summaryrefslogtreecommitdiff
path: root/ArmPkg/Library/BdsLib/BdsLinuxFdt.c
blob: ae302aff8a5c67cd835cd4072e04bddbd282a3cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/** @file
*
*  Copyright (c) 2011-2013, ARM Limited. All rights reserved.
*
*  This program and the accompanying materials
*  are licensed and made available under the terms and conditions of the BSD License
*  which accompanies this distribution.  The full text of the license may be found at
*  http://opensource.org/licenses/bsd-license.php
*
*  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
*  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/

#include <Library/ArmSmcLib.h>
#include <Library/PcdLib.h>
#include <libfdt.h>

#include <IndustryStandard/ArmSmc.h>

#include "BdsInternal.h"
#include "BdsLinuxLoader.h"

#define ALIGN(x, a)     (((x) + ((a) - 1)) & ~((a) - 1))
#define PALIGN(p, a)    ((void *)(ALIGN((unsigned long)(p), (a))))
#define GET_CELL(p)     (p += 4, *((const UINT32 *)(p-4)))

STATIC
UINTN
cpu_to_fdtn (UINTN x) {
  if (sizeof (UINTN) == sizeof (UINT32)) {
    return cpu_to_fdt32 (x);
  } else {
    return cpu_to_fdt64 (x);
  }
}

typedef struct {
  UINTN   Base;
  UINTN   Size;
} FdtRegion;


STATIC
UINTN
IsPrintableString (
  IN CONST VOID* data,
  IN UINTN len
  )
{
  CONST CHAR8 *s = data;
  CONST CHAR8 *ss;

  // Zero length is not
  if (len == 0) {
    return 0;
  }

  // Must terminate with zero
  if (s[len - 1] != '\0') {
    return 0;
  }

  ss = s;
  while (*s/* && isprint(*s)*/) {
    s++;
  }

  // Not zero, or not done yet
  if (*s != '\0' || (s + 1 - ss) < len) {
    return 0;
  }

  return 1;
}

STATIC
VOID
PrintData (
  IN CONST CHAR8* data,
  IN UINTN len
  )
{
  UINTN i;
  CONST CHAR8 *p = data;

  // No data, don't print
  if (len == 0)
    return;

  if (IsPrintableString (data, len)) {
    Print(L" = \"%a\"", (const char *)data);
  } else if ((len % 4) == 0) {
    Print(L" = <");
    for (i = 0; i < len; i += 4) {
      Print(L"0x%08x%a", fdt32_to_cpu(GET_CELL(p)),i < (len - 4) ? " " : "");
    }
    Print(L">");
  } else {
    Print(L" = [");
    for (i = 0; i < len; i++)
      Print(L"%02x%a", *p++, i < len - 1 ? " " : "");
    Print(L"]");
  }
}

VOID
DebugDumpFdt (
  IN VOID*                FdtBlob
  )
{
  struct fdt_header *bph;
  UINT32 off_dt;
  UINT32 off_str;
  CONST CHAR8* p_struct;
  CONST CHAR8* p_strings;
  CONST CHAR8* p;
  CONST CHAR8* s;
  CONST CHAR8* t;
  UINT32 tag;
  UINTN sz;
  UINTN depth;
  UINTN shift;
  UINT32 version;

  {
    // Can 'memreserve' be printed by below code?
    INTN num = fdt_num_mem_rsv(FdtBlob);
    INTN i, err;
    UINT64 addr = 0,size = 0;

    for (i = 0; i < num; i++) {
      err = fdt_get_mem_rsv(FdtBlob, i, &addr, &size);
      if (err) {
        DEBUG((EFI_D_ERROR, "Error (%d) : Cannot get memreserve section (%d)\n", err, i));
      }
      else {
        Print(L"/memreserve/ \t0x%lx \t0x%lx;\n",addr,size);
      }
    }
  }

  depth = 0;
  shift = 4;

  bph = FdtBlob;
  off_dt = fdt32_to_cpu(bph->off_dt_struct);
  off_str = fdt32_to_cpu(bph->off_dt_strings);
  p_struct = (CONST CHAR8*)FdtBlob + off_dt;
  p_strings = (CONST CHAR8*)FdtBlob + off_str;
  version = fdt32_to_cpu(bph->version);

  p = p_struct;
  while ((tag = fdt32_to_cpu(GET_CELL(p))) != FDT_END) {
    if (tag == FDT_BEGIN_NODE) {
      s = p;
      p = PALIGN(p + AsciiStrLen (s) + 1, 4);

      if (*s == '\0')
              s = "/";

      Print(L"%*s%a {\n", depth * shift, L" ", s);

      depth++;
      continue;
    }

    if (tag == FDT_END_NODE) {
      depth--;

      Print(L"%*s};\n", depth * shift, L" ");
      continue;
    }

    if (tag == FDT_NOP) {
      Print(L"%*s// [NOP]\n", depth * shift, L" ");
      continue;
    }

    if (tag != FDT_PROP) {
      Print(L"%*s ** Unknown tag 0x%08x\n", depth * shift, L" ", tag);
      break;
    }
    sz = fdt32_to_cpu(GET_CELL(p));
    s = p_strings + fdt32_to_cpu(GET_CELL(p));
    if (version < 16 && sz >= 8)
            p = PALIGN(p, 8);
    t = p;

    p = PALIGN(p + sz, 4);

    Print(L"%*s%a", depth * shift, L" ", s);
    PrintData(t, sz);
    Print(L";\n");
  }
}

STATIC
BOOLEAN
IsLinuxReservedRegion (
  IN EFI_MEMORY_TYPE MemoryType
  )
{
  switch(MemoryType) {
  case EfiRuntimeServicesCode:
  case EfiRuntimeServicesData:
  case EfiUnusableMemory:
  case EfiACPIReclaimMemory:
  case EfiACPIMemoryNVS:
    return TRUE;
  default:
    return FALSE;
  }
}


STATIC
BOOLEAN
IsPsciSmcSupported (
  VOID
  )
{
  BOOLEAN               PsciSmcSupported;
  UINTN                 Rx;

  PsciSmcSupported = FALSE;

  // Check the SMC response to the Presence SMC
  Rx = ARM_SMC_ID_PRESENCE;
  ArmCallSmc (&Rx);
  if (Rx == 1) {
    // Check the SMC UID
    Rx = ARM_SMC_ID_UID;
    ArmCallSmc (&Rx);
    if (Rx == ARM_TRUSTZONE_UID_4LETTERID) {
      Rx = ARM_SMC_ID_UID + 1;
      ArmCallSmc (&Rx);
      if (Rx == ARM_TRUSTZONE_ARM_UID) {
        PsciSmcSupported = TRUE;
      }
    }
  }

  return PsciSmcSupported;
}


/**
** Relocate the FDT blob to a more appropriate location for the Linux kernel.
** This function will allocate memory for the relocated FDT blob.
**
** @retval EFI_SUCCESS on success.
** @retval EFI_OUT_OF_RESOURCES or EFI_INVALID_PARAMETER on failure.
*/
STATIC
EFI_STATUS
RelocateFdt (
  EFI_PHYSICAL_ADDRESS   OriginalFdt,
  UINTN                  OriginalFdtSize,
  EFI_PHYSICAL_ADDRESS   *RelocatedFdt,
  UINTN                  *RelocatedFdtSize,
  EFI_PHYSICAL_ADDRESS   *RelocatedFdtAlloc
  )
{
  EFI_STATUS            Status;
  INTN                  Error;
  UINT64                FdtAlignment;

  *RelocatedFdtSize = OriginalFdtSize + FDT_ADDITIONAL_ENTRIES_SIZE;

  // If FDT load address needs to be aligned, allocate more space.
  FdtAlignment = PcdGet32 (PcdArmLinuxFdtAlignment);
  if (FdtAlignment != 0) {
    *RelocatedFdtSize += FdtAlignment;
  }

  // Try below a watermark address.
  Status = EFI_NOT_FOUND;
  if (PcdGet32 (PcdArmLinuxFdtMaxOffset) != 0) {
    *RelocatedFdt = LINUX_FDT_MAX_OFFSET;
    Status = gBS->AllocatePages (AllocateMaxAddress, EfiBootServicesData,
                    EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
    if (EFI_ERROR (Status)) {
      DEBUG ((EFI_D_WARN, "Warning: Failed to load FDT below address 0x%lX (%r). Will try again at a random address anywhere.\n", *RelocatedFdt, Status));
    }
  }

  // Try anywhere there is available space.
  if (EFI_ERROR (Status)) {
    Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData,
                    EFI_SIZE_TO_PAGES (*RelocatedFdtSize), RelocatedFdt);
    if (EFI_ERROR (Status)) {
      ASSERT_EFI_ERROR (Status);
      return EFI_OUT_OF_RESOURCES;
    } else {
      DEBUG ((EFI_D_WARN, "WARNING: Loaded FDT at random address 0x%lX.\nWARNING: There is a risk of accidental overwriting by other code/data.\n", *RelocatedFdt));
    }
  }

  *RelocatedFdtAlloc = *RelocatedFdt;
  if (FdtAlignment != 0) {
    *RelocatedFdt = ALIGN (*RelocatedFdt, FdtAlignment);
  }

  // Load the Original FDT tree into the new region
  Error = fdt_open_into ((VOID*)(UINTN) OriginalFdt,
            (VOID*)(UINTN)(*RelocatedFdt), *RelocatedFdtSize);
  if (Error) {
    DEBUG ((EFI_D_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Error)));
    gBS->FreePages (*RelocatedFdtAlloc, EFI_SIZE_TO_PAGES (*RelocatedFdtSize));
    return EFI_INVALID_PARAMETER;
  }

  DEBUG_CODE_BEGIN();
    //DebugDumpFdt (fdt);
  DEBUG_CODE_END();

  return EFI_SUCCESS;
}


EFI_STATUS
PrepareFdt (
  IN     CONST CHAR8*         CommandLineArguments,
  IN     EFI_PHYSICAL_ADDRESS InitrdImage,
  IN     UINTN                InitrdImageSize,
  IN OUT EFI_PHYSICAL_ADDRESS *FdtBlobBase,
  IN OUT UINTN                *FdtBlobSize
  )
{
  EFI_STATUS            Status;
  EFI_PHYSICAL_ADDRESS  NewFdtBlobBase;
  EFI_PHYSICAL_ADDRESS  NewFdtBlobAllocation;
  UINTN                 NewFdtBlobSize;
  VOID*                 fdt;
  INTN                  err;
  INTN                  node;
  INTN                  cpu_node;
  INT32                 lenp;
  CONST VOID*           BootArg;
  CONST VOID*           Method;
  EFI_PHYSICAL_ADDRESS  InitrdImageStart;
  EFI_PHYSICAL_ADDRESS  InitrdImageEnd;
  FdtRegion             Region;
  UINTN                 Index;
  CHAR8                 Name[10];
  LIST_ENTRY            ResourceList;
  BDS_SYSTEM_MEMORY_RESOURCE  *Resource;
  ARM_PROCESSOR_TABLE   *ArmProcessorTable;
  ARM_CORE_INFO         *ArmCoreInfoTable;
  UINT32                MpId;
  UINT32                ClusterId;
  UINT32                CoreId;
  UINT64                CpuReleaseAddr;
  UINTN                 MemoryMapSize;
  EFI_MEMORY_DESCRIPTOR *MemoryMap;
  EFI_MEMORY_DESCRIPTOR *MemoryMapPtr;
  UINTN                 MapKey;
  UINTN                 DescriptorSize;
  UINT32                DescriptorVersion;
  UINTN                 Pages;
  BOOLEAN               PsciSmcSupported;
  UINTN                 OriginalFdtSize;
  BOOLEAN               CpusNodeExist;
  UINTN                 CoreMpId;
  UINTN                 Smc;

  NewFdtBlobAllocation = 0;

  //
  // Sanity checks on the original FDT blob.
  //
  err = fdt_check_header ((VOID*)(UINTN)(*FdtBlobBase));
  if (err != 0) {
    Print (L"ERROR: Device Tree header not valid (err:%d)\n", err);
    return EFI_INVALID_PARAMETER;
  }

  // The original FDT blob might have been loaded partially.
  // Check that it is not the case.
  OriginalFdtSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
  if (OriginalFdtSize > *FdtBlobSize) {
    Print (L"ERROR: Incomplete FDT. Only %d/%d bytes have been loaded.\n",
           *FdtBlobSize, OriginalFdtSize);
    return EFI_INVALID_PARAMETER;
  }

  //
  // Relocate the FDT to its final location.
  //
  Status = RelocateFdt (*FdtBlobBase, OriginalFdtSize,
             &NewFdtBlobBase, &NewFdtBlobSize, &NewFdtBlobAllocation);
  if (EFI_ERROR (Status)) {
    goto FAIL_RELOCATE_FDT;
  }

  //
  // Ensure the Power State Coordination Interface (PSCI) SMCs are there if supported
  //
  PsciSmcSupported = FALSE;
  if (FeaturePcdGet (PcdArmPsciSupport) == TRUE) {
    PsciSmcSupported = IsPsciSmcSupported();
    if (PsciSmcSupported == FALSE) {
      DEBUG ((EFI_D_ERROR, "Warning: The Power State Coordination Interface (PSCI) is not supported by your platform Trusted Firmware.\n"));
    }
  }

  fdt = (VOID*)(UINTN)NewFdtBlobBase;

  node = fdt_subnode_offset (fdt, 0, "chosen");
  if (node < 0) {
    // The 'chosen' node does not exist, create it
    node = fdt_add_subnode(fdt, 0, "chosen");
    if (node < 0) {
      DEBUG((EFI_D_ERROR,"Error on finding 'chosen' node\n"));
      Status = EFI_INVALID_PARAMETER;
      goto FAIL_COMPLETE_FDT;
    }
  }

  DEBUG_CODE_BEGIN();
    BootArg = fdt_getprop(fdt, node, "bootargs", &lenp);
    if (BootArg != NULL) {
      DEBUG((EFI_D_ERROR,"BootArg: %a\n",BootArg));
    }
  DEBUG_CODE_END();

  //
  // Set Linux CmdLine
  //
  if ((CommandLineArguments != NULL) && (AsciiStrLen (CommandLineArguments) > 0)) {
    err = fdt_setprop(fdt, node, "bootargs", CommandLineArguments, AsciiStrSize(CommandLineArguments));
    if (err) {
      DEBUG((EFI_D_ERROR,"Fail to set new 'bootarg' (err:%d)\n",err));
    }
  }

  //
  // Set Linux Initrd
  //
  if (InitrdImageSize != 0) {
    InitrdImageStart = cpu_to_fdt64 (InitrdImage);
    err = fdt_setprop(fdt, node, "linux,initrd-start", &InitrdImageStart, sizeof(EFI_PHYSICAL_ADDRESS));
    if (err) {
      DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err));
    }
    InitrdImageEnd = cpu_to_fdt64 (InitrdImage + InitrdImageSize);
    err = fdt_setprop(fdt, node, "linux,initrd-end", &InitrdImageEnd, sizeof(EFI_PHYSICAL_ADDRESS));
    if (err) {
      DEBUG((EFI_D_ERROR,"Fail to set new 'linux,initrd-start' (err:%d)\n",err));
    }
  }

  //
  // Set Physical memory setup if does not exist
  //
  node = fdt_subnode_offset(fdt, 0, "memory");
  if (node < 0) {
    // The 'memory' node does not exist, create it
    node = fdt_add_subnode(fdt, 0, "memory");
    if (node >= 0) {
      fdt_setprop_string(fdt, node, "name", "memory");
      fdt_setprop_string(fdt, node, "device_type", "memory");

      GetSystemMemoryResources (&ResourceList);
      Resource = (BDS_SYSTEM_MEMORY_RESOURCE*)ResourceList.ForwardLink;

      Region.Base = cpu_to_fdtn ((UINTN)Resource->PhysicalStart);
      Region.Size = cpu_to_fdtn ((UINTN)Resource->ResourceLength);

      err = fdt_setprop(fdt, node, "reg", &Region, sizeof(Region));
      if (err) {
        DEBUG((EFI_D_ERROR,"Fail to set new 'memory region' (err:%d)\n",err));
      }
    }
  }

  //
  // Add the memory regions reserved by the UEFI Firmware
  //

  // Retrieve the UEFI Memory Map
  MemoryMap = NULL;
  MemoryMapSize = 0;
  Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
  if (Status == EFI_BUFFER_TOO_SMALL) {
    // The UEFI specification advises to allocate more memory for the MemoryMap buffer between successive
    // calls to GetMemoryMap(), since allocation of the new buffer may potentially increase memory map size.
    Pages = EFI_SIZE_TO_PAGES (MemoryMapSize) + 1;
    MemoryMap = AllocatePages (Pages);
    if (MemoryMap == NULL) {
      Status = EFI_OUT_OF_RESOURCES;
      goto FAIL_COMPLETE_FDT;
    }
    Status = gBS->GetMemoryMap (&MemoryMapSize, MemoryMap, &MapKey, &DescriptorSize, &DescriptorVersion);
  }

  // Go through the list and add the reserved region to the Device Tree
  if (!EFI_ERROR(Status)) {
    MemoryMapPtr = MemoryMap;
    for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) {
      if (IsLinuxReservedRegion ((EFI_MEMORY_TYPE)MemoryMapPtr->Type)) {
        DEBUG((DEBUG_VERBOSE, "Reserved region of type %d [0x%X, 0x%X]\n",
            MemoryMapPtr->Type,
            (UINTN)MemoryMapPtr->PhysicalStart,
            (UINTN)(MemoryMapPtr->PhysicalStart + MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE)));
        err = fdt_add_mem_rsv(fdt, MemoryMapPtr->PhysicalStart, MemoryMapPtr->NumberOfPages * EFI_PAGE_SIZE);
        if (err != 0) {
          Print(L"Warning: Fail to add 'memreserve' (err:%d)\n", err);
        }
      }
      MemoryMapPtr = (EFI_MEMORY_DESCRIPTOR*)((UINTN)MemoryMapPtr + DescriptorSize);
    }
  }

  //
  // Setup Arm Mpcore Info if it is a multi-core or multi-cluster platforms.
  //
  // For 'cpus' and 'cpu' device tree nodes bindings, refer to this file
  // in the kernel documentation:
  // Documentation/devicetree/bindings/arm/cpus.txt
  //
  for (Index=0; Index < gST->NumberOfTableEntries; Index++) {
    // Check for correct GUID type
    if (CompareGuid (&gArmMpCoreInfoGuid, &(gST->ConfigurationTable[Index].VendorGuid))) {
      MpId = ArmReadMpidr ();
      ClusterId = GET_CLUSTER_ID(MpId);
      CoreId    = GET_CORE_ID(MpId);

      node = fdt_subnode_offset(fdt, 0, "cpus");
      if (node < 0) {
        // Create the /cpus node
        node = fdt_add_subnode(fdt, 0, "cpus");
        fdt_setprop_string(fdt, node, "name", "cpus");
        fdt_setprop_cell (fdt, node, "#address-cells", sizeof (UINTN) / 4);
        fdt_setprop_cell(fdt, node, "#size-cells", 0);
        CpusNodeExist = FALSE;
      } else {
        CpusNodeExist = TRUE;
      }

      // Get pointer to ARM processor table
      ArmProcessorTable = (ARM_PROCESSOR_TABLE *)gST->ConfigurationTable[Index].VendorTable;
      ArmCoreInfoTable = ArmProcessorTable->ArmCpus;

      for (Index = 0; Index < ArmProcessorTable->NumberOfEntries; Index++) {
        CoreMpId = (UINTN) GET_MPID (ArmCoreInfoTable[Index].ClusterId,
                             ArmCoreInfoTable[Index].CoreId);
        AsciiSPrint (Name, 10, "cpu@%x", CoreMpId);

        // If the 'cpus' node did not exist then create all the 'cpu' nodes.
        // In case 'cpus' node is provided in the original FDT then we do not add
        // any 'cpu' node.
        if (!CpusNodeExist) {
          cpu_node = fdt_add_subnode (fdt, node, Name);
          if (cpu_node < 0) {
            DEBUG ((EFI_D_ERROR, "Error on creating '%s' node\n", Name));
            Status = EFI_INVALID_PARAMETER;
            goto FAIL_COMPLETE_FDT;
          }

          fdt_setprop_string (fdt, cpu_node, "device_type", "cpu");

          CoreMpId = cpu_to_fdtn (CoreMpId);
          fdt_setprop (fdt, cpu_node, "reg", &CoreMpId, sizeof (CoreMpId));
          if (PsciSmcSupported) {
            fdt_setprop_string (fdt, cpu_node, "enable-method", "psci");
          }
        } else {
          cpu_node = fdt_subnode_offset(fdt, node, Name);
        }

        // If Power State Coordination Interface (PSCI) is not supported then it is expected the secondary
        // cores are spinning waiting for the Operating System to release them
        if ((PsciSmcSupported == FALSE) && (cpu_node >= 0)) {
          // We as the bootloader are responsible for either creating or updating
          // these entries. Do not trust the entries in the DT. We only know about
          // 'spin-table' type. Do not try to update other types if defined.
          Method = fdt_getprop(fdt, cpu_node, "enable-method", &lenp);
          if ( (Method == NULL) || (!AsciiStrCmp((CHAR8 *)Method, "spin-table")) ) {
            fdt_setprop_string(fdt, cpu_node, "enable-method", "spin-table");
            CpuReleaseAddr = cpu_to_fdt64(ArmCoreInfoTable[Index].MailboxSetAddress);
            fdt_setprop(fdt, cpu_node, "cpu-release-addr", &CpuReleaseAddr, sizeof(CpuReleaseAddr));

            // If it is not the primary core than the cpu should be disabled
            if (((ArmCoreInfoTable[Index].ClusterId != ClusterId) || (ArmCoreInfoTable[Index].CoreId != CoreId))) {
              fdt_setprop_string(fdt, cpu_node, "status", "disabled");
            }
          } else {
            Print(L"Warning: Unsupported enable-method type for CPU[%d] : %a\n", Index, (CHAR8 *)Method);
          }
        }
      }
      break;
    }
  }

  // If the Power State Coordination Interface is supported then we signal it in the Device Tree
  if (PsciSmcSupported == TRUE) {
    // Before to create it we check if the node is not already defined in the Device Tree
    node = fdt_subnode_offset(fdt, 0, "psci");
    if (node < 0) {
      // The 'psci' node does not exist, create it
      node = fdt_add_subnode(fdt, 0, "psci");
      if (node < 0) {
        DEBUG((EFI_D_ERROR,"Error on creating 'psci' node\n"));
        Status = EFI_INVALID_PARAMETER;
        goto FAIL_COMPLETE_FDT;
      } else {
        fdt_setprop_string (fdt, node, "compatible", "arm,psci");
        fdt_setprop_string (fdt, node, "method", "smc");

        Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_SUSPEND);
        fdt_setprop (fdt, node, "cpu_suspend", &Smc, sizeof (Smc));

        Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_OFF);
        fdt_setprop (fdt, node, "cpu_off", &Smc, sizeof (Smc));

        Smc = cpu_to_fdtn (ARM_SMC_ARM_CPU_ON);
        fdt_setprop (fdt, node, "cpu_on", &Smc, sizeof (Smc));

        Smc = cpu_to_fdtn (ARM_SMC_ARM_MIGRATE);
        fdt_setprop (fdt, node, "migrate", &Smc, sizeof (Smc));
      }
    }
  }

  DEBUG_CODE_BEGIN();
    //DebugDumpFdt (fdt);
  DEBUG_CODE_END();

  // If we succeeded to generate the new Device Tree then free the old Device Tree
  gBS->FreePages (*FdtBlobBase, EFI_SIZE_TO_PAGES (*FdtBlobSize));

  *FdtBlobBase = NewFdtBlobBase;
  *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(NewFdtBlobBase));
  return EFI_SUCCESS;

FAIL_COMPLETE_FDT:
  gBS->FreePages (NewFdtBlobAllocation, EFI_SIZE_TO_PAGES (NewFdtBlobSize));

FAIL_RELOCATE_FDT:
  *FdtBlobSize = (UINTN)fdt_totalsize ((VOID*)(UINTN)(*FdtBlobBase));
  // Return success even if we failed to update the FDT blob.
  // The original one is still valid.
  return EFI_SUCCESS;
}