/** @file X64 processor specific functions to enable SMM profile. Copyright (c) 2012 - 2015, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "PiSmmCpuDxeSmm.h" #include "SmmProfileInternal.h" // // Current page index. // UINTN mPFPageIndex; // // Pool for dynamically creating page table in page fault handler. // UINT64 mPFPageBuffer; // // Store the uplink information for each page being used. // UINT64 *mPFPageUplink[MAX_PF_PAGE_COUNT]; /** Create SMM page table for S3 path. **/ VOID InitSmmS3Cr3 ( VOID ) { EFI_PHYSICAL_ADDRESS Pages; UINT64 *PTEntry; // // Generate PAE page table for the first 4GB memory space // Pages = Gen4GPageTable (1); // // Fill Page-Table-Level4 (PML4) entry // PTEntry = (UINT64*)(UINTN)(Pages - EFI_PAGES_TO_SIZE (1)); *PTEntry = Pages + IA32_PG_P; ZeroMem (PTEntry + 1, EFI_PAGE_SIZE - sizeof (*PTEntry)); // // Return the address of PML4 (to set CR3) // mSmmS3ResumeState->SmmS3Cr3 = (UINT32)(UINTN)PTEntry; return ; } /** Allocate pages for creating 4KB-page based on 2MB-page when page fault happens. **/ VOID InitPagesForPFHandler ( VOID ) { VOID *Address; // // Pre-Allocate memory for page fault handler // Address = NULL; Address = AllocatePages (MAX_PF_PAGE_COUNT); ASSERT_EFI_ERROR (Address != NULL); mPFPageBuffer = (UINT64)(UINTN) Address; mPFPageIndex = 0; ZeroMem ((VOID *) (UINTN) mPFPageBuffer, EFI_PAGE_SIZE * MAX_PF_PAGE_COUNT); ZeroMem (mPFPageUplink, sizeof (mPFPageUplink)); return; } /** Allocate one page for creating 4KB-page based on 2MB-page. @param Uplink The address of Page-Directory entry. **/ VOID AcquirePage ( UINT64 *Uplink ) { UINT64 Address; // // Get the buffer // Address = mPFPageBuffer + EFI_PAGES_TO_SIZE (mPFPageIndex); ZeroMem ((VOID *) (UINTN) Address, EFI_PAGE_SIZE); // // Cut the previous uplink if it exists and wasn't overwritten // if ((mPFPageUplink[mPFPageIndex] != NULL) && ((*mPFPageUplink[mPFPageIndex] & PHYSICAL_ADDRESS_MASK) == Address)) { *mPFPageUplink[mPFPageIndex] = 0; } // // Link & Record the current uplink // *Uplink = Address | IA32_PG_P | IA32_PG_RW; mPFPageUplink[mPFPageIndex] = Uplink; mPFPageIndex = (mPFPageIndex + 1) % MAX_PF_PAGE_COUNT; } /** Update page table to map the memory correctly in order to make the instruction which caused page fault execute successfully. And it also save the original page table to be restored in single-step exception. @param PageTable PageTable Address. @param PFAddress The memory address which caused page fault exception. @param CpuIndex The index of the processor. @param ErrorCode The Error code of exception. @param IsValidPFAddress The flag indicates if SMM profile data need be added. **/ VOID RestorePageTableAbove4G ( UINT64 *PageTable, UINT64 PFAddress, UINTN CpuIndex, UINTN ErrorCode, BOOLEAN *IsValidPFAddress ) { UINTN PTIndex; UINT64 Address; BOOLEAN Nx; BOOLEAN Existed; UINTN Index; UINTN PFIndex; ASSERT ((PageTable != NULL) && (IsValidPFAddress != NULL)); // // If page fault address is 4GB above. // // // Check if page fault address has existed in page table. // If it exists in page table but page fault is generated, // there are 2 possible reasons: 1. present flag is set to 0; 2. instruction fetch in protected memory range. // Existed = FALSE; PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK); PTIndex = BitFieldRead64 (PFAddress, 39, 47); if ((PageTable[PTIndex] & IA32_PG_P) != 0) { // PML4E PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); PTIndex = BitFieldRead64 (PFAddress, 30, 38); if ((PageTable[PTIndex] & IA32_PG_P) != 0) { // PDPTE PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); PTIndex = BitFieldRead64 (PFAddress, 21, 29); // PD if ((PageTable[PTIndex] & IA32_PG_PS) != 0) { // // 2MB page // Address = (UINT64)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); if ((Address & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) { Existed = TRUE; } } else { // // 4KB page // PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); if (PageTable != 0) { // // When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB. // PTIndex = BitFieldRead64 (PFAddress, 12, 20); Address = (UINT64)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); if ((Address & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) { Existed = TRUE; } } } } } // // If page entry does not existed in page table at all, create a new entry. // if (!Existed) { if (IsAddressValid (PFAddress, &Nx)) { // // If page fault address above 4GB is in protected range but it causes a page fault exception, // Will create a page entry for this page fault address, make page table entry as present/rw and execution-disable. // this access is not saved into SMM profile data. // *IsValidPFAddress = TRUE; } // // Create one entry in page table for page fault address. // SmiDefaultPFHandler (); // // Find the page table entry created just now. // PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK); PFAddress = AsmReadCr2 (); // PML4E PTIndex = BitFieldRead64 (PFAddress, 39, 47); PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); // PDPTE PTIndex = BitFieldRead64 (PFAddress, 30, 38); PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); // PD PTIndex = BitFieldRead64 (PFAddress, 21, 29); Address = PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK; // // Check if 2MB-page entry need be changed to 4KB-page entry. // if (IsAddressSplit (Address)) { AcquirePage (&PageTable[PTIndex]); // PTE PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK); for (Index = 0; Index < 512; Index++) { PageTable[Index] = Address | IA32_PG_RW | IA32_PG_P; if (!IsAddressValid (Address, &Nx)) { PageTable[Index] = PageTable[Index] & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P)); } if (Nx && mXdSupported) { PageTable[Index] = PageTable[Index] | IA32_PG_NX; } if (Address == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) { PTIndex = Index; } Address += SIZE_4KB; } // end for PT } else { // // Update 2MB page entry. // if (!IsAddressValid (Address, &Nx)) { // // Patch to remove present flag and rw flag. // PageTable[PTIndex] = PageTable[PTIndex] & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P)); } // // Set XD bit to 1 // if (Nx && mXdSupported) { PageTable[PTIndex] = PageTable[PTIndex] | IA32_PG_NX; } } } // // Record old entries with non-present status // Old entries include the memory which instruction is at and the memory which instruction access. // // ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT); if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) { PFIndex = mPFEntryCount[CpuIndex]; mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex]; mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex]; mPFEntryCount[CpuIndex]++; } // // Add present flag or clear XD flag to make page fault handler succeed. // PageTable[PTIndex] |= (UINT64)(IA32_PG_RW | IA32_PG_P); if ((ErrorCode & IA32_PF_EC_ID) != 0) { // // If page fault is caused by instruction fetch, clear XD bit in the entry. // PageTable[PTIndex] &= ~IA32_PG_NX; } return; } /** Clear TF in FLAGS. @param SystemContext A pointer to the processor context when the interrupt occurred on the processor. **/ VOID ClearTrapFlag ( IN OUT EFI_SYSTEM_CONTEXT SystemContext ) { SystemContext.SystemContextX64->Rflags &= (UINTN) ~BIT8; }