Pointer to PEI CPU MP Data **/ VOID RestoreWakeupBuffer( IN PEI_CPU_MP_DATA *PeiCpuMpData ) { CopyMem ((VOID *) PeiCpuMpData->WakeupBuffer, (VOID *) PeiCpuMpData->BackupBuffer, PeiCpuMpData->BackupBufferSize); } /** This function will get CPU count in the system. @param PeiCpuMpData Pointer to PEI CPU MP Data @return AP processor count **/ UINT32 CountProcessorNumber ( IN PEI_CPU_MP_DATA *PeiCpuMpData ) { // // Load Microcode on BSP // MicrocodeDetect (); // // Store BSP's MTRR setting // MtrrGetAllMtrrs (&PeiCpuMpData->MtrrTable); // // Only perform AP detection if PcdCpuMaxLogicalProcessorNumber is greater than 1 // if (PcdGet32 (PcdCpuMaxLogicalProcessorNumber) > 1) { // // Send 1st broadcast IPI to APs to wakeup APs // PeiCpuMpData->InitFlag = TRUE; PeiCpuMpData->X2ApicEnable = FALSE; WakeUpAP (PeiCpuMpData, TRUE, 0, NULL, NULL); // // Wait for AP task to complete and then exit. // MicroSecondDelay (PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)); PeiCpuMpData->InitFlag = FALSE; PeiCpuMpData->CpuCount += (UINT32)PeiCpuMpData->MpCpuExchangeInfo->NumApsExecuting; ASSERT (PeiCpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber)); // // Wait for all APs finished the initialization // while (PeiCpuMpData->FinishedCount < (PeiCpuMpData->CpuCount - 1)) { CpuPause (); } if (PeiCpuMpData->X2ApicEnable) { DEBUG ((EFI_D_INFO, "Force x2APIC mode!\n")); // // Wakeup all APs to enable x2APIC mode // WakeUpAP (PeiCpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL); // // Wait for all known APs finished // while (PeiCpuMpData->FinishedCount < (PeiCpuMpData->CpuCount - 1)) { CpuPause (); } // // Enable x2APIC on BSP // SetApicMode (LOCAL_APIC_MODE_X2APIC); } DEBUG ((EFI_D_INFO, "APIC MODE is %d\n", GetApicMode ())); // // Sort BSP/Aps by CPU APIC ID in ascending order // SortApicId (PeiCpuMpData); } DEBUG ((EFI_D_INFO, "CpuMpPei: Find %d processors in system.\n", PeiCpuMpData->CpuCount)); return PeiCpuMpData->CpuCount; } /** Prepare for AP wakeup buffer and copy AP reset code into it. Get wakeup buffer below 1MB. Allocate memory for CPU MP Data and APs Stack. @return Pointer to PEI CPU MP Data **/ PEI_CPU_MP_DATA * PrepareAPStartupVector ( VOID ) { EFI_STATUS Status; UINT32 MaxCpuCount; PEI_CPU_MP_DATA *PeiCpuMpData; EFI_PHYSICAL_ADDRESS Buffer; UINTN BufferSize; UINTN WakeupBuffer; UINTN WakeupBufferSize; MP_ASSEMBLY_ADDRESS_MAP AddressMap; UINT8 ApLoopMode; UINT16 MonitorFilterSize; UINT8 *MonitorBuffer; UINTN Index; AsmGetAddressMap (&AddressMap); WakeupBufferSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO); WakeupBuffer = GetWakeupBuffer ((WakeupBufferSize + SIZE_4KB - 1) & ~(SIZE_4KB - 1)); ASSERT (WakeupBuffer != (UINTN) -1); DEBUG ((EFI_D_INFO, "CpuMpPei: WakeupBuffer = 0x%x\n", WakeupBuffer)); // // Allocate Pages for APs stack, CPU MP Data, backup buffer for wakeup buffer, // and monitor buffer if required. // MaxCpuCount = PcdGet32(PcdCpuMaxLogicalProcessorNumber); BufferSize = PcdGet32 (PcdCpuApStackSize) * MaxCpuCount + sizeof (PEI_CPU_MP_DATA) + WakeupBufferSize + sizeof (PEI_CPU_DATA) * MaxCpuCount; ApLoopMode = GetApLoopMode (&MonitorFilterSize); BufferSize += MonitorFilterSize * MaxCpuCount; Status = PeiServicesAllocatePages ( EfiBootServicesData, EFI_SIZE_TO_PAGES (BufferSize), &Buffer ); ASSERT_EFI_ERROR (Status); PeiCpuMpData = (PEI_CPU_MP_DATA *) (UINTN) (Buffer + PcdGet32 (PcdCpuApStackSize) * MaxCpuCount); PeiCpuMpData->Buffer = (UINTN) Buffer; PeiCpuMpData->CpuApStackSize = PcdGet32 (PcdCpuApStackSize); PeiCpuMpData->WakeupBuffer = WakeupBuffer; PeiCpuMpData->BackupBuffer = (UINTN)PeiCpuMpData + sizeof (PEI_CPU_MP_DATA); PeiCpuMpData->BackupBufferSize = WakeupBufferSize; PeiCpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (WakeupBuffer + AddressMap.RendezvousFunnelSize); PeiCpuMpData->CpuCount = 1; PeiCpuMpData->BspNumber = 0; PeiCpuMpData->CpuData = (PEI_CPU_DATA *) (PeiCpuMpData->BackupBuffer + PeiCpuMpData->BackupBufferSize); PeiCpuMpData->CpuData[0].ApicId = GetInitialApicId (); PeiCpuMpData->CpuData[0].Health.Uint32 = 0; PeiCpuMpData->EndOfPeiFlag = FALSE; InitializeSpinLock(&PeiCpuMpData->MpLock); SaveVolatileRegisters (&PeiCpuMpData->CpuData[0].VolatileRegisters); CopyMem (&PeiCpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP)); // // Initialize AP loop mode // PeiCpuMpData->ApLoopMode = ApLoopMode; DEBUG ((EFI_D_INFO, "AP Loop Mode is %d\n", PeiCpuMpData->ApLoopMode)); MonitorBuffer = (UINT8 *)(PeiCpuMpData->CpuData + MaxCpuCount); if (PeiCpuMpData->ApLoopMode != ApInHltLoop) { // // Set up APs wakeup signal buffer // for (Index = 0; Index < MaxCpuCount; Index++) { PeiCpuMpData->CpuData[Index].StartupApSignal = (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index); } } // // Backup original data and copy AP reset code in it // BackupAndPrepareWakeupBuffer(PeiCpuMpData); return PeiCpuMpData; } /** Notify function on End Of Pei PPI. On S3 boot, this function will restore wakeup buffer data. On normal boot, this function will flag wakeup buffer to be un-used type. @param PeiServices The pointer to the PEI Services Table. @param NotifyDescriptor Address of the notification descriptor data structure. @param Ppi Address of the PPI that was installed. @retval EFI_SUCCESS When everything is OK. **/ EFI_STATUS EFIAPI CpuMpEndOfPeiCallback ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_NOTIFY_DESCRIPTOR *NotifyDescriptor, IN VOID *Ppi ) { EFI_STATUS Status; EFI_BOOT_MODE BootMode; PEI_CPU_MP_DATA *PeiCpuMpData; EFI_PEI_HOB_POINTERS Hob; EFI_HOB_MEMORY_ALLOCATION *MemoryHob; DEBUG ((EFI_D_INFO, "CpuMpPei: CpuMpEndOfPeiCallback () invoked\n")); Status = PeiServicesGetBootMode (&BootMode); ASSERT_EFI_ERROR (Status); PeiCpuMpData = GetMpHobData (); ASSERT (PeiCpuMpData != NULL); if (BootMode != BOOT_ON_S3_RESUME) { // // Get the HOB list for processing // Hob.Raw = GetHobList (); // // Collect memory ranges // while (!END_OF_HOB_LIST (Hob)) { if (Hob.Header->HobType == EFI_HOB_TYPE_MEMORY_ALLOCATION) { MemoryHob = Hob.MemoryAllocation; if(MemoryHob->AllocDescriptor.MemoryBaseAddress == PeiCpuMpData->WakeupBuffer) { // // Flag this HOB type to un-used // GET_HOB_TYPE (Hob) = EFI_HOB_TYPE_UNUSED; break; } } Hob.Raw = GET_NEXT_HOB (Hob); } } else { RestoreWakeupBuffer (PeiCpuMpData); PeiCpuMpData->EndOfPeiFlag = TRUE; } return EFI_SUCCESS; } /** The Entry point of the MP CPU PEIM. This function will wakeup APs and collect CPU AP count and install the Mp Service Ppi. @param FileHandle Handle of the file being invoked. @param PeiServices Describes the list of possible PEI Services. @retval EFI_SUCCESS MpServicePpi is installed successfully. **/ EFI_STATUS EFIAPI CpuMpPeimInit ( IN EFI_PEI_FILE_HANDLE FileHandle, IN CONST EFI_PEI_SERVICES **PeiServices ) { EFI_STATUS Status; PEI_CPU_MP_DATA *PeiCpuMpData; // // Load new GDT table on BSP // AsmInitializeGdt (&mGdt); // // Get wakeup buffer and copy AP reset code in it // PeiCpuMpData = PrepareAPStartupVector (); // // Count processor number and collect processor information // CountProcessorNumber (PeiCpuMpData); // // Build location of PEI CPU MP DATA buffer in HOB // BuildGuidDataHob ( &gEfiCallerIdGuid, (VOID *)&PeiCpuMpData, sizeof(UINT64) ); // // Update and publish CPU BIST information // CollectBistDataFromPpi (PeiServices, PeiCpuMpData); // // register an event for EndOfPei // Status = PeiServicesNotifyPpi (&mNotifyList); ASSERT_EFI_ERROR (Status); // // Install CPU MP PPI // Status = PeiServicesInstallPpi(&mPeiCpuMpPpiDesc); ASSERT_EFI_ERROR (Status); return Status; }