/*++ Copyright (c) 2006 - 2007 Intel Corporation. All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: SecMain.c Abstract: WinNt emulator of SEC phase. It's really a Posix application, but this is Ok since all the other modules for NT32 are NOT Posix applications. This program processes host environment variables and figures out what the memory layout will be, how may FD's will be loaded and also what the boot mode is. The SEC registers a set of services with the SEC core. gPrivateDispatchTable is a list of PPI's produced by the SEC that are availble for usage in PEI. This code produces 128 K of temporary memory for the PEI stack by opening a host file and mapping it directly to memory addresses. The system.cmd script is used to set host environment variables that drive the configuration opitons of the SEC. --*/ #include "SecMain.h" #include #include #include #include #include // // Globals // EFI_PEI_PE_COFF_LOADER_PROTOCOL_INSTANCE mPeiEfiPeiPeCoffLoaderInstance = { { SecNt32PeCoffGetImageInfo, SecNt32PeCoffLoadImage, SecNt32PeCoffRelocateImage, SecNt32PeCoffUnloadimage }, NULL }; EFI_PEI_PE_COFF_LOADER_PROTOCOL *gPeiEfiPeiPeCoffLoader = &mPeiEfiPeiPeCoffLoaderInstance.PeCoff; UNIX_PEI_LOAD_FILE_PPI mSecNtLoadFilePpi = { SecWinNtPeiLoadFile }; PEI_UNIX_AUTOSCAN_PPI mSecNtAutoScanPpi = { SecWinNtPeiAutoScan }; PEI_UNIX_THUNK_PPI mSecWinNtThunkPpi = { SecWinNtWinNtThunkAddress }; EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { SecPeiReportStatusCode }; UNIX_FWH_PPI mSecFwhInformationPpi = { SecWinNtFdAddress }; TEMPORARY_RAM_SUPPORT_PPI mSecTemporaryRamSupportPpi = {SecTemporaryRamSupport}; EFI_PEI_PPI_DESCRIPTOR gPrivateDispatchTable[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiPeiPeCoffLoaderGuid, NULL }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gUnixPeiLoadFilePpiGuid, &mSecNtLoadFilePpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gPeiUnixAutoScanPpiGuid, &mSecNtAutoScanPpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gPeiUnixThunkPpiGuid, &mSecWinNtThunkPpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiPeiStatusCodePpiGuid, &mSecStatusCodePpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiTemporaryRamSupportPpiGuid, &mSecTemporaryRamSupportPpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST, &gUnixFwhPpiGuid, &mSecFwhInformationPpi } }; // // Default information about where the FD is located. // This array gets filled in with information from EFI_FIRMWARE_VOLUMES // EFI_FIRMWARE_VOLUMES is a host environment variable set by system.cmd. // The number of array elements is allocated base on parsing // EFI_FIRMWARE_VOLUMES and the memory is never freed. // UINTN gFdInfoCount = 0; UNIX_FD_INFO *gFdInfo; // // Array that supports seperate memory rantes. // The memory ranges are set in system.cmd via the EFI_MEMORY_SIZE variable. // The number of array elements is allocated base on parsing // EFI_MEMORY_SIZE and the memory is never freed. // UINTN gSystemMemoryCount = 0; UNIX_SYSTEM_MEMORY *gSystemMemory; VOID EFIAPI SecSwitchStack ( UINT32 TemporaryMemoryBase, UINT32 PermenentMemoryBase ); STATIC EFI_PHYSICAL_ADDRESS * MapMemory ( INTN fd, UINT64 length, INTN prot, INTN flags); STATIC EFI_STATUS MapFile ( IN CHAR8 *FileName, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, OUT UINT64 *Length ); INTN EFIAPI main ( IN INTN Argc, IN CHAR8 **Argv, IN CHAR8 **Envp ) /*++ Routine Description: Main entry point to SEC for WinNt. This is a unix program Arguments: Argc - Number of command line arguments Argv - Array of command line argument strings Envp - Array of environmemt variable strings Returns: 0 - Normal exit 1 - Abnormal exit --*/ { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS InitialStackMemory; UINT64 InitialStackMemorySize; UINTN Index; UINTN Index1; UINTN Index2; UINTN PeiIndex; CHAR8 *FileName; BOOLEAN Done; VOID *PeiCoreFile; CHAR16 *MemorySizeStr; CHAR16 *FirmwareVolumesStr; UINTN *StackPointer; setbuf(stdout, 0); setbuf(stderr, 0); MemorySizeStr = (CHAR16 *) FixedPcdGetPtr (PcdUnixMemorySizeForSecMain); FirmwareVolumesStr = (CHAR16 *) FixedPcdGetPtr (PcdUnixFirmwareVolume); printf ("\nEDK SEC Main UNIX Emulation Environment from www.TianoCore.org\n"); // // Allocate space for gSystemMemory Array // gSystemMemoryCount = CountSeperatorsInString (MemorySizeStr, '!') + 1; gSystemMemory = calloc (gSystemMemoryCount, sizeof (UNIX_SYSTEM_MEMORY)); if (gSystemMemory == NULL) { printf ("ERROR : Can not allocate memory for system. Exiting.\n"); exit (1); } // // Allocate space for gSystemMemory Array // gFdInfoCount = CountSeperatorsInString (FirmwareVolumesStr, '!') + 1; gFdInfo = calloc (gFdInfoCount, sizeof (UNIX_FD_INFO)); if (gFdInfo == NULL) { printf ("ERROR : Can not allocate memory for fd info. Exiting.\n"); exit (1); } // // Setup Boot Mode. If BootModeStr == "" then BootMode = 0 (BOOT_WITH_FULL_CONFIGURATION) // printf (" BootMode 0x%02x\n", FixedPcdGet32 (PcdUnixBootMode)); // // Open up a 128K file to emulate temp memory for PEI. // on a real platform this would be SRAM, or using the cache as RAM. // Set InitialStackMemory to zero so WinNtOpenFile will allocate a new mapping // InitialStackMemorySize = STACK_SIZE; InitialStackMemory = (UINTN)MapMemory(0, (UINT32) InitialStackMemorySize, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE); if (InitialStackMemory == 0) { printf ("ERROR : Can not open SecStack Exiting\n"); exit (1); } printf (" SEC passing in %u KB of temp RAM at 0x%08lx to PEI\n", (UINTN)(InitialStackMemorySize / 1024), (unsigned long)InitialStackMemory); for (StackPointer = (UINTN*) (UINTN) InitialStackMemory; StackPointer < (UINTN*) ((UINTN) InitialStackMemory + (UINT64) InitialStackMemorySize); StackPointer ++) { *StackPointer = 0x5AA55AA5; } // // Open All the firmware volumes and remember the info in the gFdInfo global // FileName = (CHAR8 *)malloc (StrLen (FirmwareVolumesStr) + 1); if (FileName == NULL) { printf ("ERROR : Can not allocate memory for firmware volume string\n"); exit (1); } Index2 = 0; for (Done = FALSE, Index = 0, PeiIndex = 0, PeiCoreFile = NULL; FirmwareVolumesStr[Index2] != 0; Index++) { for (Index1 = 0; (FirmwareVolumesStr[Index2] != '!') && (FirmwareVolumesStr[Index2] != 0); Index2++) FileName[Index1++] = FirmwareVolumesStr[Index2]; if (FirmwareVolumesStr[Index2] == '!') Index2++; FileName[Index1] = '\0'; // // Open the FD and remmeber where it got mapped into our processes address space // Status = MapFile ( FileName, &gFdInfo[Index].Address, &gFdInfo[Index].Size ); if (EFI_ERROR (Status)) { printf ("ERROR : Can not open Firmware Device File %s (%x). Exiting.\n", FileName, Status); exit (1); } printf (" FD loaded from %s at 0x%08lx", FileName, (unsigned long)gFdInfo[Index].Address); if (PeiCoreFile == NULL) { // // Assume the beginning of the FD is an FV and look for the PEI Core. // Load the first one we find. // Status = SecFfsFindPeiCore ((EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) gFdInfo[Index].Address, &PeiCoreFile); if (!EFI_ERROR (Status)) { PeiIndex = Index; printf (" contains SEC Core"); } } printf ("\n"); } // // Calculate memory regions and store the information in the gSystemMemory // global for later use. The autosizing code will use this data to // map this memory into the SEC process memory space. // Index1 = 0; Index = 0; while (1) { UINTN val = 0; // // Save the size of the memory. // while (MemorySizeStr[Index1] >= '0' && MemorySizeStr[Index1] <= '9') { val = val * 10 + MemorySizeStr[Index1] - '0'; Index1++; } gSystemMemory[Index++].Size = val * 0x100000; if (MemorySizeStr[Index1] == 0) break; Index1++; } printf ("\n"); // // Hand off to PEI Core // SecLoadFromCore ((UINTN) InitialStackMemory, (UINTN) InitialStackMemorySize, (UINTN) gFdInfo[0].Address, PeiCoreFile); // // If we get here, then the PEI Core returned. This is an error as PEI should // always hand off to DXE. // printf ("ERROR : PEI Core returned\n"); exit (1); } EFI_PHYSICAL_ADDRESS * MapMemory ( INTN fd, UINT64 length, INTN prot, INTN flags) { STATIC UINTN base = 0x40000000; CONST UINTN align = (1 << 24); VOID *res = NULL; BOOLEAN isAligned = 0; // // Try to get an aligned block somewhere in the address space of this // process. // while((!isAligned) && (base != 0)) { res = mmap ((void *)base, length, prot, flags, fd, 0); if (res == MAP_FAILED) { return NULL; } if ((((UINTN)res) & ~(align-1)) == (UINTN)res) { isAligned=1; } else { munmap(res, length); base += align; } } return res; } EFI_STATUS MapFile ( IN CHAR8 *FileName, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, OUT UINT64 *Length ) /*++ Routine Description: Opens and memory maps a file using WinNt services. If BaseAddress is non zero the process will try and allocate the memory starting at BaseAddress. Arguments: FileName - The name of the file to open and map MapSize - The amount of the file to map in bytes CreationDisposition - The flags to pass to CreateFile(). Use to create new files for memory emulation, and exiting files for firmware volume emulation BaseAddress - The base address of the mapped file in the user address space. If passed in as NULL the a new memory region is used. If passed in as non NULL the request memory region is used for the mapping of the file into the process space. Length - The size of the mapped region in bytes Returns: EFI_SUCCESS - The file was opened and mapped. EFI_NOT_FOUND - FileName was not found in the current directory EFI_DEVICE_ERROR - An error occured attempting to map the opened file --*/ { int fd; VOID *res; UINTN FileSize; fd = open (FileName, O_RDONLY); if (fd < 0) return EFI_NOT_FOUND; FileSize = lseek (fd, 0, SEEK_END); #if 0 if (IsMain) { /* Read entry address. */ lseek (fd, FileSize - 0x20, SEEK_SET); if (read (fd, &EntryAddress, 4) != 4) { close (fd); return EFI_DEVICE_ERROR; } } #endif res = MapMemory(fd, FileSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE); close (fd); if (res == MAP_FAILED) return EFI_DEVICE_ERROR; *Length = (UINT64) FileSize; *BaseAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) res; return EFI_SUCCESS; } #define BYTES_PER_RECORD 512 EFI_STATUS EFIAPI SecPeiReportStatusCode ( IN EFI_PEI_SERVICES **PeiServices, IN EFI_STATUS_CODE_TYPE CodeType, IN EFI_STATUS_CODE_VALUE Value, IN UINT32 Instance, IN EFI_GUID * CallerId, IN EFI_STATUS_CODE_DATA * Data OPTIONAL ) /*++ Routine Description: This routine produces the ReportStatusCode PEI service. It's passed up to the PEI Core via a PPI. T This code currently uses the UNIX clib printf. This does not work the same way as the EFI Print (), as %t, %g, %s as Unicode are not supported. Arguments: (see EFI_PEI_REPORT_STATUS_CODE) Returns: EFI_SUCCESS - Always return success --*/ // TODO: PeiServices - add argument and description to function comment // TODO: CodeType - add argument and description to function comment // TODO: Value - add argument and description to function comment // TODO: Instance - add argument and description to function comment // TODO: CallerId - add argument and description to function comment // TODO: Data - add argument and description to function comment { CHAR8 *Format; VA_LIST Marker; CHAR8 PrintBuffer[BYTES_PER_RECORD * 2]; CHAR8 *Filename; CHAR8 *Description; UINT32 LineNumber; UINT32 ErrorLevel; if (Data == NULL) { } else if (ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) { // // Processes ASSERT () // printf ("ASSERT %s(%d): %s\n", Filename, LineNumber, Description); } else if (ReportStatusCodeExtractDebugInfo (Data, &ErrorLevel, &Marker, &Format)) { // // Process DEBUG () macro // AsciiVSPrint (PrintBuffer, BYTES_PER_RECORD, Format, Marker); printf (PrintBuffer); } return EFI_SUCCESS; } /** Transfers control to a function starting with a new stack. Transfers control to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return. If EntryPoint is NULL, then ASSERT(). If NewStack is NULL, then ASSERT(). @param EntryPoint A pointer to function to call with the new stack. @param Context1 A pointer to the context to pass into the EntryPoint function. @param Context2 A pointer to the context to pass into the EntryPoint function. @param NewStack A pointer to the new stack to use for the EntryPoint function. @param NewBsp A pointer to the new BSP for the EntryPoint on IPF. It's Reserved on other architectures. **/ VOID EFIAPI PeiSwitchStacks ( IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, OPTIONAL IN VOID *Context2, OPTIONAL IN VOID *Context3, OPTIONAL IN VOID *NewStack ) { BASE_LIBRARY_JUMP_BUFFER JumpBuffer; ASSERT (EntryPoint != NULL); ASSERT (NewStack != NULL); // // Stack should be aligned with CPU_STACK_ALIGNMENT // ASSERT (((UINTN)NewStack & (CPU_STACK_ALIGNMENT - 1)) == 0); JumpBuffer.Eip = (UINTN)EntryPoint; JumpBuffer.Esp = (UINTN)NewStack - sizeof (VOID*); JumpBuffer.Esp -= sizeof (Context1) + sizeof (Context2) + sizeof(Context3); ((VOID**)JumpBuffer.Esp)[1] = Context1; ((VOID**)JumpBuffer.Esp)[2] = Context2; ((VOID**)JumpBuffer.Esp)[3] = Context3; LongJump (&JumpBuffer, (UINTN)-1); // // InternalSwitchStack () will never return // ASSERT (FALSE); } VOID SecLoadFromCore ( IN UINTN LargestRegion, IN UINTN LargestRegionSize, IN UINTN BootFirmwareVolumeBase, IN VOID *PeiCorePe32File ) /*++ Routine Description: This is the service to load the PEI Core from the Firmware Volume Arguments: LargestRegion - Memory to use for PEI. LargestRegionSize - Size of Memory to use for PEI BootFirmwareVolumeBase - Start of the Boot FV PeiCorePe32File - PEI Core PE32 Returns: Success means control is transfered and thus we should never return --*/ { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS TopOfMemory; VOID *TopOfStack; UINT64 PeiCoreSize; EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint; EFI_PHYSICAL_ADDRESS PeiImageAddress; EFI_SEC_PEI_HAND_OFF *SecCoreData; UINTN PeiStackSize; // // Compute Top Of Memory for Stack and PEI Core Allocations // TopOfMemory = LargestRegion + LargestRegionSize; PeiStackSize = (UINTN)RShiftU64((UINT64)STACK_SIZE,1); // // |-----------| <---- TemporaryRamBase + TemporaryRamSize // | Heap | // | | // |-----------| <---- StackBase / PeiTemporaryMemoryBase // | | // | Stack | // |-----------| <---- TemporaryRamBase // TopOfStack = (VOID *)(LargestRegion + PeiStackSize); TopOfMemory = LargestRegion + PeiStackSize; // // Reservet space for storing PeiCore's parament in stack. // TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT); TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT); // // Patch value in dispatch table values // gPrivateDispatchTable[0].Ppi = gPeiEfiPeiPeCoffLoader; // // Bind this information into the SEC hand-off state // SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN) TopOfStack; SecCoreData->DataSize = sizeof(EFI_SEC_PEI_HAND_OFF); SecCoreData->BootFirmwareVolumeBase = (VOID*)BootFirmwareVolumeBase; SecCoreData->BootFirmwareVolumeSize = FixedPcdGet32(PcdUnixFirmwareFdSize); SecCoreData->TemporaryRamBase = (VOID*)(UINTN)LargestRegion; SecCoreData->TemporaryRamSize = STACK_SIZE; SecCoreData->StackBase = SecCoreData->TemporaryRamBase; SecCoreData->StackSize = PeiStackSize; SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + PeiStackSize); SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize; // // Load the PEI Core from a Firmware Volume // Status = SecWinNtPeiLoadFile ( PeiCorePe32File, &PeiImageAddress, &PeiCoreSize, &PeiCoreEntryPoint ); if (EFI_ERROR (Status)) { return ; } // // Transfer control to the PEI Core // PeiSwitchStacks ( (SWITCH_STACK_ENTRY_POINT) (UINTN) PeiCoreEntryPoint, SecCoreData, (VOID *) (UINTN) ((EFI_PEI_PPI_DESCRIPTOR *) &gPrivateDispatchTable), NULL, TopOfStack ); // // If we get here, then the PEI Core returned. This is an error // return ; } EFI_STATUS EFIAPI SecWinNtPeiAutoScan ( IN UINTN Index, OUT EFI_PHYSICAL_ADDRESS *MemoryBase, OUT UINT64 *MemorySize ) /*++ Routine Description: This service is called from Index == 0 until it returns EFI_UNSUPPORTED. It allows discontiguous memory regions to be supported by the emulator. It uses gSystemMemory[] and gSystemMemoryCount that were created by parsing the host environment variable EFI_MEMORY_SIZE. The size comes from the varaible and the address comes from the call to WinNtOpenFile. Arguments: Index - Which memory region to use MemoryBase - Return Base address of memory region MemorySize - Return size in bytes of the memory region Returns: EFI_SUCCESS - If memory region was mapped EFI_UNSUPPORTED - If Index is not supported --*/ { void *res; if (Index >= gSystemMemoryCount) { return EFI_UNSUPPORTED; } *MemoryBase = 0; res = MapMemory(0, gSystemMemory[Index].Size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS); if (res == MAP_FAILED) return EFI_DEVICE_ERROR; *MemorySize = gSystemMemory[Index].Size; *MemoryBase = (UINTN)res; gSystemMemory[Index].Memory = *MemoryBase; return EFI_SUCCESS; } VOID * EFIAPI SecWinNtWinNtThunkAddress ( VOID ) /*++ Routine Description: Since the SEC is the only Unix program in stack it must export an interface to do Win API calls. That's what the WinNtThunk address is for. gWinNt is initailized in WinNtThunk.c. Arguments: InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL); InterfaceBase - Address of the gWinNt global Returns: EFI_SUCCESS - Data returned --*/ { return gUnix; } EFI_STATUS EFIAPI SecWinNtPeiLoadFile ( IN VOID *Pe32Data, IN EFI_PHYSICAL_ADDRESS *ImageAddress, IN UINT64 *ImageSize, IN EFI_PHYSICAL_ADDRESS *EntryPoint ) /*++ Routine Description: Loads and relocates a PE/COFF image into memory. Arguments: Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated ImageAddress - The base address of the relocated PE/COFF image ImageSize - The size of the relocated PE/COFF image EntryPoint - The entry point of the relocated PE/COFF image Returns: EFI_SUCCESS - The file was loaded and relocated EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file --*/ { EFI_STATUS Status; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; ZeroMem (&ImageContext, sizeof (ImageContext)); ImageContext.Handle = Pe32Data; ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead; Status = gPeiEfiPeiPeCoffLoader->GetImageInfo (gPeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Allocate space in UNIX (not emulator) memory. Extra space is for alignment // ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) malloc ((UINTN) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2))); if (ImageContext.ImageAddress == 0) { return EFI_OUT_OF_RESOURCES; } // // Align buffer on section boundry // ImageContext.ImageAddress += ImageContext.SectionAlignment; ImageContext.ImageAddress &= ~(ImageContext.SectionAlignment - 1); Status = gPeiEfiPeiPeCoffLoader->LoadImage (gPeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } Status = gPeiEfiPeiPeCoffLoader->RelocateImage (gPeiEfiPeiPeCoffLoader, &ImageContext); if (EFI_ERROR (Status)) { return Status; } // // BugBug: Flush Instruction Cache Here when CPU Lib is ready // *ImageAddress = ImageContext.ImageAddress; *ImageSize = ImageContext.ImageSize; *EntryPoint = ImageContext.EntryPoint; return EFI_SUCCESS; } EFI_STATUS EFIAPI SecWinNtFdAddress ( IN UINTN Index, IN OUT EFI_PHYSICAL_ADDRESS *FdBase, IN OUT UINT64 *FdSize ) /*++ Routine Description: Return the FD Size and base address. Since the FD is loaded from a file into host memory only the SEC will know it's address. Arguments: Index - Which FD, starts at zero. FdSize - Size of the FD in bytes FdBase - Start address of the FD. Assume it points to an FV Header Returns: EFI_SUCCESS - Return the Base address and size of the FV EFI_UNSUPPORTED - Index does nto map to an FD in the system --*/ { if (Index >= gFdInfoCount) { return EFI_UNSUPPORTED; } *FdBase = gFdInfo[Index].Address; *FdSize = gFdInfo[Index].Size; if (*FdBase == 0 && *FdSize == 0) { return EFI_UNSUPPORTED; } return EFI_SUCCESS; } EFI_STATUS EFIAPI SecImageRead ( IN VOID *FileHandle, IN UINTN FileOffset, IN OUT UINTN *ReadSize, OUT VOID *Buffer ) /*++ Routine Description: Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file Arguments: FileHandle - The handle to the PE/COFF file FileOffset - The offset, in bytes, into the file to read ReadSize - The number of bytes to read from the file starting at FileOffset Buffer - A pointer to the buffer to read the data into. Returns: EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset --*/ { CHAR8 *Destination8; CHAR8 *Source8; UINTN Length; Destination8 = Buffer; Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset); Length = *ReadSize; while (Length--) { *(Destination8++) = *(Source8++); } return EFI_SUCCESS; } UINTN CountSeperatorsInString ( IN const CHAR16 *String, IN CHAR16 Seperator ) /*++ Routine Description: Count the number of seperators in String Arguments: String - String to process Seperator - Item to count Returns: Number of Seperator in String --*/ { UINTN Count; for (Count = 0; *String != '\0'; String++) { if (*String == Seperator) { Count++; } } return Count; } EFI_STATUS EFIAPI SecNt32PeCoffGetImageInfo ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { EFI_STATUS Status; Status = PeCoffLoaderGetImageInfo (ImageContext); if (EFI_ERROR (Status)) { return Status; } switch (ImageContext->ImageType) { case EFI_IMAGE_SUBSYSTEM_EFI_APPLICATION: ImageContext->ImageCodeMemoryType = EfiLoaderCode; ImageContext->ImageDataMemoryType = EfiLoaderData; break; case EFI_IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER: ImageContext->ImageCodeMemoryType = EfiBootServicesCode; ImageContext->ImageDataMemoryType = EfiBootServicesData; break; case EFI_IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER: case EFI_IMAGE_SUBSYSTEM_SAL_RUNTIME_DRIVER: ImageContext->ImageCodeMemoryType = EfiRuntimeServicesCode; ImageContext->ImageDataMemoryType = EfiRuntimeServicesData; break; default: ImageContext->ImageError = IMAGE_ERROR_INVALID_SUBSYSTEM; return RETURN_UNSUPPORTED; } return Status; } EFI_STATUS EFIAPI SecNt32PeCoffLoadImage ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { EFI_STATUS Status; Status = PeCoffLoaderLoadImage (ImageContext); return Status; } VOID SecUnixLoaderBreak ( VOID ) { } EFI_STATUS EFIAPI SecNt32PeCoffRelocateImage ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { void * Handle; void * Entry; EFI_STATUS Status; Handle = NULL; Entry = NULL; Status = PeCoffLoaderRelocateImage (ImageContext); fprintf (stderr, "Loading %s 0x%08lx - entry point 0x%08lx\n", ImageContext->PdbPointer, (unsigned long)ImageContext->ImageAddress, (unsigned long)ImageContext->EntryPoint); SecUnixLoaderBreak (); return Status; } EFI_STATUS EFIAPI SecNt32PeCoffUnloadimage ( IN EFI_PEI_PE_COFF_LOADER_PROTOCOL *This, IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { return EFI_SUCCESS; } VOID ModuleEntryPoint ( VOID ) { } EFI_STATUS EFIAPI SecTemporaryRamSupport ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase, IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase, IN UINTN CopySize ) { // // Migrate the whole temporary memory to permenent memory. // CopyMem ( (VOID*)(UINTN)PermanentMemoryBase, (VOID*)(UINTN)TemporaryMemoryBase, CopySize ); // // SecSwitchStack function must be invoked after the memory migration // immediatly, also we need fixup the stack change caused by new call into // permenent memory. // SecSwitchStack ( (UINT32) TemporaryMemoryBase, (UINT32) PermanentMemoryBase ); // // We need *not* fix the return address because currently, // The PeiCore is excuted in flash. // // // Simulate to invalid CAR, terminate CAR // //ZeroMem ((VOID*)(UINTN)TemporaryMemoryBase, CopySize); return EFI_SUCCESS; }