summaryrefslogtreecommitdiff
path: root/EmbeddedPkg/Library/HalRuntimeServicesExampleLib/Rtc.c
blob: c35d72c03cabbedb1003a6661bb66232afb84f1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/** @file
  Simple PC RTC

  Copyright (c) 2007, Intel Corporation. All rights reserved.<BR>
  Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
  Copyright (c) 2014, ARM Ltd. All rights reserved.

  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.


**/



typedef struct {
  EFI_LOCK  RtcLock;
  UINT16    SavedTimeZone;
  UINT8     Daylight;
} PC_RTC_GLOBALS;

#define PCAT_RTC_ADDRESS_REGISTER 0x70
#define PCAT_RTC_DATA_REGISTER    0x71

//
// Dallas DS12C887 Real Time Clock
//
#define RTC_ADDRESS_SECONDS           0   // R/W  Range 0..59
#define RTC_ADDRESS_SECONDS_ALARM     1   // R/W  Range 0..59
#define RTC_ADDRESS_MINUTES           2   // R/W  Range 0..59
#define RTC_ADDRESS_MINUTES_ALARM     3   // R/W  Range 0..59
#define RTC_ADDRESS_HOURS             4   // R/W  Range 1..12 or 0..23 Bit 7 is AM/PM
#define RTC_ADDRESS_HOURS_ALARM       5   // R/W  Range 1..12 or 0..23 Bit 7 is AM/PM
#define RTC_ADDRESS_DAY_OF_THE_WEEK   6   // R/W  Range 1..7
#define RTC_ADDRESS_DAY_OF_THE_MONTH  7   // R/W  Range 1..31
#define RTC_ADDRESS_MONTH             8   // R/W  Range 1..12
#define RTC_ADDRESS_YEAR              9   // R/W  Range 0..99
#define RTC_ADDRESS_REGISTER_A        10  // R/W[0..6]  R0[7]
#define RTC_ADDRESS_REGISTER_B        11  // R/W
#define RTC_ADDRESS_REGISTER_C        12  // RO
#define RTC_ADDRESS_REGISTER_D        13  // RO
#define RTC_ADDRESS_CENTURY           50  // R/W  Range 19..20 Bit 8 is R/W
//
// Date and time initial values.
// They are used if the RTC values are invalid during driver initialization
//
#define RTC_INIT_SECOND 0
#define RTC_INIT_MINUTE 0
#define RTC_INIT_HOUR   0
#define RTC_INIT_DAY    1
#define RTC_INIT_MONTH  1
#define RTC_INIT_YEAR   2001

//
// Register initial values
//
#define RTC_INIT_REGISTER_A 0x26
#define RTC_INIT_REGISTER_B 0x02
#define RTC_INIT_REGISTER_D 0x0

#pragma pack(1)
//
// Register A
//
typedef struct {
  UINT8 RS : 4;   // Rate Selection Bits
  UINT8 DV : 3;   // Divisor
  UINT8 UIP : 1;  // Update in progress
} RTC_REGISTER_A_BITS;

typedef union {
  RTC_REGISTER_A_BITS Bits;
  UINT8               Data;
} RTC_REGISTER_A;

//
// Register B
//
typedef struct {
  UINT8 DSE : 1;  // 0 - Daylight saving disabled  1 - Daylight savings enabled
  UINT8 MIL : 1;  // 0 - 12 hour mode              1 - 24 hour mode
  UINT8 DM : 1;   // 0 - BCD Format                1 - Binary Format
  UINT8 SQWE : 1; // 0 - Disable SQWE output       1 - Enable SQWE output
  UINT8 UIE : 1;  // 0 - Update INT disabled       1 - Update INT enabled
  UINT8 AIE : 1;  // 0 - Alarm INT disabled        1 - Alarm INT Enabled
  UINT8 PIE : 1;  // 0 - Periodic INT disabled     1 - Periodic INT Enabled
  UINT8 SET : 1;  // 0 - Normal operation.         1 - Updates inhibited
} RTC_REGISTER_B_BITS;

typedef union {
  RTC_REGISTER_B_BITS Bits;
  UINT8               Data;
} RTC_REGISTER_B;

//
// Register C
//
typedef struct {
  UINT8 Reserved : 4; // Read as zero.  Can not be written.
  UINT8 UF : 1;       // Update End Interrupt Flag
  UINT8 AF : 1;       // Alarm Interrupt Flag
  UINT8 PF : 1;       // Periodic Interrupt Flag
  UINT8 IRQF : 1;     // Iterrupt Request Flag = PF & PIE | AF & AIE | UF & UIE
} RTC_REGISTER_C_BITS;

typedef union {
  RTC_REGISTER_C_BITS Bits;
  UINT8               Data;
} RTC_REGISTER_C;

//
// Register D
//
typedef struct {
  UINT8 Reserved : 7; // Read as zero.  Can not be written.
  UINT8 VRT : 1;      // Valid RAM and Time
} RTC_REGISTER_D_BITS;

typedef union {
  RTC_REGISTER_D_BITS Bits;
  UINT8               Data;
} RTC_REGISTER_D;

#pragma pack()

PC_RTC_GLOBALS mRtc;

BOOLEAN
IsLeapYear (
  IN EFI_TIME   *Time
  )
{
  if (Time->Year % 4 == 0) {
    if (Time->Year % 100 == 0) {
      if (Time->Year % 400 == 0) {
        return TRUE;
      } else {
        return FALSE;
      }
    } else {
      return TRUE;
    }
  } else {
    return FALSE;
  }
}


const INTN  mDayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

BOOLEAN
DayValid (
  IN  EFI_TIME  *Time
  )
{
  if (Time->Day < 1 ||
      Time->Day > mDayOfMonth[Time->Month - 1] ||
      (Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
      ) {
    return FALSE;
  }

  return TRUE;
}


UINT8
DecimaltoBcd (
  IN  UINT8 DecValue
  )
{
  UINTN High;
  UINTN Low;

  High  = DecValue / 10;
  Low   = DecValue - (High * 10);

  return (UINT8) (Low + (High << 4));
}

UINT8
BcdToDecimal (
  IN  UINT8 BcdValue
  )
{
  UINTN High;
  UINTN Low;

  High  = BcdValue >> 4;
  Low   = BcdValue - (High << 4);

  return (UINT8) (Low + (High * 10));
}




VOID
ConvertEfiTimeToRtcTime (
  IN EFI_TIME       *Time,
  IN RTC_REGISTER_B RegisterB,
  IN UINT8          *Century
  )
{
  BOOLEAN PM;

  PM = TRUE;
  //
  // Adjust hour field if RTC in in 12 hour mode
  //
  if (RegisterB.Bits.MIL == 0) {
    if (Time->Hour < 12) {
      PM = FALSE;
    }

    if (Time->Hour >= 13) {
      Time->Hour = (UINT8) (Time->Hour - 12);
    } else if (Time->Hour == 0) {
      Time->Hour = 12;
    }
  }
  //
  // Set the Time/Date/Daylight Savings values.
  //
  *Century    = DecimaltoBcd ((UINT8) (Time->Year / 100));

  Time->Year  = (UINT16) (Time->Year % 100);

  if (RegisterB.Bits.DM == 0) {
    Time->Year    = DecimaltoBcd ((UINT8) Time->Year);
    Time->Month   = DecimaltoBcd (Time->Month);
    Time->Day     = DecimaltoBcd (Time->Day);
    Time->Hour    = DecimaltoBcd (Time->Hour);
    Time->Minute  = DecimaltoBcd (Time->Minute);
    Time->Second  = DecimaltoBcd (Time->Second);
  }
  //
  // If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field.
  //
  if (RegisterB.Bits.MIL == 0 && PM) {
    Time->Hour = (UINT8) (Time->Hour | 0x80);
  }
}

/**
  Check the validity of all the fields of a data structure of type EFI_TIME

  @param[in]  Time  Pointer to a data structure of type EFI_TIME that defines a date and time

  @retval  EFI_SUCCESS            All date and time fields are valid
  @retval  EFI_INVALID_PARAMETER  At least one date or time field is not valid
**/
EFI_STATUS
RtcTimeFieldsValid (
  IN EFI_TIME *Time
  )
{
  if ((Time->Year       < 1998     )                      ||
      (Time->Year       > 2099     )                      ||
      (Time->Month      < 1        )                      ||
      (Time->Month      > 12       )                      ||
      (!DayValid (Time))                                  ||
      (Time->Hour       > 23       )                      ||
      (Time->Minute     > 59       )                      ||
      (Time->Second     > 59       )                      ||
      (Time->Nanosecond > 999999999)                      ||
      ((Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) &&
       ((Time->TimeZone < -1440) ||
        (Time->TimeZone > 1440 )   )                  )  ||
      (Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT |
                           EFI_TIME_IN_DAYLIGHT      )))
      ) {
    return EFI_INVALID_PARAMETER;
  }

  return EFI_SUCCESS;
}

UINT8
RtcRead (
  IN  UINT8 Address
  )
{
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
  return IoRead8 (PCAT_RTC_DATA_REGISTER);
}

VOID
RtcWrite (
  IN  UINT8   Address,
  IN  UINT8   Data
  )
{
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80)));
  IoWrite8 (PCAT_RTC_DATA_REGISTER, Data);
}


EFI_STATUS
RtcTestCenturyRegister (
  VOID
  )
{
  UINT8 Century;
  UINT8 Temp;

  Century = RtcRead (RTC_ADDRESS_CENTURY);
  //
  //  RtcWrite (RTC_ADDRESS_CENTURY, 0x00);
  //
  Temp = (UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f);
  RtcWrite (RTC_ADDRESS_CENTURY, Century);
  if (Temp == 0x19 || Temp == 0x20) {
    return EFI_SUCCESS;
  }

  return EFI_DEVICE_ERROR;
}

VOID
ConvertRtcTimeToEfiTime (
  IN EFI_TIME       *Time,
  IN RTC_REGISTER_B RegisterB
  )
{
  BOOLEAN PM;

  if ((Time->Hour) & 0x80) {
    PM = TRUE;
  } else {
    PM = FALSE;
  }

  Time->Hour = (UINT8) (Time->Hour & 0x7f);

  if (RegisterB.Bits.DM == 0) {
    Time->Year    = BcdToDecimal ((UINT8) Time->Year);
    Time->Month   = BcdToDecimal (Time->Month);
    Time->Day     = BcdToDecimal (Time->Day);
    Time->Hour    = BcdToDecimal (Time->Hour);
    Time->Minute  = BcdToDecimal (Time->Minute);
    Time->Second  = BcdToDecimal (Time->Second);
  }
  //
  // If time is in 12 hour format, convert it to 24 hour format
  //
  if (RegisterB.Bits.MIL == 0) {
    if (PM && Time->Hour < 12) {
      Time->Hour = (UINT8) (Time->Hour + 12);
    }

    if (!PM && Time->Hour == 12) {
      Time->Hour = 0;
    }
  }

  Time->Nanosecond  = 0;
  Time->TimeZone    = EFI_UNSPECIFIED_TIMEZONE;
  Time->Daylight    = 0;
}

EFI_STATUS
RtcWaitToUpdate (
  UINTN Timeout
  )
{
  RTC_REGISTER_A  RegisterA;
  RTC_REGISTER_D  RegisterD;

  //
  // See if the RTC is functioning correctly
  //
  RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);

  if (RegisterD.Bits.VRT == 0) {
    return EFI_DEVICE_ERROR;
  }
  //
  // Wait for up to 0.1 seconds for the RTC to be ready.
  //
  Timeout         = (Timeout / 10) + 1;
  RegisterA.Data  = RtcRead (RTC_ADDRESS_REGISTER_A);
  while (RegisterA.Bits.UIP == 1 && Timeout > 0) {
    MicroSecondDelay (10);
    RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A);
    Timeout--;
  }

  RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D);
  if (Timeout == 0 || RegisterD.Bits.VRT == 0) {
    return EFI_DEVICE_ERROR;
  }

  return EFI_SUCCESS;
}

EFI_STATUS
LibGetTime (
  OUT EFI_TIME                *Time,
  OUT  EFI_TIME_CAPABILITIES  *Capabilities
  )
{
  EFI_STATUS      Status;
  RTC_REGISTER_B  RegisterB;
  UINT8           Century;
  UINTN           BufferSize;

  //
  // Check parameters for null pointer
  //
  if (Time == NULL) {
    return EFI_INVALID_PARAMETER;

  }
  //
  // Acquire RTC Lock to make access to RTC atomic
  //
  EfiAcquireLock (&mRtc.RtcLock);

  //
  // Wait for up to 0.1 seconds for the RTC to be updated
  //
  Status = RtcWaitToUpdate (100000);
  if (EFI_ERROR (Status)) {
    EfiReleaseLock (&mRtc.RtcLock);
    return Status;
  }
  //
  // Read Register B
  //
  RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);

  //
  // Get the Time/Date/Daylight Savings values.
  //
  Time->Second  = RtcRead (RTC_ADDRESS_SECONDS);
  Time->Minute  = RtcRead (RTC_ADDRESS_MINUTES);
  Time->Hour    = RtcRead (RTC_ADDRESS_HOURS);
  Time->Day     = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
  Time->Month   = RtcRead (RTC_ADDRESS_MONTH);
  Time->Year    = RtcRead (RTC_ADDRESS_YEAR);

  ConvertRtcTimeToEfiTime (Time, RegisterB);

  if (RtcTestCenturyRegister () == EFI_SUCCESS) {
    Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
  } else {
    Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
  }

  Time->Year = (UINT16) (Century * 100 + Time->Year);

  //
  // Release RTC Lock.
  //
  EfiReleaseLock (&mRtc.RtcLock);

  //
  // Get the variable that containts the TimeZone and Daylight fields
  //
  Time->TimeZone  = mRtc.SavedTimeZone;
  Time->Daylight  = mRtc.Daylight;

  BufferSize      = sizeof (INT16) + sizeof (UINT8);

  //
  // Make sure all field values are in correct range
  //
  Status = RtcTimeFieldsValid (Time);
  if (EFI_ERROR (Status)) {
    return EFI_DEVICE_ERROR;
  }
  //
  //  Fill in Capabilities if it was passed in
  //
  if (Capabilities) {
    Capabilities->Resolution = 1;
    //
    // 1 hertz
    //
    Capabilities->Accuracy = 50000000;
    //
    // 50 ppm
    //
    Capabilities->SetsToZero = FALSE;
  }

  return EFI_SUCCESS;
}



EFI_STATUS
LibSetTime (
  IN EFI_TIME                *Time
  )
{
  EFI_STATUS      Status;
  EFI_TIME        RtcTime;
  RTC_REGISTER_B  RegisterB;
  UINT8           Century;

  if (Time == NULL) {
    return EFI_INVALID_PARAMETER;
  }
  //
  // Make sure that the time fields are valid
  //
  Status = RtcTimeFieldsValid (Time);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  CopyMem (&RtcTime, Time, sizeof (EFI_TIME));

  //
  // Acquire RTC Lock to make access to RTC atomic
  //
  EfiAcquireLock (&mRtc.RtcLock);

  //
  // Wait for up to 0.1 seconds for the RTC to be updated
  //
  Status = RtcWaitToUpdate (100000);
  if (EFI_ERROR (Status)) {
    EfiReleaseLock (&mRtc.RtcLock);
    return Status;
  }
  //
  // Read Register B, and inhibit updates of the RTC
  //
  RegisterB.Data      = RtcRead (RTC_ADDRESS_REGISTER_B);
  RegisterB.Bits.SET  = 1;
  RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);

  ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);

  RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second);
  RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute);
  RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour);
  RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day);
  RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month);
  RtcWrite (RTC_ADDRESS_YEAR, (UINT8) RtcTime.Year);
  if (RtcTestCenturyRegister () == EFI_SUCCESS) {
    Century = (UINT8) ((Century & 0x7f) | (RtcRead (RTC_ADDRESS_CENTURY) & 0x80));
  }

  RtcWrite (RTC_ADDRESS_CENTURY, Century);

  //
  // Allow updates of the RTC registers
  //
  RegisterB.Bits.SET = 0;
  RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);

  //
  // Release RTC Lock.
  //
  EfiReleaseLock (&mRtc.RtcLock);

  //
  // Set the variable that containts the TimeZone and Daylight fields
  //
  mRtc.SavedTimeZone = Time->TimeZone;
  mRtc.Daylight      = Time->Daylight;
  return Status;
}

EFI_STATUS
libGetWakeupTime (
  OUT BOOLEAN     *Enabled,
  OUT BOOLEAN     *Pending,
  OUT EFI_TIME    *Time
  )
{
  EFI_STATUS      Status;
  RTC_REGISTER_B  RegisterB;
  RTC_REGISTER_C  RegisterC;
  UINT8           Century;

  //
  // Check paramters for null pointers
  //
  if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) {
    return EFI_INVALID_PARAMETER;

  }
  //
  // Acquire RTC Lock to make access to RTC atomic
  //
  EfiAcquireLock (&mRtc.RtcLock);

  //
  // Wait for up to 0.1 seconds for the RTC to be updated
  //
  Status = RtcWaitToUpdate (100000);
  if (EFI_ERROR (Status)) {
    EfiReleaseLock (&mRtc.RtcLock);
    return EFI_DEVICE_ERROR;
  }
  //
  // Read Register B and Register C
  //
  RegisterB.Data  = RtcRead (RTC_ADDRESS_REGISTER_B);
  RegisterC.Data  = RtcRead (RTC_ADDRESS_REGISTER_C);

  //
  // Get the Time/Date/Daylight Savings values.
  //
  *Enabled = RegisterB.Bits.AIE;
  if (*Enabled) {
    Time->Second  = RtcRead (RTC_ADDRESS_SECONDS_ALARM);
    Time->Minute  = RtcRead (RTC_ADDRESS_MINUTES_ALARM);
    Time->Hour    = RtcRead (RTC_ADDRESS_HOURS_ALARM);
    Time->Day     = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
    Time->Month   = RtcRead (RTC_ADDRESS_MONTH);
    Time->Year    = RtcRead (RTC_ADDRESS_YEAR);
  } else {
    Time->Second  = 0;
    Time->Minute  = 0;
    Time->Hour    = 0;
    Time->Day     = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
    Time->Month   = RtcRead (RTC_ADDRESS_MONTH);
    Time->Year    = RtcRead (RTC_ADDRESS_YEAR);
  }

  ConvertRtcTimeToEfiTime (Time, RegisterB);

  if (RtcTestCenturyRegister () == EFI_SUCCESS) {
    Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
  } else {
    Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
  }

  Time->Year = (UINT16) (Century * 100 + Time->Year);

  //
  // Release RTC Lock.
  //
  EfiReleaseLock (&mRtc.RtcLock);

  //
  // Make sure all field values are in correct range
  //
  Status = RtcTimeFieldsValid (Time);
  if (EFI_ERROR (Status)) {
    return EFI_DEVICE_ERROR;
  }

  *Pending = RegisterC.Bits.AF;

  return EFI_SUCCESS;
}

EFI_STATUS
LibSetWakeupTime (
  IN BOOLEAN      Enabled,
  OUT EFI_TIME    *Time
  )
{
  EFI_STATUS            Status;
  EFI_TIME              RtcTime;
  RTC_REGISTER_B        RegisterB;
  UINT8                 Century;
  EFI_TIME_CAPABILITIES Capabilities;

  if (Enabled) {

    if (Time == NULL) {
      return EFI_INVALID_PARAMETER;
    }
    //
    // Make sure that the time fields are valid
    //
    Status = RtcTimeFieldsValid (Time);
    if (EFI_ERROR (Status)) {
      return EFI_INVALID_PARAMETER;
    }
    //
    // Just support set alarm time within 24 hours
    //
    LibGetTime (&RtcTime, &Capabilities);
    if (Time->Year != RtcTime.Year ||
        Time->Month != RtcTime.Month ||
        (Time->Day != RtcTime.Day && Time->Day != (RtcTime.Day + 1))
        ) {
      return EFI_UNSUPPORTED;
    }
    //
    // Make a local copy of the time and date
    //
    CopyMem (&RtcTime, Time, sizeof (EFI_TIME));

  }
  //
  // Acquire RTC Lock to make access to RTC atomic
  //
  EfiAcquireLock (&mRtc.RtcLock);

  //
  // Wait for up to 0.1 seconds for the RTC to be updated
  //
  Status = RtcWaitToUpdate (100000);
  if (EFI_ERROR (Status)) {
    EfiReleaseLock (&mRtc.RtcLock);
    return EFI_DEVICE_ERROR;
  }
  //
  // Read Register B, and inhibit updates of the RTC
  //
  RegisterB.Data      = RtcRead (RTC_ADDRESS_REGISTER_B);

  RegisterB.Bits.SET  = 1;
  RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);

  if (Enabled) {
    ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century);

    //
    // Set RTC alarm time
    //
    RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second);
    RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute);
    RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour);

    RegisterB.Bits.AIE = 1;

  } else {
    RegisterB.Bits.AIE = 0;
  }
  //
  // Allow updates of the RTC registers
  //
  RegisterB.Bits.SET = 0;
  RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data);

  //
  // Release RTC Lock.
  //
  EfiReleaseLock (&mRtc.RtcLock);

  return EFI_SUCCESS;
}



VOID
LibRtcVirtualAddressChangeEvent (
  VOID
  )
{
}


VOID
LibRtcInitialize (
  VOID
  )
{
  EFI_STATUS      Status;
  RTC_REGISTER_A  RegisterA;
  RTC_REGISTER_B  RegisterB;
  RTC_REGISTER_C  RegisterC;
  RTC_REGISTER_D  RegisterD;
  UINT8           Century;
  EFI_TIME        Time;

  //
  // Acquire RTC Lock to make access to RTC atomic
  //
  EfiAcquireLock (&mRtc.RtcLock);

  //
  // Initialize RTC Register
  //
  // Make sure Division Chain is properly configured,
  // or RTC clock won't "tick" -- time won't increment
  //
  RegisterA.Data = RTC_INIT_REGISTER_A;
  RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data);

  //
  // Read Register B
  //
  RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B);

  //
  // Clear RTC flag register
  //
  RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C);

  //
  // Clear RTC register D
  //
  RegisterD.Data = RTC_INIT_REGISTER_D;
  RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data);

  //
  // Wait for up to 0.1 seconds for the RTC to be updated
  //
  Status = RtcWaitToUpdate (100000);
  if (EFI_ERROR (Status)) {
    EfiReleaseLock (&mRtc.RtcLock);
    return;
  }

  //
  // Get the Time/Date/Daylight Savings values.
  //
  Time.Second = RtcRead (RTC_ADDRESS_SECONDS);
  Time.Minute = RtcRead (RTC_ADDRESS_MINUTES);
  Time.Hour   = RtcRead (RTC_ADDRESS_HOURS);
  Time.Day    = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH);
  Time.Month  = RtcRead (RTC_ADDRESS_MONTH);
  Time.Year   = RtcRead (RTC_ADDRESS_YEAR);

  ConvertRtcTimeToEfiTime (&Time, RegisterB);

  if (RtcTestCenturyRegister () == EFI_SUCCESS) {
    Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f));
  } else {
    Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY));
  }

  Time.Year = (UINT16) (Century * 100 + Time.Year);

  //
  // Set RTC configuration after get original time
  //
  RtcWrite (RTC_ADDRESS_REGISTER_B, RTC_INIT_REGISTER_B);

  //
  // Release RTC Lock.
  //
  EfiReleaseLock (&mRtc.RtcLock);

  //
  // Validate time fields
  //
  Status = RtcTimeFieldsValid (&Time);
  if (EFI_ERROR (Status)) {
    Time.Second = RTC_INIT_SECOND;
    Time.Minute = RTC_INIT_MINUTE;
    Time.Hour   = RTC_INIT_HOUR;
    Time.Day    = RTC_INIT_DAY;
    Time.Month  = RTC_INIT_MONTH;
    Time.Year   = RTC_INIT_YEAR;
  }
  //
  // Reset time value according to new RTC configuration
  //
  LibSetTime (&Time);

  return;
}