1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
|
/** @file
Construct MP Services Protocol on top of the EMU Thread protocol.
This code makes APs show up in the emulator. PcdEmuApCount is the
number of APs the emulator should produce.
The MP Services Protocol provides a generalized way of performing following tasks:
- Retrieving information of multi-processor environment and MP-related status of
specific processors.
- Dispatching user-provided function to APs.
- Maintain MP-related processor status.
The MP Services Protocol must be produced on any system with more than one logical
processor.
The Protocol is available only during boot time.
MP Services Protocol is hardware-independent. Most of the logic of this protocol
is architecturally neutral. It abstracts the multi-processor environment and
status of processors, and provides interfaces to retrieve information, maintain,
and dispatch.
MP Services Protocol may be consumed by ACPI module. The ACPI module may use this
protocol to retrieve data that are needed for an MP platform and report them to OS.
MP Services Protocol may also be used to program and configure processors, such
as MTRR synchronization for memory space attributes setting in DXE Services.
MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot
by taking advantage of the processing capabilities of the APs, for example, using
APs to help test system memory in parallel with other device initialization.
Diagnostics applications may also use this protocol for multi-processor.
Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.<BR>
Portitions Copyright (c) 2011, Apple Inc. All rights reserved.
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "CpuDriver.h"
MP_SYSTEM_DATA gMPSystem;
EMU_THREAD_THUNK_PROTOCOL *gThread = NULL;
EFI_EVENT gReadToBootEvent;
BOOLEAN gReadToBoot = FALSE;
UINTN gPollInterval;
BOOLEAN
IsBSP (
VOID
)
{
EFI_STATUS Status;
UINTN ProcessorNumber;
Status = CpuMpServicesWhoAmI (&mMpServicesTemplate, &ProcessorNumber);
if (EFI_ERROR (Status)) {
return FALSE;
}
return (gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0;
}
VOID
SetApProcedure (
IN PROCESSOR_DATA_BLOCK *Processor,
IN EFI_AP_PROCEDURE Procedure,
IN VOID *ProcedureArgument
)
{
gThread->MutexLock (Processor->ProcedureLock);
Processor->Parameter = ProcedureArgument;
Processor->Procedure = Procedure;
gThread->MutexUnlock (Processor->ProcedureLock);
}
EFI_STATUS
GetNextBlockedNumber (
OUT UINTN *NextNumber
)
{
UINTN Number;
PROCESSOR_STATE ProcessorState;
PROCESSOR_DATA_BLOCK *Data;
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
Data = &gMPSystem.ProcessorData[Number];
if ((Data->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
// Skip BSP
continue;
}
gThread->MutexLock (Data->StateLock);
ProcessorState = Data->State;
gThread->MutexUnlock (Data->StateLock);
if (ProcessorState == CPU_STATE_BLOCKED) {
*NextNumber = Number;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
* Calculated and stalled the interval time by BSP to check whether
* the APs have finished.
*
* @param[in] Timeout The time limit in microseconds for
* APs to return from Procedure.
*
* @retval StallTime Time of execution stall.
**/
UINTN
CalculateAndStallInterval (
IN UINTN Timeout
)
{
UINTN StallTime;
if (Timeout < gPollInterval && Timeout != 0) {
StallTime = Timeout;
} else {
StallTime = gPollInterval;
}
gBS->Stall (StallTime);
return StallTime;
}
/**
This service retrieves the number of logical processor in the platform
and the number of those logical processors that are enabled on this boot.
This service may only be called from the BSP.
This function is used to retrieve the following information:
- The number of logical processors that are present in the system.
- The number of enabled logical processors in the system at the instant
this call is made.
Because MP Service Protocol provides services to enable and disable processors
dynamically, the number of enabled logical processors may vary during the
course of a boot session.
If this service is called from an AP, then EFI_DEVICE_ERROR is returned.
If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then
EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors
is returned in NumberOfProcessors, the number of currently enabled processor
is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
instance.
@param[out] NumberOfProcessors Pointer to the total number of logical
processors in the system, including the BSP
and disabled APs.
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
processors that exist in system, including
the BSP.
@retval EFI_SUCCESS The number of logical processors and enabled
logical processors was retrieved.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.
@retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.
**/
EFI_STATUS
EFIAPI
CpuMpServicesGetNumberOfProcessors (
IN EFI_MP_SERVICES_PROTOCOL *This,
OUT UINTN *NumberOfProcessors,
OUT UINTN *NumberOfEnabledProcessors
)
{
if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) {
return EFI_INVALID_PARAMETER;
}
if (!IsBSP ()) {
return EFI_DEVICE_ERROR;
}
*NumberOfProcessors = gMPSystem.NumberOfProcessors;
*NumberOfEnabledProcessors = gMPSystem.NumberOfEnabledProcessors;
return EFI_SUCCESS;
}
/**
Gets detailed MP-related information on the requested processor at the
instant this call is made. This service may only be called from the BSP.
This service retrieves detailed MP-related information about any processor
on the platform. Note the following:
- The processor information may change during the course of a boot session.
- The information presented here is entirely MP related.
Information regarding the number of caches and their sizes, frequency of operation,
slot numbers is all considered platform-related information and is not provided
by this service.
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
instance.
@param[in] ProcessorNumber The handle number of processor.
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for
the requested processor is deposited.
@retval EFI_SUCCESS Processor information was returned.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist in the platform.
**/
EFI_STATUS
EFIAPI
CpuMpServicesGetProcessorInfo (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
)
{
if (ProcessorInfoBuffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (!IsBSP ()) {
return EFI_DEVICE_ERROR;
}
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
return EFI_NOT_FOUND;
}
CopyMem (ProcessorInfoBuffer, &gMPSystem.ProcessorData[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION));
return EFI_SUCCESS;
}
/**
This service executes a caller provided function on all enabled APs. APs can
run either simultaneously or one at a time in sequence. This service supports
both blocking and non-blocking requests. The non-blocking requests use EFI
events so the BSP can detect when the APs have finished. This service may only
be called from the BSP.
This function is used to dispatch all the enabled APs to the function specified
by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned
immediately and Procedure is not started on any AP.
If SingleThread is TRUE, all the enabled APs execute the function specified by
Procedure one by one, in ascending order of processor handle number. Otherwise,
all the enabled APs execute the function specified by Procedure simultaneously.
If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all
APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking
mode, and the BSP returns from this service without waiting for APs. If a
non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
is signaled, then EFI_UNSUPPORTED must be returned.
If the timeout specified by TimeoutInMicroseconds expires before all APs return
from Procedure, then Procedure on the failed APs is terminated. All enabled APs
are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its
content points to the list of processor handle numbers in which Procedure was
terminated.
Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
to make sure that the nature of the code that is executed on the BSP and the
dispatched APs is well controlled. The MP Services Protocol does not guarantee
that the Procedure function is MP-safe. Hence, the tasks that can be run in
parallel are limited to certain independent tasks and well-controlled exclusive
code. EFI services and protocols may not be called by APs unless otherwise
specified.
In blocking execution mode, BSP waits until all APs finish or
TimeoutInMicroseconds expires.
In non-blocking execution mode, BSP is freed to return to the caller and then
proceed to the next task without having to wait for APs. The following
sequence needs to occur in a non-blocking execution mode:
-# The caller that intends to use this MP Services Protocol in non-blocking
mode creates WaitEvent by calling the EFI CreateEvent() service. The caller
invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent
is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests
the function specified by Procedure to be started on all the enabled APs,
and releases the BSP to continue with other tasks.
-# The caller can use the CheckEvent() and WaitForEvent() services to check
the state of the WaitEvent created in step 1.
-# When the APs complete their task or TimeoutInMicroSecondss expires, the MP
Service signals WaitEvent by calling the EFI SignalEvent() function. If
FailedCpuList is not NULL, its content is available when WaitEvent is
signaled. If all APs returned from Procedure prior to the timeout, then
FailedCpuList is set to NULL. If not all APs return from Procedure before
the timeout, then FailedCpuList is filled in with the list of the failed
APs. The buffer is allocated by MP Service Protocol using AllocatePool().
It is the caller's responsibility to free the buffer with FreePool() service.
-# This invocation of SignalEvent() function informs the caller that invoked
EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed
the specified task or a timeout occurred. The contents of FailedCpuList
can be examined to determine which APs did not complete the specified task
prior to the timeout.
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
instance.
@param[in] Procedure A pointer to the function to be run on
enabled APs of the system. See type
EFI_AP_PROCEDURE.
@param[in] SingleThread If TRUE, then all the enabled APs execute
the function specified by Procedure one by
one, in ascending order of processor handle
number. If FALSE, then all the enabled APs
execute the function specified by Procedure
simultaneously.
@param[in] WaitEvent The event created by the caller with CreateEvent()
service. If it is NULL, then execute in
blocking mode. BSP waits until all APs finish
or TimeoutInMicroseconds expires. If it's
not NULL, then execute in non-blocking mode.
BSP requests the function specified by
Procedure to be started on all the enabled
APs, and go on executing immediately. If
all return from Procedure, or TimeoutInMicroseconds
expires, this event is signaled. The BSP
can use the CheckEvent() or WaitForEvent()
services to check the state of event. Type
EFI_EVENT is defined in CreateEvent() in
the Unified Extensible Firmware Interface
Specification.
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
APs to return from Procedure, either for
blocking or non-blocking mode. Zero means
infinity. If the timeout expires before
all APs return from Procedure, then Procedure
on the failed APs is terminated. All enabled
APs are available for next function assigned
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
If the timeout expires in blocking mode,
BSP returns EFI_TIMEOUT. If the timeout
expires in non-blocking mode, WaitEvent
is signaled with SignalEvent().
@param[in] ProcedureArgument The parameter passed into Procedure for
all APs.
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
if all APs finish successfully, then its
content is set to NULL. If not all APs
finish before timeout expires, then its
content is set to address of the buffer
holding handle numbers of the failed APs.
The buffer is allocated by MP Service Protocol,
and it's the caller's responsibility to
free the buffer with FreePool() service.
In blocking mode, it is ready for consumption
when the call returns. In non-blocking mode,
it is ready when WaitEvent is signaled. The
list of failed CPU is terminated by
END_OF_CPU_LIST.
@retval EFI_SUCCESS In blocking mode, all APs have finished before
the timeout expired.
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
to all enabled APs.
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
signaled.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_NOT_STARTED No enabled APs exist in the system.
@retval EFI_NOT_READY Any enabled APs are busy.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
all enabled APs have finished.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
CpuMpServicesStartupAllAps (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN EFI_AP_PROCEDURE Procedure,
IN BOOLEAN SingleThread,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT UINTN **FailedCpuList OPTIONAL
)
{
EFI_STATUS Status;
PROCESSOR_DATA_BLOCK *ProcessorData;
UINTN Number;
UINTN NextNumber;
PROCESSOR_STATE APInitialState;
PROCESSOR_STATE ProcessorState;
UINTN Timeout;
if (!IsBSP ()) {
return EFI_DEVICE_ERROR;
}
if (gMPSystem.NumberOfProcessors == 1) {
return EFI_NOT_STARTED;
}
if (Procedure == NULL) {
return EFI_INVALID_PARAMETER;
}
if ((WaitEvent != NULL) && gReadToBoot) {
return EFI_UNSUPPORTED;
}
if (FailedCpuList != NULL) {
gMPSystem.FailedList = AllocatePool ((gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN));
if (gMPSystem.FailedList == NULL) {
return EFI_OUT_OF_RESOURCES;
}
SetMemN (gMPSystem.FailedList, (gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST);
gMPSystem.FailedListIndex = 0;
*FailedCpuList = gMPSystem.FailedList;
}
Timeout = TimeoutInMicroseconds;
ProcessorData = NULL;
gMPSystem.FinishCount = 0;
gMPSystem.StartCount = 0;
gMPSystem.SingleThread = SingleThread;
APInitialState = CPU_STATE_READY;
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
ProcessorData = &gMPSystem.ProcessorData[Number];
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
// Skip BSP
continue;
}
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
// Skip Disabled processors
gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Number;
continue;
}
//
// Get APs prepared, and put failing APs into FailedCpuList
// if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready
// state 1 by 1, until the previous 1 finished its task
// if not "SingleThread", all APs are put to ready state from the beginning
//
gThread->MutexLock(ProcessorData->StateLock);
if (ProcessorData->State == CPU_STATE_IDLE) {
ProcessorData->State = APInitialState;
gThread->MutexUnlock (ProcessorData->StateLock);
gMPSystem.StartCount++;
if (SingleThread) {
APInitialState = CPU_STATE_BLOCKED;
}
} else {
gThread->MutexUnlock (ProcessorData->StateLock);
return EFI_NOT_READY;
}
}
if (WaitEvent != NULL) {
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
ProcessorData = &gMPSystem.ProcessorData[Number];
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
// Skip BSP
continue;
}
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
// Skip Disabled processors
continue;
}
gThread->MutexLock (ProcessorData->StateLock);
ProcessorState = ProcessorData->State;
gThread->MutexUnlock (ProcessorData->StateLock);
if (ProcessorState == CPU_STATE_READY) {
SetApProcedure (ProcessorData, Procedure, ProcedureArgument);
}
}
//
// Save data into private data structure, and create timer to poll AP state before exiting
//
gMPSystem.Procedure = Procedure;
gMPSystem.ProcedureArgument = ProcedureArgument;
gMPSystem.WaitEvent = WaitEvent;
gMPSystem.Timeout = TimeoutInMicroseconds;
gMPSystem.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);
Status = gBS->SetTimer (
gMPSystem.CheckAllAPsEvent,
TimerPeriodic,
gPollInterval
);
return Status;
}
while (TRUE) {
for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {
ProcessorData = &gMPSystem.ProcessorData[Number];
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
// Skip BSP
continue;
}
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
// Skip Disabled processors
continue;
}
gThread->MutexLock (ProcessorData->StateLock);
ProcessorState = ProcessorData->State;
gThread->MutexUnlock (ProcessorData->StateLock);
switch (ProcessorState) {
case CPU_STATE_READY:
SetApProcedure (ProcessorData, Procedure, ProcedureArgument);
break;
case CPU_STATE_FINISHED:
gMPSystem.FinishCount++;
if (SingleThread) {
Status = GetNextBlockedNumber (&NextNumber);
if (!EFI_ERROR (Status)) {
gThread->MutexLock (gMPSystem.ProcessorData[NextNumber].StateLock);
gMPSystem.ProcessorData[NextNumber].State = CPU_STATE_READY;
gThread->MutexUnlock (gMPSystem.ProcessorData[NextNumber].StateLock);
}
}
gThread->MutexLock (ProcessorData->StateLock);
ProcessorData->State = CPU_STATE_IDLE;
gThread->MutexUnlock (ProcessorData->StateLock);
break;
default:
break;
}
}
if (gMPSystem.FinishCount == gMPSystem.StartCount) {
Status = EFI_SUCCESS;
goto Done;
}
if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) {
Status = EFI_TIMEOUT;
goto Done;
}
Timeout -= CalculateAndStallInterval (Timeout);
}
Done:
if (FailedCpuList != NULL) {
if (gMPSystem.FailedListIndex == 0) {
FreePool (*FailedCpuList);
*FailedCpuList = NULL;
}
}
return EFI_SUCCESS;
}
/**
This service lets the caller get one enabled AP to execute a caller-provided
function. The caller can request the BSP to either wait for the completion
of the AP or just proceed with the next task by using the EFI event mechanism.
See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking
execution support. This service may only be called from the BSP.
This function is used to dispatch one enabled AP to the function specified by
Procedure passing in the argument specified by ProcedureArgument. If WaitEvent
is NULL, execution is in blocking mode. The BSP waits until the AP finishes or
TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.
BSP proceeds to the next task without waiting for the AP. If a non-blocking mode
is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,
then EFI_UNSUPPORTED must be returned.
If the timeout specified by TimeoutInMicroseconds expires before the AP returns
from Procedure, then execution of Procedure by the AP is terminated. The AP is
available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and
EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL
instance.
@param[in] Procedure A pointer to the function to be run on
enabled APs of the system. See type
EFI_AP_PROCEDURE.
@param[in] ProcessorNumber The handle number of the AP. The range is
from 0 to the total number of logical
processors minus 1. The total number of
logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
@param[in] WaitEvent The event created by the caller with CreateEvent()
service. If it is NULL, then execute in
blocking mode. BSP waits until all APs finish
or TimeoutInMicroseconds expires. If it's
not NULL, then execute in non-blocking mode.
BSP requests the function specified by
Procedure to be started on all the enabled
APs, and go on executing immediately. If
all return from Procedure or TimeoutInMicroseconds
expires, this event is signaled. The BSP
can use the CheckEvent() or WaitForEvent()
services to check the state of event. Type
EFI_EVENT is defined in CreateEvent() in
the Unified Extensible Firmware Interface
Specification.
@param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for
APs to return from Procedure, either for
blocking or non-blocking mode. Zero means
infinity. If the timeout expires before
all APs return from Procedure, then Procedure
on the failed APs is terminated. All enabled
APs are available for next function assigned
by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()
or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().
If the timeout expires in blocking mode,
BSP returns EFI_TIMEOUT. If the timeout
expires in non-blocking mode, WaitEvent
is signaled with SignalEvent().
@param[in] ProcedureArgument The parameter passed into Procedure for
all APs.
@param[out] Finished If NULL, this parameter is ignored. In
blocking mode, this parameter is ignored.
In non-blocking mode, if AP returns from
Procedure before the timeout expires, its
content is set to TRUE. Otherwise, the
value is set to FALSE. The caller can
determine if the AP returned from Procedure
by evaluating this value.
@retval EFI_SUCCESS In blocking mode, specified AP finished before
the timeout expires.
@retval EFI_SUCCESS In non-blocking mode, the function has been
dispatched to specified AP.
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
signaled.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
the specified AP has finished.
@retval EFI_NOT_READY The specified AP is busy.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
CpuMpServicesStartupThisAP (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN EFI_AP_PROCEDURE Procedure,
IN UINTN ProcessorNumber,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT BOOLEAN *Finished OPTIONAL
)
{
UINTN Timeout;
if (!IsBSP ()) {
return EFI_DEVICE_ERROR;
}
if (Procedure == NULL) {
return EFI_INVALID_PARAMETER;
}
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
return EFI_NOT_FOUND;
}
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
return EFI_INVALID_PARAMETER;
}
gThread->MutexLock(gMPSystem.ProcessorData[ProcessorNumber].StateLock);
if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {
gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock);
return EFI_NOT_READY;
}
gThread->MutexUnlock(gMPSystem.ProcessorData[ProcessorNumber].StateLock);
if ((WaitEvent != NULL) && gReadToBoot) {
return EFI_UNSUPPORTED;
}
Timeout = TimeoutInMicroseconds;
gMPSystem.StartCount = 1;
gMPSystem.FinishCount = 0;
SetApProcedure (&gMPSystem.ProcessorData[ProcessorNumber], Procedure, ProcedureArgument);
if (WaitEvent != NULL) {
// Non Blocking
gMPSystem.WaitEvent = WaitEvent;
gBS->SetTimer (
gMPSystem.ProcessorData[ProcessorNumber].CheckThisAPEvent,
TimerPeriodic,
gPollInterval
);
return EFI_SUCCESS;
}
// Blocking
while (TRUE) {
gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
if (gMPSystem.ProcessorData[ProcessorNumber].State == CPU_STATE_FINISHED) {
gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE;
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
break;
}
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) {
return EFI_TIMEOUT;
}
Timeout -= CalculateAndStallInterval (Timeout);
}
return EFI_SUCCESS;
}
/**
This service switches the requested AP to be the BSP from that point onward.
This service changes the BSP for all purposes. This call can only be performed
by the current BSP.
This service switches the requested AP to be the BSP from that point onward.
This service changes the BSP for all purposes. The new BSP can take over the
execution of the old BSP and continue seamlessly from where the old one left
off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT
is signaled.
If the BSP cannot be switched prior to the return from this service, then
EFI_UNSUPPORTED must be returned.
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param[in] ProcessorNumber The handle number of AP that is to become the new
BSP. The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
enabled AP. Otherwise, it will be disabled.
@retval EFI_SUCCESS BSP successfully switched.
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
this service returning.
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
@retval EFI_SUCCESS The calling processor is an AP.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
a disabled AP.
@retval EFI_NOT_READY The specified AP is busy.
**/
EFI_STATUS
EFIAPI
CpuMpServicesSwitchBSP (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN UINTN ProcessorNumber,
IN BOOLEAN EnableOldBSP
)
{
UINTN Index;
if (!IsBSP ()) {
return EFI_DEVICE_ERROR;
}
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
return EFI_NOT_FOUND;
}
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
return EFI_INVALID_PARAMETER;
}
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
return EFI_INVALID_PARAMETER;
}
for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {
if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
break;
}
}
ASSERT (Index != gMPSystem.NumberOfProcessors);
gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
return EFI_NOT_READY;
}
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
// Skip for now as we need switch a bunch of stack stuff around and it's complex
// May not be worth it?
return EFI_NOT_READY;
}
/**
This service lets the caller enable or disable an AP from this point onward.
This service may only be called from the BSP.
This service allows the caller enable or disable an AP from this point onward.
The caller can optionally specify the health status of the AP by Health. If
an AP is being disabled, then the state of the disabled AP is implementation
dependent. If an AP is enabled, then the implementation must guarantee that a
complete initialization sequence is performed on the AP, so the AP is in a state
that is compatible with an MP operating system. This service may not be supported
after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.
If the enable or disable AP operation cannot be completed prior to the return
from this service, then EFI_UNSUPPORTED must be returned.
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param[in] ProcessorNumber The handle number of AP that is to become the new
BSP. The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
@param[in] EnableAP Specifies the new state for the processor for
enabled, FALSE for disabled.
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
the new health status of the AP. This flag
corresponds to StatusFlag defined in
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
bits are ignored. If it is NULL, this parameter
is ignored.
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
prior to this service returning.
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
**/
EFI_STATUS
EFIAPI
CpuMpServicesEnableDisableAP (
IN EFI_MP_SERVICES_PROTOCOL *This,
IN UINTN ProcessorNumber,
IN BOOLEAN EnableAP,
IN UINT32 *HealthFlag OPTIONAL
)
{
if (!IsBSP ()) {
return EFI_DEVICE_ERROR;
}
if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {
return EFI_NOT_FOUND;
}
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {
return EFI_INVALID_PARAMETER;
}
gThread->MutexLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
return EFI_UNSUPPORTED;
}
gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);
if (EnableAP) {
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0 ) {
gMPSystem.NumberOfEnabledProcessors++;
}
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_ENABLED_BIT;
} else {
if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == PROCESSOR_ENABLED_BIT ) {
gMPSystem.NumberOfEnabledProcessors--;
}
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_ENABLED_BIT;
}
if (HealthFlag != NULL) {
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT;
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT);
}
return EFI_SUCCESS;
}
/**
This return the handle number for the calling processor. This service may be
called from the BSP and APs.
This service returns the processor handle number for the calling processor.
The returned value is in the range from 0 to the total number of logical
processors minus 1. The total number of logical processors can be retrieved
with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be
called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER
is returned. Otherwise, the current processors handle number is returned in
ProcessorNumber, and EFI_SUCCESS is returned.
@param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.
@param[in] ProcessorNumber The handle number of AP that is to become the new
BSP. The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().
@retval EFI_SUCCESS The current processor handle number was returned
in ProcessorNumber.
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
**/
EFI_STATUS
EFIAPI
CpuMpServicesWhoAmI (
IN EFI_MP_SERVICES_PROTOCOL *This,
OUT UINTN *ProcessorNumber
)
{
UINTN Index;
UINT64 ProcessorId;
if (ProcessorNumber == NULL) {
return EFI_INVALID_PARAMETER;
}
ProcessorId = gThread->Self ();
for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {
if (gMPSystem.ProcessorData[Index].Info.ProcessorId == ProcessorId) {
break;
}
}
*ProcessorNumber = Index;
return EFI_SUCCESS;
}
EFI_MP_SERVICES_PROTOCOL mMpServicesTemplate = {
CpuMpServicesGetNumberOfProcessors,
CpuMpServicesGetProcessorInfo,
CpuMpServicesStartupAllAps,
CpuMpServicesStartupThisAP,
CpuMpServicesSwitchBSP,
CpuMpServicesEnableDisableAP,
CpuMpServicesWhoAmI
};
/*++
If timeout occurs in StartupAllAps(), a timer is set, which invokes this
procedure periodically to check whether all APs have finished.
--*/
VOID
EFIAPI
CpuCheckAllAPsStatus (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN ProcessorNumber;
UINTN NextNumber;
PROCESSOR_DATA_BLOCK *ProcessorData;
PROCESSOR_DATA_BLOCK *NextData;
EFI_STATUS Status;
PROCESSOR_STATE ProcessorState;
UINTN Cpu;
BOOLEAN Found;
if (gMPSystem.TimeoutActive) {
gMPSystem.Timeout -= CalculateAndStallInterval (gMPSystem.Timeout);
}
for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {
ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
// Skip BSP
continue;
}
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
// Skip Disabled processors
continue;
}
// This is an Interrupt Service routine.
// This can grab a lock that is held in a non-interrupt
// context. Meaning deadlock. Which is a bad thing.
// So, try lock it. If we can get it, cool, do our thing.
// otherwise, just dump out & try again on the next iteration.
Status = gThread->MutexTryLock (ProcessorData->StateLock);
if (EFI_ERROR(Status)) {
return;
}
ProcessorState = ProcessorData->State;
gThread->MutexUnlock (ProcessorData->StateLock);
switch (ProcessorState) {
case CPU_STATE_FINISHED:
if (gMPSystem.SingleThread) {
Status = GetNextBlockedNumber (&NextNumber);
if (!EFI_ERROR (Status)) {
NextData = &gMPSystem.ProcessorData[NextNumber];
gThread->MutexLock (NextData->StateLock);
NextData->State = CPU_STATE_READY;
gThread->MutexUnlock (NextData->StateLock);
SetApProcedure (NextData, gMPSystem.Procedure, gMPSystem.ProcedureArgument);
}
}
gThread->MutexLock (ProcessorData->StateLock);
ProcessorData->State = CPU_STATE_IDLE;
gThread->MutexUnlock (ProcessorData->StateLock);
gMPSystem.FinishCount++;
break;
default:
break;
}
}
if (gMPSystem.TimeoutActive && gMPSystem.Timeout == 0) {
//
// Timeout
//
if (gMPSystem.FailedList != NULL) {
for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {
ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];
if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
// Skip BSP
continue;
}
if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {
// Skip Disabled processors
continue;
}
// Mark the
Status = gThread->MutexTryLock (ProcessorData->StateLock);
if (EFI_ERROR(Status)) {
return;
}
ProcessorState = ProcessorData->State;
gThread->MutexUnlock (ProcessorData->StateLock);
if (ProcessorState != CPU_STATE_IDLE) {
// If we are retrying make sure we don't double count
for (Cpu = 0, Found = FALSE; Cpu < gMPSystem.NumberOfProcessors; Cpu++) {
if (gMPSystem.FailedList[Cpu] == END_OF_CPU_LIST) {
break;
}
if (gMPSystem.FailedList[ProcessorNumber] == Cpu) {
Found = TRUE;
break;
}
}
if (!Found) {
gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Cpu;
}
}
}
}
// Force terminal exit
gMPSystem.FinishCount = gMPSystem.StartCount;
}
if (gMPSystem.FinishCount != gMPSystem.StartCount) {
return;
}
gBS->SetTimer (
gMPSystem.CheckAllAPsEvent,
TimerCancel,
0
);
if (gMPSystem.FailedListIndex == 0) {
if (gMPSystem.FailedList != NULL) {
FreePool (gMPSystem.FailedList);
gMPSystem.FailedList = NULL;
}
}
Status = gBS->SignalEvent (gMPSystem.WaitEvent);
return ;
}
VOID
EFIAPI
CpuCheckThisAPStatus (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
PROCESSOR_DATA_BLOCK *ProcessorData;
PROCESSOR_STATE ProcessorState;
ProcessorData = (PROCESSOR_DATA_BLOCK *) Context;
//
// This is an Interrupt Service routine.
// that can grab a lock that is held in a non-interrupt
// context. Meaning deadlock. Which is a badddd thing.
// So, try lock it. If we can get it, cool, do our thing.
// otherwise, just dump out & try again on the next iteration.
//
Status = gThread->MutexTryLock (ProcessorData->StateLock);
if (EFI_ERROR(Status)) {
return;
}
ProcessorState = ProcessorData->State;
gThread->MutexUnlock (ProcessorData->StateLock);
if (ProcessorState == CPU_STATE_FINISHED) {
Status = gBS->SetTimer (ProcessorData->CheckThisAPEvent, TimerCancel, 0);
ASSERT_EFI_ERROR (Status);
Status = gBS->SignalEvent (gMPSystem.WaitEvent);
ASSERT_EFI_ERROR (Status);
gThread->MutexLock (ProcessorData->StateLock);
ProcessorData->State = CPU_STATE_IDLE;
gThread->MutexUnlock (ProcessorData->StateLock);
}
return ;
}
/*++
This function is called by all processors (both BSP and AP) once and collects MP related data
MPSystemData - Pointer to the data structure containing MP related data
BSP - TRUE if the CPU is BSP
EFI_SUCCESS - Data for the processor collected and filled in
--*/
EFI_STATUS
FillInProcessorInformation (
IN BOOLEAN BSP,
IN UINTN ProcessorNumber
)
{
gMPSystem.ProcessorData[ProcessorNumber].Info.ProcessorId = gThread->Self ();
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT;
if (BSP) {
gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_AS_BSP_BIT;
}
gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Package = (UINT32) ProcessorNumber;
gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Core = 0;
gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Thread = 0;
gMPSystem.ProcessorData[ProcessorNumber].State = BSP ? CPU_STATE_BUSY : CPU_STATE_IDLE;
gMPSystem.ProcessorData[ProcessorNumber].Procedure = NULL;
gMPSystem.ProcessorData[ProcessorNumber].Parameter = NULL;
gMPSystem.ProcessorData[ProcessorNumber].StateLock = gThread->MutexInit ();
gMPSystem.ProcessorData[ProcessorNumber].ProcedureLock = gThread->MutexInit ();
return EFI_SUCCESS;
}
VOID *
EFIAPI
CpuDriverApIdolLoop (
VOID *Context
)
{
EFI_AP_PROCEDURE Procedure;
VOID *Parameter;
UINTN ProcessorNumber;
PROCESSOR_DATA_BLOCK *ProcessorData;
ProcessorNumber = (UINTN)Context;
ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];
ProcessorData->Info.ProcessorId = gThread->Self ();
while (TRUE) {
//
// Make a local copy on the stack to be extra safe
//
gThread->MutexLock (ProcessorData->ProcedureLock);
Procedure = ProcessorData->Procedure;
Parameter = ProcessorData->Parameter;
gThread->MutexUnlock (ProcessorData->ProcedureLock);
if (Procedure != NULL) {
gThread->MutexLock (ProcessorData->StateLock);
ProcessorData->State = CPU_STATE_BUSY;
gThread->MutexUnlock (ProcessorData->StateLock);
Procedure (Parameter);
gThread->MutexLock (ProcessorData->ProcedureLock);
ProcessorData->Procedure = NULL;
gThread->MutexUnlock (ProcessorData->ProcedureLock);
gThread->MutexLock (ProcessorData->StateLock);
ProcessorData->State = CPU_STATE_FINISHED;
gThread->MutexUnlock (ProcessorData->StateLock);
}
// Poll 5 times a seconds, 200ms
// Don't want to burn too many system resources doing nothing.
gEmuThunk->Sleep (200 * 1000);
}
return 0;
}
EFI_STATUS
InitializeMpSystemData (
IN UINTN NumberOfProcessors
)
{
EFI_STATUS Status;
UINTN Index;
//
// Clear the data structure area first.
//
ZeroMem (&gMPSystem, sizeof (MP_SYSTEM_DATA));
//
// First BSP fills and inits all known values, including it's own records.
//
gMPSystem.NumberOfProcessors = NumberOfProcessors;
gMPSystem.NumberOfEnabledProcessors = NumberOfProcessors;
gMPSystem.ProcessorData = AllocateZeroPool (gMPSystem.NumberOfProcessors * sizeof (PROCESSOR_DATA_BLOCK));
ASSERT (gMPSystem.ProcessorData != NULL);
FillInProcessorInformation (TRUE, 0);
Status = gBS->CreateEvent (
EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
CpuCheckAllAPsStatus,
NULL,
&gMPSystem.CheckAllAPsEvent
);
ASSERT_EFI_ERROR (Status);
for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {
if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {
// Skip BSP
continue;
}
FillInProcessorInformation (FALSE, Index);
Status = gThread->CreateThread (
(VOID *)&gMPSystem.ProcessorData[Index].Info.ProcessorId,
NULL,
CpuDriverApIdolLoop,
(VOID *)Index
);
Status = gBS->CreateEvent (
EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
CpuCheckThisAPStatus,
(VOID *) &gMPSystem.ProcessorData[Index],
&gMPSystem.ProcessorData[Index].CheckThisAPEvent
);
}
return EFI_SUCCESS;
}
/**
Invoke a notification event
@param Event Event whose notification function is being invoked.
@param Context The pointer to the notification function's context,
which is implementation-dependent.
**/
VOID
EFIAPI
CpuReadToBootFunction (
IN EFI_EVENT Event,
IN VOID *Context
)
{
gReadToBoot = TRUE;
}
EFI_STATUS
CpuMpServicesInit (
OUT UINTN *MaxCpus
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
EMU_IO_THUNK_PROTOCOL *IoThunk;
*MaxCpus = 1; // BSP
IoThunk = GetIoThunkInstance (&gEmuThreadThunkProtocolGuid, 0);
if (IoThunk != NULL) {
Status = IoThunk->Open (IoThunk);
if (!EFI_ERROR (Status)) {
if (IoThunk->ConfigString != NULL) {
*MaxCpus += StrDecimalToUintn (IoThunk->ConfigString);
gThread = IoThunk->Interface;
}
}
}
if (*MaxCpus == 1) {
// We are not MP so nothing to do
return EFI_SUCCESS;
}
gPollInterval = (UINTN) PcdGet64 (PcdEmuMpServicesPollingInterval);
Status = InitializeMpSystemData (*MaxCpus);
if (EFI_ERROR (Status)) {
return Status;
}
Status = EfiCreateEventReadyToBootEx (TPL_CALLBACK, CpuReadToBootFunction, NULL, &gReadToBootEvent);
ASSERT_EFI_ERROR (Status);
//
// Now install the MP services protocol.
//
Handle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiMpServiceProtocolGuid, &mMpServicesTemplate,
NULL
);
return Status;
}
|