1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
/*++
Copyright (c) 2005 - 2007, Intel Corporation
All rights reserved. This program and the accompanying materials are licensed and made available
under the terms and conditions of the BSD License which accompanies this
distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
Init.c
Abstract:
Initialization routines
--*/
#include "Fat.h"
EFI_STATUS
FatAllocateVolume (
IN EFI_HANDLE Handle,
IN EFI_DISK_IO_PROTOCOL *DiskIo,
IN EFI_BLOCK_IO_PROTOCOL *BlockIo
)
/*++
Routine Description:
Allocates volume structure, detects FAT file system, installs protocol,
and initialize cache.
Arguments:
Handle - The handle of parent device.
DiskIo - The DiskIo of parent device.
BlockIo - The BlockIo of parent devicel
Returns:
EFI_SUCCESS - Allocate a new volume successfully.
EFI_OUT_OF_RESOURCES - Can not allocate the memory.
Others - Allocating a new volume failed.
--*/
{
EFI_STATUS Status;
FAT_VOLUME *Volume;
BOOLEAN LockedByMe;
LockedByMe = FALSE;
//
// Allocate a volume structure
//
Volume = AllocateZeroPool (sizeof (FAT_VOLUME));
if (Volume == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Acquire the lock.
// If caller has already acquired the lock, cannot lock it again.
//
if (!FatIsLocked ()) {
FatAcquireLock ();
LockedByMe = TRUE;
}
//
// Initialize the structure
//
Volume->Signature = FAT_VOLUME_SIGNATURE;
Volume->Handle = Handle;
Volume->DiskIo = DiskIo;
Volume->BlockIo = BlockIo;
Volume->MediaId = BlockIo->Media->MediaId;
Volume->ReadOnly = BlockIo->Media->ReadOnly;
Volume->VolumeInterface.Revision = EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_REVISION;
Volume->VolumeInterface.OpenVolume = FatOpenVolume;
InitializeListHead (&Volume->CheckRef);
InitializeListHead (&Volume->DirCacheList);
//
// Initialize Root Directory entry
//
Volume->RootDirEnt.FileString = Volume->RootFileString;
Volume->RootDirEnt.Entry.Attributes = FAT_ATTRIBUTE_DIRECTORY;
//
// Check to see if there's a file system on the volume
//
Status = FatOpenDevice (Volume);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// Initialize cache
//
Status = FatInitializeDiskCache (Volume);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// Install our protocol interfaces on the device's handle
//
Status = gBS->InstallMultipleProtocolInterfaces (
&Volume->Handle,
&gEfiSimpleFileSystemProtocolGuid,
&Volume->VolumeInterface,
NULL
);
if (EFI_ERROR (Status)) {
goto Done;
}
//
// Volume installed
//
DEBUG ((EFI_D_INIT, "%HInstalled Fat filesystem on %x%N\n", Handle));
Volume->Valid = TRUE;
Done:
//
// Unlock if locked by myself.
//
if (LockedByMe) {
FatReleaseLock ();
}
if (EFI_ERROR (Status)) {
FatFreeVolume (Volume);
}
return Status;
}
EFI_STATUS
FatAbandonVolume (
IN FAT_VOLUME *Volume
)
/*++
Routine Description:
Called by FatDriverBindingStop(), Abandon the volume.
Arguments:
Volume - The volume to be abandoned.
Returns:
EFI_SUCCESS - Abandoned the volume successfully.
Others - Can not uninstall the protocol interfaces.
--*/
{
EFI_STATUS Status;
BOOLEAN LockedByMe;
//
// Uninstall the protocol interface.
//
if (Volume->Handle != NULL) {
Status = gBS->UninstallMultipleProtocolInterfaces (
Volume->Handle,
&gEfiSimpleFileSystemProtocolGuid,
&Volume->VolumeInterface,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
}
LockedByMe = FALSE;
//
// Acquire the lock.
// If the caller has already acquired the lock (which
// means we are in the process of some Fat operation),
// we can not acquire again.
//
if (!FatIsLocked ()) {
LockedByMe = TRUE;
FatAcquireLock ();
}
//
// The volume is still being used. Hence, set error flag for all OFiles still in
// use. In two cases, we could get here. One is EFI_MEDIA_CHANGED, the other is
// EFI_NO_MEDIA.
//
if (Volume->Root != NULL) {
FatSetVolumeError (
Volume->Root,
Volume->BlockIo->Media->MediaPresent ? EFI_MEDIA_CHANGED : EFI_NO_MEDIA
);
}
Volume->Valid = FALSE;
//
// Release the lock.
// If locked by me, this means DriverBindingStop is NOT
// called within an on-going Fat operation, so we should
// take responsibility to cleanup and free the volume.
// Otherwise, the DriverBindingStop is called within an on-going
// Fat operation, we shouldn't check reference, so just let outer
// FatCleanupVolume do the task.
//
if (LockedByMe) {
FatCleanupVolume (Volume, NULL, EFI_SUCCESS);
FatReleaseLock ();
}
return EFI_SUCCESS;
}
EFI_STATUS
FatOpenDevice (
IN OUT FAT_VOLUME *Volume
)
/*++
Routine Description:
Detects FAT file system on Disk and set relevant fields of Volume
Arguments:
Volume - The volume structure.
Returns:
EFI_SUCCESS - The Fat File System is detected successfully
EFI_UNSUPPORTED - The volume is not FAT file system.
EFI_VOLUME_CORRUPTED - The volume is corrupted.
--*/
{
EFI_STATUS Status;
UINT32 BlockSize;
UINT32 DirtyMask;
EFI_DISK_IO_PROTOCOL *DiskIo;
FAT_BOOT_SECTOR FatBs;
FAT_VOLUME_TYPE FatType;
UINTN RootDirSectors;
UINTN FatLba;
UINTN RootLba;
UINTN FirstClusterLba;
UINTN Sectors;
UINTN SectorsPerFat;
UINT8 SectorsPerClusterAlignment;
UINT8 BlockAlignment;
//
// Read the FAT_BOOT_SECTOR BPB info
// This is the only part of FAT code that uses parent DiskIo,
// Others use FatDiskIo which utilizes a Cache.
//
DiskIo = Volume->DiskIo;
Status = DiskIo->ReadDisk (DiskIo, Volume->MediaId, 0, sizeof (FatBs), &FatBs);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_INIT, "FatOpenDevice: read of part_lba failed %r\n", Status));
return Status;
}
FatType = FatUndefined;
//
// Use LargeSectors if Sectors is 0
//
Sectors = FatBs.FatBsb.Sectors;
if (Sectors == 0) {
Sectors = FatBs.FatBsb.LargeSectors;
}
SectorsPerFat = FatBs.FatBsb.SectorsPerFat;
if (SectorsPerFat == 0) {
SectorsPerFat = FatBs.FatBse.Fat32Bse.LargeSectorsPerFat;
FatType = FAT32;
}
//
// Is boot sector a fat sector?
// (Note that so far we only know if the sector is FAT32 or not, we don't
// know if the sector is Fat16 or Fat12 until later when we can compute
// the volume size)
//
if (FatBs.FatBsb.ReservedSectors == 0 || FatBs.FatBsb.NumFats == 0 || Sectors == 0) {
return EFI_UNSUPPORTED;
}
if ((FatBs.FatBsb.SectorSize & (FatBs.FatBsb.SectorSize - 1)) != 0) {
return EFI_UNSUPPORTED;
}
BlockAlignment = (UINT8) HighBitSet32 (FatBs.FatBsb.SectorSize);
if (BlockAlignment > MAX_BLOCK_ALIGNMENT || BlockAlignment < MIN_BLOCK_ALIGNMENT) {
return EFI_UNSUPPORTED;
}
if ((FatBs.FatBsb.SectorsPerCluster & (FatBs.FatBsb.SectorsPerCluster - 1)) != 0) {
return EFI_UNSUPPORTED;
}
SectorsPerClusterAlignment = (UINT8) HighBitSet32 (FatBs.FatBsb.SectorsPerCluster);
if (SectorsPerClusterAlignment > MAX_SECTORS_PER_CLUSTER_ALIGNMENT) {
return EFI_UNSUPPORTED;
}
if (FatBs.FatBsb.Media <= 0xf7 &&
FatBs.FatBsb.Media != 0xf0 &&
FatBs.FatBsb.Media != 0x00 &&
FatBs.FatBsb.Media != 0x01
) {
return EFI_UNSUPPORTED;
}
//
// Initialize fields the volume information for this FatType
//
if (FatType != FAT32) {
if (FatBs.FatBsb.RootEntries == 0) {
return EFI_UNSUPPORTED;
}
//
// Unpack fat12, fat16 info
//
Volume->RootEntries = FatBs.FatBsb.RootEntries;
} else {
//
// If this is fat32, refuse to mount mirror-disabled volumes
//
if ((SectorsPerFat == 0 || FatBs.FatBse.Fat32Bse.FsVersion != 0) || (FatBs.FatBse.Fat32Bse.ExtendedFlags & 0x80)) {
return EFI_UNSUPPORTED;
}
//
// Unpack fat32 info
//
Volume->RootCluster = FatBs.FatBse.Fat32Bse.RootDirFirstCluster;
}
Volume->NumFats = FatBs.FatBsb.NumFats;
//
// Compute some fat locations
//
BlockSize = FatBs.FatBsb.SectorSize;
RootDirSectors = ((Volume->RootEntries * sizeof (FAT_DIRECTORY_ENTRY)) + (BlockSize - 1)) / BlockSize;
FatLba = FatBs.FatBsb.ReservedSectors;
RootLba = FatBs.FatBsb.NumFats * SectorsPerFat + FatLba;
FirstClusterLba = RootLba + RootDirSectors;
Volume->FatPos = FatLba * BlockSize;
Volume->FatSize = SectorsPerFat * BlockSize;
Volume->VolumeSize = LShiftU64 (Sectors, BlockAlignment);
Volume->RootPos = LShiftU64 (RootLba, BlockAlignment);
Volume->FirstClusterPos = LShiftU64 (FirstClusterLba, BlockAlignment);
Volume->MaxCluster = (Sectors - FirstClusterLba) >> SectorsPerClusterAlignment;
Volume->ClusterAlignment = (UINT8)(BlockAlignment + SectorsPerClusterAlignment);
Volume->ClusterSize = (UINTN)1 << (Volume->ClusterAlignment);
//
// If this is not a fat32, determine if it's a fat16 or fat12
//
if (FatType != FAT32) {
if (Volume->MaxCluster >= FAT_MAX_FAT16_CLUSTER) {
return EFI_VOLUME_CORRUPTED;
}
FatType = Volume->MaxCluster < FAT_MAX_FAT12_CLUSTER ? FAT12 : FAT16;
//
// fat12 & fat16 fat-entries are 2 bytes
//
Volume->FatEntrySize = sizeof (UINT16);
DirtyMask = FAT16_DIRTY_MASK;
} else {
if (Volume->MaxCluster < FAT_MAX_FAT16_CLUSTER) {
return EFI_VOLUME_CORRUPTED;
}
//
// fat32 fat-entries are 4 bytes
//
Volume->FatEntrySize = sizeof (UINT32);
DirtyMask = FAT32_DIRTY_MASK;
}
//
// Get the DirtyValue and NotDirtyValue
// We should keep the initial value as the NotDirtyValue
// in case the volume is dirty already
//
if (FatType != FAT12) {
Status = FatAccessVolumeDirty (Volume, READ_DISK, &Volume->NotDirtyValue);
if (EFI_ERROR (Status)) {
return Status;
}
Volume->DirtyValue = Volume->NotDirtyValue & DirtyMask;
}
//
// If present, read the fat hint info
//
if (FatType == FAT32) {
Volume->FreeInfoPos = FatBs.FatBse.Fat32Bse.FsInfoSector * BlockSize;
if (FatBs.FatBse.Fat32Bse.FsInfoSector != 0) {
FatDiskIo (Volume, READ_DISK, Volume->FreeInfoPos, sizeof (FAT_INFO_SECTOR), &Volume->FatInfoSector);
if (Volume->FatInfoSector.Signature == FAT_INFO_SIGNATURE &&
Volume->FatInfoSector.InfoBeginSignature == FAT_INFO_BEGIN_SIGNATURE &&
Volume->FatInfoSector.InfoEndSignature == FAT_INFO_END_SIGNATURE &&
Volume->FatInfoSector.FreeInfo.ClusterCount <= Volume->MaxCluster
) {
Volume->FreeInfoValid = TRUE;
}
}
}
//
// Just make up a FreeInfo.NextCluster for use by allocate cluster
//
if (FAT_MIN_CLUSTER > Volume->FatInfoSector.FreeInfo.NextCluster ||
Volume->FatInfoSector.FreeInfo.NextCluster > Volume->MaxCluster + 1
) {
Volume->FatInfoSector.FreeInfo.NextCluster = FAT_MIN_CLUSTER;
}
//
// We are now defining FAT Type
//
Volume->FatType = FatType;
ASSERT (FatType != FatUndefined);
return EFI_SUCCESS;
}
|