/** @file This module produces the EFI_PEI_S3_RESUME_PPI. This module works with StandAloneBootScriptExecutor to S3 resume to OS. This module will excute the boot script saved during last boot and after that, control is passed to OS waking up handler. Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #pragma pack(1) typedef union { struct { UINT32 LimitLow : 16; UINT32 BaseLow : 16; UINT32 BaseMid : 8; UINT32 Type : 4; UINT32 System : 1; UINT32 Dpl : 2; UINT32 Present : 1; UINT32 LimitHigh : 4; UINT32 Software : 1; UINT32 Reserved : 1; UINT32 DefaultSize : 1; UINT32 Granularity : 1; UINT32 BaseHigh : 8; } Bits; UINT64 Uint64; } IA32_GDT; // // Page-Map Level-4 Offset (PML4) and // Page-Directory-Pointer Offset (PDPE) entries 4K & 2MB // typedef union { struct { UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU) UINT64 Reserved:1; // Reserved UINT64 MustBeZero:2; // Must Be Zero UINT64 Available:3; // Available for use by system software UINT64 PageTableBaseAddress:40; // Page Table Base Address UINT64 AvabilableHigh:11; // Available for use by system software UINT64 Nx:1; // No Execute bit } Bits; UINT64 Uint64; } PAGE_MAP_AND_DIRECTORY_POINTER; // // Page Table Entry 2MB // typedef union { struct { UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU) UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page UINT64 MustBe1:1; // Must be 1 UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write UINT64 Available:3; // Available for use by system software UINT64 PAT:1; // UINT64 MustBeZero:8; // Must be zero; UINT64 PageTableBaseAddress:31; // Page Table Base Address UINT64 AvabilableHigh:11; // Available for use by system software UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution } Bits; UINT64 Uint64; } PAGE_TABLE_ENTRY; // // Page Table Entry 1GB // typedef union { struct { UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU) UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page UINT64 MustBe1:1; // Must be 1 UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write UINT64 Available:3; // Available for use by system software UINT64 PAT:1; // UINT64 MustBeZero:17; // Must be zero; UINT64 PageTableBaseAddress:22; // Page Table Base Address UINT64 AvabilableHigh:11; // Available for use by system software UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution } Bits; UINT64 Uint64; } PAGE_TABLE_1G_ENTRY; #pragma pack() // // Function prototypes // /** a ASM function to transfer control to OS. @param S3WakingVector The S3 waking up vector saved in ACPI Facs table @param AcpiLowMemoryBase a buffer under 1M which could be used during the transfer **/ typedef VOID (EFIAPI *ASM_TRANSFER_CONTROL) ( IN UINT32 S3WakingVector, IN UINT32 AcpiLowMemoryBase ); /** Restores the platform to its preboot configuration for an S3 resume and jumps to the OS waking vector. This function will restore the platform to its pre-boot configuration that was pre-stored in the boot script table and transfer control to OS waking vector. Upon invocation, this function is responsible for locating the following information before jumping to OS waking vector: - ACPI tables - boot script table - any other information that it needs The S3RestoreConfig() function then executes the pre-stored boot script table and transitions the platform to the pre-boot state. The boot script is recorded during regular boot using the EFI_S3_SAVE_STATE_PROTOCOL.Write() and EFI_S3_SMM_SAVE_STATE_PROTOCOL.Write() functions. Finally, this function transfers control to the OS waking vector. If the OS supports only a real-mode waking vector, this function will switch from flat mode to real mode before jumping to the waking vector. If all platform pre-boot configurations are successfully restored and all other necessary information is ready, this function will never return and instead will directly jump to the OS waking vector. If this function returns, it indicates that the attempt to resume from the ACPI S3 sleep state failed. @param[in] This Pointer to this instance of the PEI_S3_RESUME_PPI @retval EFI_ABORTED Execution of the S3 resume boot script table failed. @retval EFI_NOT_FOUND Some necessary information that is used for the S3 resume boot path could not be located. **/ EFI_STATUS EFIAPI S3RestoreConfig2 ( IN EFI_PEI_S3_RESUME2_PPI *This ); /** Set data segment selectors value including DS/ES/FS/GS/SS. @param[in] SelectorValue Segment selector value to be set. **/ VOID EFIAPI AsmSetDataSelectors ( IN UINT16 SelectorValue ); // // Globals // EFI_PEI_S3_RESUME2_PPI mS3ResumePpi = { S3RestoreConfig2 }; EFI_PEI_PPI_DESCRIPTOR mPpiList = { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiPeiS3Resume2PpiGuid, &mS3ResumePpi }; EFI_PEI_PPI_DESCRIPTOR mPpiListPostScriptTable = { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gPeiPostScriptTablePpiGuid, 0 }; EFI_PEI_PPI_DESCRIPTOR mPpiListEndOfPeiTable = { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiEndOfPeiSignalPpiGuid, 0 }; // // Global Descriptor Table (GDT) // GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT mGdtEntries[] = { /* selector { Global Segment Descriptor } */ /* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, /* 0x08 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, /* 0x10 */ {{0xFFFF, 0, 0, 0xB, 1, 0, 1, 0xF, 0, 0, 1, 1, 0}}, /* 0x18 */ {{0xFFFF, 0, 0, 0x3, 1, 0, 1, 0xF, 0, 0, 1, 1, 0}}, /* 0x20 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, /* 0x28 */ {{0xFFFF, 0, 0, 0xB, 1, 0, 1, 0xF, 0, 0, 0, 1, 0}}, /* 0x30 */ {{0xFFFF, 0, 0, 0x3, 1, 0, 1, 0xF, 0, 0, 0, 1, 0}}, /* 0x38 */ {{0xFFFF, 0, 0, 0xB, 1, 0, 1, 0xF, 0, 1, 0, 1, 0}}, /* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, }; #define DATA_SEGEMENT_SELECTOR 0x18 // // IA32 Gdt register // GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR mGdt = { sizeof (mGdtEntries) - 1, (UINTN) mGdtEntries }; /** Performance measure function to get S3 detailed performance data. This function will getS3 detailed performance data and saved in pre-reserved ACPI memory. **/ VOID WriteToOsS3PerformanceData ( VOID ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS mAcpiLowMemoryBase; PERF_HEADER *PerfHeader; PERF_DATA *PerfData; UINT64 Ticker; UINTN Index; EFI_PEI_READ_ONLY_VARIABLE2_PPI *VariableServices; UINTN VarSize; UINTN LogEntryKey; CONST VOID *Handle; CONST CHAR8 *Token; CONST CHAR8 *Module; UINT64 StartTicker; UINT64 EndTicker; UINT64 StartValue; UINT64 EndValue; BOOLEAN CountUp; UINT64 Freq; // // Retrive time stamp count as early as possilbe // Ticker = GetPerformanceCounter (); Freq = GetPerformanceCounterProperties (&StartValue, &EndValue); Freq = DivU64x32 (Freq, 1000); Status = PeiServicesLocatePpi ( &gEfiPeiReadOnlyVariable2PpiGuid, 0, NULL, (VOID **) &VariableServices ); if (EFI_ERROR (Status)) { return; } VarSize = sizeof (EFI_PHYSICAL_ADDRESS); Status = VariableServices->GetVariable ( VariableServices, L"PerfDataMemAddr", &gPerformanceProtocolGuid, NULL, &VarSize, &mAcpiLowMemoryBase ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Fail to retrieve variable to log S3 performance data \n")); return; } PerfHeader = (PERF_HEADER *) (UINTN) mAcpiLowMemoryBase; if (PerfHeader->Signiture != PERFORMANCE_SIGNATURE) { DEBUG ((EFI_D_ERROR, "Performance data in ACPI memory get corrupted! \n")); return; } // // Record total S3 resume time. // if (EndValue >= StartValue) { PerfHeader->S3Resume = Ticker - StartValue; CountUp = TRUE; } else { PerfHeader->S3Resume = StartValue - Ticker; CountUp = FALSE; } // // Get S3 detailed performance data // Index = 0; LogEntryKey = 0; while ((LogEntryKey = GetPerformanceMeasurement ( LogEntryKey, &Handle, &Token, &Module, &StartTicker, &EndTicker)) != 0) { if (EndTicker != 0) { PerfData = &PerfHeader->S3Entry[Index]; // // Use File Handle to specify the different performance log for PEIM. // File Handle is the base address of PEIM FFS file. // if ((AsciiStrnCmp (Token, "PEIM", PEI_PERFORMANCE_STRING_SIZE) == 0) && (Handle != NULL)) { AsciiSPrint (PerfData->Token, PERF_TOKEN_LENGTH, "0x%11p", Handle); } else { AsciiStrnCpy (PerfData->Token, Token, PERF_TOKEN_LENGTH); } if (StartTicker == 1) { StartTicker = StartValue; } if (EndTicker == 1) { EndTicker = StartValue; } Ticker = CountUp? (EndTicker - StartTicker) : (StartTicker - EndTicker); PerfData->Duration = (UINT32) DivU64x32 (Ticker, (UINT32) Freq); // // Only Record > 1ms performance data so that more big performance can be recorded. // if ((Ticker > Freq) && (++Index >= PERF_PEI_ENTRY_MAX_NUM)) { // // Reach the maximum number of PEI performance log entries. // break; } } } PerfHeader->S3EntryNum = (UINT32) Index; } /** The function will check if current waking vector is long mode. @param AcpiS3Context a pointer to a structure of ACPI_S3_CONTEXT @retval TRUE Current context need long mode waking vector. @retval FALSE Current context need not long mode waking vector. **/ BOOLEAN IsLongModeWakingVector ( IN ACPI_S3_CONTEXT *AcpiS3Context ) { EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs; Facs = (EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *) ((UINTN) (AcpiS3Context->AcpiFacsTable)); if ((Facs == NULL) || (Facs->Signature != EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_SIGNATURE) || ((Facs->FirmwareWakingVector == 0) && (Facs->XFirmwareWakingVector == 0)) ) { // Something wrong with FACS return FALSE; } if (Facs->XFirmwareWakingVector != 0) { if ((Facs->Version == EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION) && ((Facs->Flags & EFI_ACPI_4_0_64BIT_WAKE_SUPPORTED_F) != 0) && ((Facs->Flags & EFI_ACPI_4_0_OSPM_64BIT_WAKE__F) != 0)) { // Both BIOS and OS wants 64bit vector if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { return TRUE; } } } return FALSE; } /** Jump to OS waking vector. The function will install boot script done PPI, report S3 resume status code, and then jump to OS waking vector. @param AcpiS3Context a pointer to a structure of ACPI_S3_CONTEXT @param PeiS3ResumeState a pointer to a structure of PEI_S3_RESUME_STATE **/ VOID EFIAPI S3ResumeBootOs ( IN ACPI_S3_CONTEXT *AcpiS3Context, IN PEI_S3_RESUME_STATE *PeiS3ResumeState ) { EFI_STATUS Status; EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs; ASM_TRANSFER_CONTROL AsmTransferControl; UINTN TempStackTop; UINTN TempStack[0x10]; // // Restore IDT // AsmWriteIdtr (&PeiS3ResumeState->Idtr); // // NOTE: Because Debug Timer interrupt and system interrupts will be disabled // in BootScriptExecuteDxe, the rest code in S3ResumeBootOs() cannot be halted // by soft debugger. // PERF_END (NULL, "ScriptExec", NULL, 0); // // Install BootScriptDonePpi // Status = PeiServicesInstallPpi (&mPpiListPostScriptTable); ASSERT_EFI_ERROR (Status); // // Get ACPI Table Address // Facs = (EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *) ((UINTN) (AcpiS3Context->AcpiFacsTable)); if ((Facs == NULL) || (Facs->Signature != EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_SIGNATURE) || ((Facs->FirmwareWakingVector == 0) && (Facs->XFirmwareWakingVector == 0)) ) { CpuDeadLoop (); return ; } // // Install EndOfPeiPpi // Status = PeiServicesInstallPpi (&mPpiListEndOfPeiTable); ASSERT_EFI_ERROR (Status); // // report status code on S3 resume // REPORT_STATUS_CODE (EFI_PROGRESS_CODE, EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_PC_OS_WAKE); PERF_CODE ( WriteToOsS3PerformanceData (); ); AsmTransferControl = (ASM_TRANSFER_CONTROL)(UINTN)PeiS3ResumeState->AsmTransferControl; if (Facs->XFirmwareWakingVector != 0) { // // Switch to native waking vector // TempStackTop = (UINTN)&TempStack + sizeof(TempStack); if ((Facs->Version == EFI_ACPI_4_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_VERSION) && ((Facs->Flags & EFI_ACPI_4_0_64BIT_WAKE_SUPPORTED_F) != 0) && ((Facs->Flags & EFI_ACPI_4_0_OSPM_64BIT_WAKE__F) != 0)) { // // X64 long mode waking vector // DEBUG (( EFI_D_ERROR, "Transfer to 64bit OS waking vector - %x\r\n", (UINTN)Facs->XFirmwareWakingVector)); if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { AsmEnablePaging64 ( 0x38, Facs->XFirmwareWakingVector, 0, 0, (UINT64)(UINTN)TempStackTop ); } else { DEBUG (( EFI_D_ERROR, "Unsupported for 32bit DXE transfer to 64bit OS waking vector!\r\n")); ASSERT (FALSE); } } else { // // IA32 protected mode waking vector (Page disabled) // DEBUG (( EFI_D_ERROR, "Transfer to 32bit OS waking vector - %x\r\n", (UINTN)Facs->XFirmwareWakingVector)); SwitchStack ( (SWITCH_STACK_ENTRY_POINT) (UINTN) Facs->XFirmwareWakingVector, NULL, NULL, (VOID *)(UINTN)TempStackTop ); } } else { // // 16bit Realmode waking vector // DEBUG (( EFI_D_ERROR, "Transfer to 16bit OS waking vector - %x\r\n", (UINTN)Facs->FirmwareWakingVector)); AsmTransferControl (Facs->FirmwareWakingVector, 0x0); } // // Never run to here // CpuDeadLoop(); } /** Restore S3 page table because we do not trust ACPINvs content. If BootScriptExector driver will not run in 64-bit mode, this function will do nothing. @param S3NvsPageTableAddress PageTableAddress in ACPINvs @param Build4GPageTableOnly If BIOS just build 4G page table only **/ VOID RestoreS3PageTables ( IN UINTN S3NvsPageTableAddress, IN BOOLEAN Build4GPageTableOnly ) { if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { UINT32 RegEax; UINT32 RegEdx; UINT8 PhysicalAddressBits; EFI_PHYSICAL_ADDRESS PageAddress; UINTN IndexOfPml4Entries; UINTN IndexOfPdpEntries; UINTN IndexOfPageDirectoryEntries; UINT32 NumberOfPml4EntriesNeeded; UINT32 NumberOfPdpEntriesNeeded; PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry; PAGE_MAP_AND_DIRECTORY_POINTER *PageMap; PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry; PAGE_TABLE_ENTRY *PageDirectoryEntry; VOID *Hob; BOOLEAN Page1GSupport; PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry; // // NOTE: We have to ASSUME the page table generation format, because we do not know whole page table information. // The whole page table is too large to be saved in SMRAM. // // The assumption is : whole page table is allocated in CONTINOUS memory and CR3 points to TOP page. // DEBUG ((EFI_D_ERROR, "S3NvsPageTableAddress - %x (%x)\n", (UINTN)S3NvsPageTableAddress, (UINTN)Build4GPageTableOnly)); // // By architecture only one PageMapLevel4 exists - so lets allocate storgage for it. // PageMap = (PAGE_MAP_AND_DIRECTORY_POINTER *)S3NvsPageTableAddress; S3NvsPageTableAddress += SIZE_4KB; Page1GSupport = FALSE; if (PcdGetBool(PcdUse1GPageTable)) { AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000001) { AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT26) != 0) { Page1GSupport = TRUE; } } } // // Get physical address bits supported. // Hob = GetFirstHob (EFI_HOB_TYPE_CPU); if (Hob != NULL) { PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace; } else { AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000008) { AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL); PhysicalAddressBits = (UINT8) RegEax; } else { PhysicalAddressBits = 36; } } // // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses. // ASSERT (PhysicalAddressBits <= 52); if (PhysicalAddressBits > 48) { PhysicalAddressBits = 48; } // // NOTE: In order to save time to create full page table, we just create 4G page table by default. // And let PF handler in BootScript driver to create more on request. // if (Build4GPageTableOnly) { PhysicalAddressBits = 32; ZeroMem (PageMap, EFI_PAGES_TO_SIZE(2)); } // // Calculate the table entries needed. // if (PhysicalAddressBits <= 39) { NumberOfPml4EntriesNeeded = 1; NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30)); } else { NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39)); NumberOfPdpEntriesNeeded = 512; } PageMapLevel4Entry = PageMap; PageAddress = 0; for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) { // // Each PML4 entry points to a page of Page Directory Pointer entires. // So lets allocate space for them and fill them in in the IndexOfPdpEntries loop. // PageDirectoryPointerEntry = (PAGE_MAP_AND_DIRECTORY_POINTER *)S3NvsPageTableAddress; S3NvsPageTableAddress += SIZE_4KB; // // Make a PML4 Entry // PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry; PageMapLevel4Entry->Bits.ReadWrite = 1; PageMapLevel4Entry->Bits.Present = 1; if (Page1GSupport) { PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry; for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) { // // Fill in the Page Directory entries // PageDirectory1GEntry->Uint64 = (UINT64)PageAddress; PageDirectory1GEntry->Bits.ReadWrite = 1; PageDirectory1GEntry->Bits.Present = 1; PageDirectory1GEntry->Bits.MustBe1 = 1; } } else { for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) { // // Each Directory Pointer entries points to a page of Page Directory entires. // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop. // PageDirectoryEntry = (PAGE_TABLE_ENTRY *)S3NvsPageTableAddress; S3NvsPageTableAddress += SIZE_4KB; // // Fill in a Page Directory Pointer Entries // PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry; PageDirectoryPointerEntry->Bits.ReadWrite = 1; PageDirectoryPointerEntry->Bits.Present = 1; for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) { // // Fill in the Page Directory entries // PageDirectoryEntry->Uint64 = (UINT64)PageAddress; PageDirectoryEntry->Bits.ReadWrite = 1; PageDirectoryEntry->Bits.Present = 1; PageDirectoryEntry->Bits.MustBe1 = 1; } } } } return ; } else { // // If DXE is running 32-bit mode, no need to establish page table. // return ; } } /** Jump to boot script executor driver. The function will close and lock SMRAM and then jump to boot script execute driver to executing S3 boot script table. @param AcpiS3Context a pointer to a structure of ACPI_S3_CONTEXT @param EfiBootScriptExecutorVariable The function entry to executing S3 boot Script table. This function is build in boot script execute driver **/ VOID EFIAPI S3ResumeExecuteBootScript ( IN ACPI_S3_CONTEXT *AcpiS3Context, IN BOOT_SCRIPT_EXECUTOR_VARIABLE *EfiBootScriptExecutorVariable ) { EFI_STATUS Status; PEI_SMM_ACCESS_PPI *SmmAccess; UINTN Index; VOID *GuidHob; IA32_DESCRIPTOR *IdtDescriptor; VOID *IdtBuffer; PEI_S3_RESUME_STATE *PeiS3ResumeState; BOOLEAN InterruptStatus; DEBUG ((EFI_D_ERROR, "S3ResumeExecuteBootScript()\n")); // // Attempt to use content from SMRAM first // GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid); if (GuidHob != NULL) { // // Last step for SMM - send SMI for initialization // // // Send SMI to APs // SendSmiIpiAllExcludingSelf (); // // Send SMI to BSP // SendSmiIpi (GetApicId ()); Status = PeiServicesLocatePpi ( &gPeiSmmAccessPpiGuid, 0, NULL, (VOID **) &SmmAccess ); if (!EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Close all SMRAM regions before executing boot script\n")); for (Index = 0, Status = EFI_SUCCESS; !EFI_ERROR (Status); Index++) { Status = SmmAccess->Close ((EFI_PEI_SERVICES **)GetPeiServicesTablePointer (), SmmAccess, Index); } DEBUG ((EFI_D_ERROR, "Lock all SMRAM regions before executing boot script\n")); for (Index = 0, Status = EFI_SUCCESS; !EFI_ERROR (Status); Index++) { Status = SmmAccess->Lock ((EFI_PEI_SERVICES **)GetPeiServicesTablePointer (), SmmAccess, Index); } } } if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { AsmWriteCr3 ((UINTN)AcpiS3Context->S3NvsPageTableAddress); } if (FeaturePcdGet (PcdFrameworkCompatibilitySupport)) { // // On some platform, such as ECP, a dispatch node in boot script table may execute a 32-bit PEIM which may need PeiServices // pointer. So PeiServices need preserve in (IDTBase- sizeof (UINTN)). // IdtDescriptor = (IA32_DESCRIPTOR *) (UINTN) (AcpiS3Context->IdtrProfile); // // Make sure the newly allcated IDT align with 16-bytes // IdtBuffer = AllocatePages (EFI_SIZE_TO_PAGES((IdtDescriptor->Limit + 1) + 16)); ASSERT (IdtBuffer != NULL); // // Additional 16 bytes allocated to save IA32 IDT descriptor and Pei Service Table Pointer // IA32 IDT descriptor will be used to setup IA32 IDT table for 32-bit Framework Boot Script code // ZeroMem (IdtBuffer, 16); AsmReadIdtr ((IA32_DESCRIPTOR *)IdtBuffer); CopyMem ((VOID*)((UINT8*)IdtBuffer + 16),(VOID*)(IdtDescriptor->Base), (IdtDescriptor->Limit + 1)); IdtDescriptor->Base = (UINTN)((UINT8*)IdtBuffer + 16); *(UINTN*)(IdtDescriptor->Base - sizeof(UINTN)) = (UINTN)GetPeiServicesTablePointer (); } InterruptStatus = SaveAndDisableInterrupts (); // // Need to make sure the GDT is loaded with values that support long mode and real mode. // AsmWriteGdtr (&mGdt); // // update segment selectors per the new GDT. // AsmSetDataSelectors (DATA_SEGEMENT_SELECTOR); // // Restore interrupt state. // SetInterruptState (InterruptStatus); // // Prepare data for return back // PeiS3ResumeState = AllocatePool (sizeof(*PeiS3ResumeState)); ASSERT (PeiS3ResumeState != NULL); DEBUG (( EFI_D_ERROR, "PeiS3ResumeState - %x\r\n", PeiS3ResumeState)); PeiS3ResumeState->ReturnCs = 0x10; PeiS3ResumeState->ReturnEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)S3ResumeBootOs; PeiS3ResumeState->ReturnStackPointer = (EFI_PHYSICAL_ADDRESS)(UINTN)&Status; // // Save IDT // AsmReadIdtr (&PeiS3ResumeState->Idtr); PERF_START (NULL, "ScriptExec", NULL, 0); if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { // // X64 S3 Resume // DEBUG (( EFI_D_ERROR, "Enable X64 and transfer control to Standalone Boot Script Executor\r\n")); // // Switch to long mode to complete resume. // AsmEnablePaging64 ( 0x38, EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint, (UINT64)(UINTN)AcpiS3Context, (UINT64)(UINTN)PeiS3ResumeState, (UINT64)(UINTN)(AcpiS3Context->BootScriptStackBase + AcpiS3Context->BootScriptStackSize) ); } else { // // IA32 S3 Resume // DEBUG (( EFI_D_ERROR, "transfer control to Standalone Boot Script Executor\r\n")); SwitchStack ( (SWITCH_STACK_ENTRY_POINT) (UINTN) EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint, (VOID *)AcpiS3Context, (VOID *)PeiS3ResumeState, (VOID *)(UINTN)(AcpiS3Context->BootScriptStackBase + AcpiS3Context->BootScriptStackSize) ); } // // Never run to here // CpuDeadLoop(); } /** Restores the platform to its preboot configuration for an S3 resume and jumps to the OS waking vector. This function will restore the platform to its pre-boot configuration that was pre-stored in the boot script table and transfer control to OS waking vector. Upon invocation, this function is responsible for locating the following information before jumping to OS waking vector: - ACPI tables - boot script table - any other information that it needs The S3RestoreConfig() function then executes the pre-stored boot script table and transitions the platform to the pre-boot state. The boot script is recorded during regular boot using the EFI_S3_SAVE_STATE_PROTOCOL.Write() and EFI_S3_SMM_SAVE_STATE_PROTOCOL.Write() functions. Finally, this function transfers control to the OS waking vector. If the OS supports only a real-mode waking vector, this function will switch from flat mode to real mode before jumping to the waking vector. If all platform pre-boot configurations are successfully restored and all other necessary information is ready, this function will never return and instead will directly jump to the OS waking vector. If this function returns, it indicates that the attempt to resume from the ACPI S3 sleep state failed. @param[in] This Pointer to this instance of the PEI_S3_RESUME_PPI @retval EFI_ABORTED Execution of the S3 resume boot script table failed. @retval EFI_NOT_FOUND Some necessary information that is used for the S3 resume boot path could not be located. **/ EFI_STATUS EFIAPI S3RestoreConfig2 ( IN EFI_PEI_S3_RESUME2_PPI *This ) { EFI_STATUS Status; PEI_SMM_ACCESS_PPI *SmmAccess; UINTN Index; ACPI_S3_CONTEXT *AcpiS3Context; EFI_PHYSICAL_ADDRESS TempEfiBootScriptExecutorVariable; EFI_PHYSICAL_ADDRESS TempAcpiS3Context; BOOT_SCRIPT_EXECUTOR_VARIABLE *EfiBootScriptExecutorVariable; UINTN VarSize; EFI_SMRAM_DESCRIPTOR *SmramDescriptor; SMM_S3_RESUME_STATE *SmmS3ResumeState; VOID *GuidHob; BOOLEAN Build4GPageTableOnly; BOOLEAN InterruptStatus; TempAcpiS3Context = 0; TempEfiBootScriptExecutorVariable = 0; DEBUG ((EFI_D_ERROR, "Enter S3 PEIM\r\n")); VarSize = sizeof (EFI_PHYSICAL_ADDRESS); Status = RestoreLockBox ( &gEfiAcpiVariableGuid, &TempAcpiS3Context, &VarSize ); ASSERT_EFI_ERROR (Status); Status = RestoreLockBox ( &gEfiAcpiS3ContextGuid, NULL, NULL ); ASSERT_EFI_ERROR (Status); AcpiS3Context = (ACPI_S3_CONTEXT *)(UINTN)TempAcpiS3Context; ASSERT (AcpiS3Context != NULL); VarSize = sizeof (EFI_PHYSICAL_ADDRESS); Status = RestoreLockBox ( &gEfiBootScriptExecutorVariableGuid, &TempEfiBootScriptExecutorVariable, &VarSize ); ASSERT_EFI_ERROR (Status); Status = RestoreLockBox ( &gEfiBootScriptExecutorContextGuid, NULL, NULL ); ASSERT_EFI_ERROR (Status); EfiBootScriptExecutorVariable = (BOOT_SCRIPT_EXECUTOR_VARIABLE *) (UINTN) TempEfiBootScriptExecutorVariable; ASSERT (EfiBootScriptExecutorVariable != NULL); DEBUG (( EFI_D_ERROR, "AcpiS3Context = %x\n", AcpiS3Context)); DEBUG (( EFI_D_ERROR, "Waking Vector = %x\n", ((EFI_ACPI_2_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *) ((UINTN) (AcpiS3Context->AcpiFacsTable)))->FirmwareWakingVector)); DEBUG (( EFI_D_ERROR, "AcpiS3Context->AcpiFacsTable = %x\n", AcpiS3Context->AcpiFacsTable)); DEBUG (( EFI_D_ERROR, "AcpiS3Context->S3NvsPageTableAddress = %x\n", AcpiS3Context->S3NvsPageTableAddress)); DEBUG (( EFI_D_ERROR, "AcpiS3Context->S3DebugBufferAddress = %x\n", AcpiS3Context->S3DebugBufferAddress)); DEBUG (( EFI_D_ERROR, "EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint = %x\n", EfiBootScriptExecutorVariable->BootScriptExecutorEntrypoint)); // // Additional step for BootScript integrity - we only handle BootScript and BootScriptExecutor. // Script dispatch image and context (parameter) are handled by platform. // We just use restore all lock box in place, no need restore one by one. // Status = RestoreAllLockBoxInPlace (); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { // Something wrong CpuDeadLoop (); } if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { // // Need reconstruct page table here, since we do not trust ACPINvs. // if (IsLongModeWakingVector (AcpiS3Context)) { Build4GPageTableOnly = FALSE; } else { Build4GPageTableOnly = TRUE; } RestoreS3PageTables ((UINTN)AcpiS3Context->S3NvsPageTableAddress, Build4GPageTableOnly); } // // Attempt to use content from SMRAM first // GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid); if (GuidHob != NULL) { Status = PeiServicesLocatePpi ( &gPeiSmmAccessPpiGuid, 0, NULL, (VOID **) &SmmAccess ); for (Index = 0; !EFI_ERROR (Status); Index++) { Status = SmmAccess->Open ((EFI_PEI_SERVICES **)GetPeiServicesTablePointer (), SmmAccess, Index); } SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob); SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart; SmmS3ResumeState->ReturnCs = AsmReadCs (); SmmS3ResumeState->ReturnEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)S3ResumeExecuteBootScript; SmmS3ResumeState->ReturnContext1 = (EFI_PHYSICAL_ADDRESS)(UINTN)AcpiS3Context; SmmS3ResumeState->ReturnContext2 = (EFI_PHYSICAL_ADDRESS)(UINTN)EfiBootScriptExecutorVariable; SmmS3ResumeState->ReturnStackPointer = (EFI_PHYSICAL_ADDRESS)(UINTN)&Status; DEBUG (( EFI_D_ERROR, "SMM S3 Signature = %x\n", SmmS3ResumeState->Signature)); DEBUG (( EFI_D_ERROR, "SMM S3 Stack Base = %x\n", SmmS3ResumeState->SmmS3StackBase)); DEBUG (( EFI_D_ERROR, "SMM S3 Stack Size = %x\n", SmmS3ResumeState->SmmS3StackSize)); DEBUG (( EFI_D_ERROR, "SMM S3 Resume Entry Point = %x\n", SmmS3ResumeState->SmmS3ResumeEntryPoint)); DEBUG (( EFI_D_ERROR, "SMM S3 CR0 = %x\n", SmmS3ResumeState->SmmS3Cr0)); DEBUG (( EFI_D_ERROR, "SMM S3 CR3 = %x\n", SmmS3ResumeState->SmmS3Cr3)); DEBUG (( EFI_D_ERROR, "SMM S3 CR4 = %x\n", SmmS3ResumeState->SmmS3Cr4)); DEBUG (( EFI_D_ERROR, "SMM S3 Return CS = %x\n", SmmS3ResumeState->ReturnCs)); DEBUG (( EFI_D_ERROR, "SMM S3 Return Entry Point = %x\n", SmmS3ResumeState->ReturnEntryPoint)); DEBUG (( EFI_D_ERROR, "SMM S3 Return Context1 = %x\n", SmmS3ResumeState->ReturnContext1)); DEBUG (( EFI_D_ERROR, "SMM S3 Return Context2 = %x\n", SmmS3ResumeState->ReturnContext2)); DEBUG (( EFI_D_ERROR, "SMM S3 Return Stack Pointer = %x\n", SmmS3ResumeState->ReturnStackPointer)); DEBUG (( EFI_D_ERROR, "SMM S3 Smst = %x\n", SmmS3ResumeState->Smst)); if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) { SwitchStack ( (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->SmmS3ResumeEntryPoint, (VOID *)AcpiS3Context, 0, (VOID *)(UINTN)(SmmS3ResumeState->SmmS3StackBase + SmmS3ResumeState->SmmS3StackSize) ); } if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) { // // Switch to long mode to complete resume. // InterruptStatus = SaveAndDisableInterrupts (); // // Need to make sure the GDT is loaded with values that support long mode and real mode. // AsmWriteGdtr (&mGdt); // // update segment selectors per the new GDT. // AsmSetDataSelectors (DATA_SEGEMENT_SELECTOR); // // Restore interrupt state. // SetInterruptState (InterruptStatus); AsmWriteCr3 ((UINTN)SmmS3ResumeState->SmmS3Cr3); // // Disable interrupt of Debug timer, since IDT table cannot work in long mode. // NOTE: On x64 platforms, because DisablePaging64() will disable interrupts, // the code in S3ResumeExecuteBootScript() cannot be halted by soft debugger. // SaveAndSetDebugTimerInterrupt (FALSE); AsmEnablePaging64 ( 0x38, SmmS3ResumeState->SmmS3ResumeEntryPoint, (UINT64)(UINTN)AcpiS3Context, 0, SmmS3ResumeState->SmmS3StackBase + SmmS3ResumeState->SmmS3StackSize ); } } S3ResumeExecuteBootScript (AcpiS3Context, EfiBootScriptExecutorVariable ); return EFI_SUCCESS; } /** Main entry for S3 Resume PEIM. This routine is to install EFI_PEI_S3_RESUME2_PPI. @param FileHandle Handle of the file being invoked. @param PeiServices Pointer to PEI Services table. @retval EFI_SUCCESS S3Resume Ppi is installed successfully. **/ EFI_STATUS EFIAPI PeimS3ResumeEntryPoint ( IN EFI_PEI_FILE_HANDLE FileHandle, IN CONST EFI_PEI_SERVICES **PeiServices ) { EFI_STATUS Status; // // Install S3 Resume Ppi // Status = (**PeiServices).InstallPpi (PeiServices, &mPpiList); ASSERT_EFI_ERROR (Status); return EFI_SUCCESS; }