summaryrefslogtreecommitdiff
path: root/MdeModulePkg/Universal/EbcDxe/Ipf/EbcSupport.c
blob: b2cb6f6be060fec430a7c48fd4ac795ee460e49e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/** @file
  This module contains EBC support routines that are customized based on
  the target processor.

Copyright (c) 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution.  The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include "EbcInt.h"
#include "EbcExecute.h"
#include "EbcSupport.h"

STATIC
EFI_STATUS
WriteBundle (
  IN    VOID    *MemPtr,
  IN    UINT8   Template,
  IN    UINT64  Slot0,
  IN    UINT64  Slot1,
  IN    UINT64  Slot2
  );

STATIC
VOID
PushU64 (
  VM_CONTEXT *VmPtr,
  UINT64     Arg
  )
{
  //
  // Advance the VM stack down, and then copy the argument to the stack.
  // Hope it's aligned.
  //
  VmPtr->R[0] -= sizeof (UINT64);
  *(UINT64 *) VmPtr->R[0] = Arg;
}

STATIC
UINT64
EbcInterpret (
  UINT64      Arg1,
  ...
  )
{
  //
  // Create a new VM context on the stack
  //
  VM_CONTEXT  VmContext;
  UINTN       Addr;
  EFI_STATUS  Status;
  UINTN       StackIndex;
  VA_LIST     List;
  UINT64      Arg2;
  UINT64      Arg3;
  UINT64      Arg4;
  UINT64      Arg5;
  UINT64      Arg6;
  UINT64      Arg7;
  UINT64      Arg8;
  UINT64      Arg9;
  UINT64      Arg10;
  UINT64      Arg11;
  UINT64      Arg12;
  UINT64      Arg13;
  UINT64      Arg14;
  UINT64      Arg15;
  UINT64      Arg16;
  //
  // Get the EBC entry point from the processor register. Make sure you don't
  // call any functions before this or you could mess up the register the
  // entry point is passed in.
  //
  Addr = EbcLLGetEbcEntryPoint ();
  //
  // Need the args off the stack.
  //
  VA_START (List, Arg1);
  Arg2      = VA_ARG (List, UINT64);
  Arg3      = VA_ARG (List, UINT64);
  Arg4      = VA_ARG (List, UINT64);
  Arg5      = VA_ARG (List, UINT64);
  Arg6      = VA_ARG (List, UINT64);
  Arg7      = VA_ARG (List, UINT64);
  Arg8      = VA_ARG (List, UINT64);
  Arg9      = VA_ARG (List, UINT64);
  Arg10     = VA_ARG (List, UINT64);
  Arg11     = VA_ARG (List, UINT64);
  Arg12     = VA_ARG (List, UINT64);
  Arg13     = VA_ARG (List, UINT64);
  Arg14     = VA_ARG (List, UINT64);
  Arg15     = VA_ARG (List, UINT64);
  Arg16     = VA_ARG (List, UINT64);
  //
  // Now clear out our context
  //
  ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
  //
  // Set the VM instruction pointer to the correct location in memory.
  //
  VmContext.Ip = (VMIP) Addr;
  //
  // Initialize the stack pointer for the EBC. Get the current system stack
  // pointer and adjust it down by the max needed for the interpreter.
  //
  //
  // NOTE: Eventually we should have the interpreter allocate memory
  //       for stack space which it will use during its execution. This
  //       would likely improve performance because the interpreter would
  //       no longer be required to test each memory access and adjust
  //       those reading from the stack gap.
  //
  // For IPF, the stack looks like (assuming 10 args passed)
  //   arg10
  //   arg9       (Bottom of high stack)
  //   [ stack gap for interpreter execution ]
  //   [ magic value for detection of stack corruption ]
  //   arg8       (Top of low stack)
  //   arg7....
  //   arg1
  //   [ 64-bit return address ]
  //   [ ebc stack ]
  // If the EBC accesses memory in the stack gap, then we assume that it's
  // actually trying to access args9 and greater. Therefore we need to
  // adjust memory accesses in this region to point above the stack gap.
  //
  //
  // Now adjust the EBC stack pointer down to leave a gap for interpreter
  // execution. Then stuff a magic value there.
  //

  Status = GetEBCStack((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
  if (EFI_ERROR(Status)) {
    return Status;
  }
  VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
  VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
  VmContext.HighStackBottom = (UINTN) VmContext.R[0];
  VmContext.R[0] -= sizeof (UINTN);


  PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);
  VmContext.StackMagicPtr = (UINTN *) VmContext.R[0];
  VmContext.LowStackTop   = (UINTN) VmContext.R[0];
  //
  // Push the EBC arguments on the stack. Does not matter that they may not
  // all be valid.
  //
  PushU64 (&VmContext, Arg16);
  PushU64 (&VmContext, Arg15);
  PushU64 (&VmContext, Arg14);
  PushU64 (&VmContext, Arg13);
  PushU64 (&VmContext, Arg12);
  PushU64 (&VmContext, Arg11);
  PushU64 (&VmContext, Arg10);
  PushU64 (&VmContext, Arg9);
  PushU64 (&VmContext, Arg8);
  PushU64 (&VmContext, Arg7);
  PushU64 (&VmContext, Arg6);
  PushU64 (&VmContext, Arg5);
  PushU64 (&VmContext, Arg4);
  PushU64 (&VmContext, Arg3);
  PushU64 (&VmContext, Arg2);
  PushU64 (&VmContext, Arg1);
  //
  // Push a bogus return address on the EBC stack because the
  // interpreter expects one there. For stack alignment purposes on IPF,
  // EBC return addresses are always 16 bytes. Push a bogus value as well.
  //
  PushU64 (&VmContext, 0);
  PushU64 (&VmContext, 0xDEADBEEFDEADBEEF);
  VmContext.StackRetAddr = (UINT64) VmContext.R[0];
  //
  // Begin executing the EBC code
  //
  EbcExecute (&VmContext);
  //
  // Return the value in R[7] unless there was an error
  //
  ReturnEBCStack(StackIndex);
  return (UINT64) VmContext.R[7];
}


/**
  IPF implementation.
  Begin executing an EBC image. The address of the entry point is passed
  in via a processor register, so we'll need to make a call to get the
  value.

  @param  ImageHandle            image handle for the EBC application we're
                                 executing
  @param  SystemTable            standard system table passed into an driver's
                                 entry point

  @return The value returned by the EBC application we're going to run.

**/
STATIC
UINT64
ExecuteEbcImageEntryPoint (
  IN EFI_HANDLE           ImageHandle,
  IN EFI_SYSTEM_TABLE     *SystemTable
  )
{
  //
  // Create a new VM context on the stack
  //
  VM_CONTEXT  VmContext;
  UINTN       Addr;
  EFI_STATUS  Status;
  UINTN       StackIndex;

  //
  // Get the EBC entry point from the processor register. Make sure you don't
  // call any functions before this or you could mess up the register the
  // entry point is passed in.
  //
  Addr = EbcLLGetEbcEntryPoint ();

  //
  // Now clear out our context
  //
  ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));

  //
  // Save the image handle so we can track the thunks created for this image
  //
  VmContext.ImageHandle = ImageHandle;
  VmContext.SystemTable = SystemTable;

  //
  // Set the VM instruction pointer to the correct location in memory.
  //
  VmContext.Ip = (VMIP) Addr;

  //
  // Get the stack pointer. This is the bottom of the upper stack.
  //
  Addr                      = EbcLLGetStackPointer ();

  Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);
  if (EFI_ERROR(Status)) {
    return Status;
  }
  VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
  VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
  VmContext.HighStackBottom = (UINTN) VmContext.R[0];
  VmContext.R[0] -= sizeof (UINTN);


  //
  // Allocate stack space for the interpreter. Then put a magic value
  // at the bottom so we can detect stack corruption.
  //
  PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);
  VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];

  //
  // When we thunk to external native code, we copy the last 8 qwords from
  // the EBC stack into the processor registers, and adjust the stack pointer
  // up. If the caller is not passing 8 parameters, then we've moved the
  // stack pointer up into the stack gap. If this happens, then the caller
  // can mess up the stack gap contents (in particular our magic value).
  // Therefore, leave another gap below the magic value. Pick 10 qwords down,
  // just as a starting point.
  //
  VmContext.R[0] -= 10 * sizeof (UINT64);

  //
  // Align the stack pointer such that after pushing the system table,
  // image handle, and return address on the stack, it's aligned on a 16-byte
  // boundary as required for IPF.
  //
  VmContext.R[0] &= (INT64)~0x0f;
  VmContext.LowStackTop = (UINTN) VmContext.R[0];
  //
  // Simply copy the image handle and system table onto the EBC stack.
  // Greatly simplifies things by not having to spill the args
  //
  PushU64 (&VmContext, (UINT64) SystemTable);
  PushU64 (&VmContext, (UINT64) ImageHandle);

  //
  // Interpreter assumes 64-bit return address is pushed on the stack.
  // IPF does not do this so pad the stack accordingly. Also, a
  // "return address" is 16 bytes as required for IPF stack alignments.
  //
  PushU64 (&VmContext, (UINT64) 0);
  PushU64 (&VmContext, (UINT64) 0x1234567887654321);
  VmContext.StackRetAddr = (UINT64) VmContext.R[0];

  //
  // Begin executing the EBC code
  //
  EbcExecute (&VmContext);

  //
  // Return the value in R[7] unless there was an error
  //
  ReturnEBCStack(StackIndex);
  return (UINT64) VmContext.R[7];
}


/**
  Create thunks for an EBC image entry point, or an EBC protocol service.

  @param  ImageHandle            Image handle for the EBC image. If not null, then
                                 we're creating a thunk for an image entry point.
  @param  EbcEntryPoint          Address of the EBC code that the thunk is to call
  @param  Thunk                  Returned thunk we create here
  @param  Flags                  Flags indicating options for creating the thunk

  @return Standard EFI status.

**/
EFI_STATUS
EbcCreateThunks (
  IN EFI_HANDLE   ImageHandle,
  IN VOID         *EbcEntryPoint,
  OUT VOID        **Thunk,
  IN  UINT32      Flags
  )
{
  UINT8       *Ptr;
  UINT8       *ThunkBase;
  UINT64      Addr;
  UINT64      Code[3];    // Code in a bundle
  UINT64      RegNum;     // register number for MOVL
  UINT64      I;          // bits of MOVL immediate data
  UINT64      Ic;         // bits of MOVL immediate data
  UINT64      Imm5c;      // bits of MOVL immediate data
  UINT64      Imm9d;      // bits of MOVL immediate data
  UINT64      Imm7b;      // bits of MOVL immediate data
  UINT64      Br;         // branch register for loading and jumping
  UINT64      *Data64Ptr;
  UINT32      ThunkSize;
  UINT32      Size;

  //
  // Check alignment of pointer to EBC code, which must always be aligned
  // on a 2-byte boundary.
  //
  if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
    return EFI_INVALID_PARAMETER;
  }
  //
  // Allocate memory for the thunk. Make the (most likely incorrect) assumption
  // that the returned buffer is not aligned, so round up to the next
  // alignment size.
  //
  Size      = EBC_THUNK_SIZE + EBC_THUNK_ALIGNMENT - 1;
  ThunkSize = Size;
  Ptr = AllocatePool (Size);

  if (Ptr == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }
  //
  // Save the start address of the buffer.
  //
  ThunkBase = Ptr;

  //
  // Make sure it's aligned for code execution. If not, then
  // round up.
  //
  if ((UINT32) (UINTN) Ptr & (EBC_THUNK_ALIGNMENT - 1)) {
    Ptr = (UINT8 *) (((UINTN) Ptr + (EBC_THUNK_ALIGNMENT - 1)) &~ (UINT64) (EBC_THUNK_ALIGNMENT - 1));
  }
  //
  // Return the pointer to the thunk to the caller to user as the
  // image entry point.
  //
  *Thunk = (VOID *) Ptr;

  //
  // Clear out the thunk entry
  // ZeroMem(Ptr, Size);
  //
  // For IPF, when you do a call via a function pointer, the function pointer
  // actually points to a function descriptor which consists of a 64-bit
  // address of the function, followed by a 64-bit gp for the function being
  // called. See the the Software Conventions and Runtime Architecture Guide
  // for details.
  // So first off in our thunk, create a descriptor for our actual thunk code.
  // This means we need to create a pointer to the thunk code (which follows
  // the descriptor we're going to create), followed by the gp of the Vm
  // interpret function we're going to eventually execute.
  //
  Data64Ptr = (UINT64 *) Ptr;

  //
  // Write the function's entry point (which is our thunk code that follows
  // this descriptor we're creating).
  //
  *Data64Ptr = (UINT64) (Data64Ptr + 2);
  //
  // Get the gp from the descriptor for EbcInterpret and stuff it in our thunk
  // descriptor.
  //
  *(Data64Ptr + 1) = *(UINT64 *) ((UINT64 *) (UINTN) EbcInterpret + 1);
  //
  // Advance our thunk data pointer past the descriptor. Since the
  // descriptor consists of 16 bytes, the pointer is still aligned for
  // IPF code execution (on 16-byte boundary).
  //
  Ptr += sizeof (UINT64) * 2;

  //
  // *************************** MAGIC BUNDLE ********************************
  //
  // Write magic code bundle for: movl r8 = 0xca112ebcca112ebc to help the VM
  // to recognize it is a thunk.
  //
  Addr = (UINT64) 0xCA112EBCCA112EBC;

  //
  // Now generate the code bytes. First is nop.m 0x0
  //
  Code[0] = OPCODE_NOP;

  //
  // Next is simply Addr[62:22] (41 bits) of the address
  //
  Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;

  //
  // Extract bits from the address for insertion into the instruction
  // i = Addr[63:63]
  //
  I = RShiftU64 (Addr, 63) & 0x01;
  //
  // ic = Addr[21:21]
  //
  Ic = RShiftU64 (Addr, 21) & 0x01;
  //
  // imm5c = Addr[20:16] for 5 bits
  //
  Imm5c = RShiftU64 (Addr, 16) & 0x1F;
  //
  // imm9d = Addr[15:7] for 9 bits
  //
  Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
  //
  // imm7b = Addr[6:0] for 7 bits
  //
  Imm7b = Addr & 0x7F;

  //
  // The EBC entry point will be put into r8, so r8 can be used here
  // temporary. R8 is general register and is auto-serialized.
  //
  RegNum = 8;

  //
  // Next is jumbled data, including opcode and rest of address
  //
  Code[2] = LShiftU64 (Imm7b, 13);
  Code[2] = Code[2] | LShiftU64 (0x00, 20);   // vc
  Code[2] = Code[2] | LShiftU64 (Ic, 21);
  Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
  Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
  Code[2] = Code[2] | LShiftU64 (I, 36);
  Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
  Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);

  WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);

  //
  // *************************** FIRST BUNDLE ********************************
  //
  // Write code bundle for: movl r8 = EBC_ENTRY_POINT so we pass
  // the ebc entry point in to the interpreter function via a processor
  // register.
  // Note -- we could easily change this to pass in a pointer to a structure
  // that contained, among other things, the EBC image's entry point. But
  // for now pass it directly.
  //
  Ptr += 16;
  Addr = (UINT64) EbcEntryPoint;

  //
  // Now generate the code bytes. First is nop.m 0x0
  //
  Code[0] = OPCODE_NOP;

  //
  // Next is simply Addr[62:22] (41 bits) of the address
  //
  Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;

  //
  // Extract bits from the address for insertion into the instruction
  // i = Addr[63:63]
  //
  I = RShiftU64 (Addr, 63) & 0x01;
  //
  // ic = Addr[21:21]
  //
  Ic = RShiftU64 (Addr, 21) & 0x01;
  //
  // imm5c = Addr[20:16] for 5 bits
  //
  Imm5c = RShiftU64 (Addr, 16) & 0x1F;
  //
  // imm9d = Addr[15:7] for 9 bits
  //
  Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
  //
  // imm7b = Addr[6:0] for 7 bits
  //
  Imm7b = Addr & 0x7F;

  //
  // Put the EBC entry point in r8, which is the location of the return value
  // for functions.
  //
  RegNum = 8;

  //
  // Next is jumbled data, including opcode and rest of address
  //
  Code[2] = LShiftU64 (Imm7b, 13);
  Code[2] = Code[2] | LShiftU64 (0x00, 20);   // vc
  Code[2] = Code[2] | LShiftU64 (Ic, 21);
  Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
  Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
  Code[2] = Code[2] | LShiftU64 (I, 36);
  Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
  Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);

  WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);

  //
  // *************************** NEXT BUNDLE *********************************
  //
  // Write code bundle for:
  //   movl rx = offset_of(EbcInterpret|ExecuteEbcImageEntryPoint)
  //
  // Advance pointer to next bundle, then compute the offset from this bundle
  // to the address of the entry point of the interpreter.
  //
  Ptr += 16;
  if (Flags & FLAG_THUNK_ENTRY_POINT) {
    Addr = (UINT64) ExecuteEbcImageEntryPoint;
  } else {
    Addr = (UINT64) EbcInterpret;
  }
  //
  // Indirection on Itanium-based systems
  //
  Addr = *(UINT64 *) Addr;

  //
  // Now write the code to load the offset into a register
  //
  Code[0] = OPCODE_NOP;

  //
  // Next is simply Addr[62:22] (41 bits) of the address
  //
  Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;

  //
  // Extract bits from the address for insertion into the instruction
  // i = Addr[63:63]
  //
  I = RShiftU64 (Addr, 63) & 0x01;
  //
  // ic = Addr[21:21]
  //
  Ic = RShiftU64 (Addr, 21) & 0x01;
  //
  // imm5c = Addr[20:16] for 5 bits
  //
  Imm5c = RShiftU64 (Addr, 16) & 0x1F;
  //
  // imm9d = Addr[15:7] for 9 bits
  //
  Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
  //
  // imm7b = Addr[6:0] for 7 bits
  //
  Imm7b = Addr & 0x7F;

  //
  // Put it in r31, a scratch register
  //
  RegNum = 31;

  //
  // Next is jumbled data, including opcode and rest of address
  //
  Code[2] =   LShiftU64(Imm7b, 13);
  Code[2] = Code[2] | LShiftU64 (0x00, 20);   // vc
  Code[2] = Code[2] | LShiftU64 (Ic, 21);
  Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
  Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
  Code[2] = Code[2] | LShiftU64 (I, 36);
  Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
  Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);

  WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);

  //
  // *************************** NEXT BUNDLE *********************************
  //
  // Load branch register with EbcInterpret() function offset from the bundle
  // address: mov b6 = RegNum
  //
  // See volume 3 page 4-29 of the Arch. Software Developer's Manual.
  //
  // Advance pointer to next bundle
  //
  Ptr += 16;
  Code[0] = OPCODE_NOP;
  Code[1] = OPCODE_NOP;
  Code[2] = OPCODE_MOV_BX_RX;

  //
  // Pick a branch register to use. Then fill in the bits for the branch
  // register and user register (same user register as previous bundle).
  //
  Br = 6;
  Code[2] |= LShiftU64 (Br, 6);
  Code[2] |= LShiftU64 (RegNum, 13);
  WriteBundle ((VOID *) Ptr, 0x0d, Code[0], Code[1], Code[2]);

  //
  // *************************** NEXT BUNDLE *********************************
  //
  // Now do the branch:  (p0) br.cond.sptk.few b6
  //
  // Advance pointer to next bundle.
  // Fill in the bits for the branch register (same reg as previous bundle)
  //
  Ptr += 16;
  Code[0] = OPCODE_NOP;
  Code[1] = OPCODE_NOP;
  Code[2] = OPCODE_BR_COND_SPTK_FEW;
  Code[2] |= LShiftU64 (Br, 13);
  WriteBundle ((VOID *) Ptr, 0x1d, Code[0], Code[1], Code[2]);

  //
  // Add the thunk to our list of allocated thunks so we can do some cleanup
  // when the image is unloaded. Do this last since the Add function flushes
  // the instruction cache for us.
  //
  EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);

  //
  // Done
  //
  return EFI_SUCCESS;
}


/**
  Given raw bytes of Itanium based code, format them into a bundle and
  write them out.

  @param  MemPtr                 pointer to memory location to write the bundles to
  @param  Template               5-bit template
  @param  Slot0-2                instruction slot data for the bundle

  @retval EFI_INVALID_PARAMETER  Pointer is not aligned
  @retval      No                more than 5 bits in template
  @retval      More              than 41 bits used in code
  @retval EFI_SUCCESS            All data is written.

**/
STATIC
EFI_STATUS
WriteBundle (
  IN    VOID    *MemPtr,
  IN    UINT8   Template,
  IN    UINT64  Slot0,
  IN    UINT64  Slot1,
  IN    UINT64  Slot2
  )
{
  UINT8   *BPtr;
  UINT32  Index;
  UINT64  Low64;
  UINT64  High64;

  //
  // Verify pointer is aligned
  //
  if ((UINT64) MemPtr & 0xF) {
    return EFI_INVALID_PARAMETER;
  }
  //
  // Verify no more than 5 bits in template
  //
  if (Template &~0x1F) {
    return EFI_INVALID_PARAMETER;
  }
  //
  // Verify max of 41 bits used in code
  //
  if ((Slot0 | Slot1 | Slot2) &~0x1ffffffffff) {
    return EFI_INVALID_PARAMETER;
  }

  Low64   = LShiftU64 (Slot1, 46);
  Low64   = Low64 | LShiftU64 (Slot0, 5) | Template;

  High64  = RShiftU64 (Slot1, 18);
  High64  = High64 | LShiftU64 (Slot2, 23);

  //
  // Now write it all out
  //
  BPtr = (UINT8 *) MemPtr;
  for (Index = 0; Index < 8; Index++) {
    *BPtr = (UINT8) Low64;
    Low64 = RShiftU64 (Low64, 8);
    BPtr++;
  }

  for (Index = 0; Index < 8; Index++) {
    *BPtr   = (UINT8) High64;
    High64  = RShiftU64 (High64, 8);
    BPtr++;
  }

  return EFI_SUCCESS;
}


/**
  This function is called to execute an EBC CALLEX instruction.
  The function check the callee's content to see whether it is common native
  code or a thunk to another piece of EBC code.
  If the callee is common native code, use EbcLLCAllEXASM to manipulate,
  otherwise, set the VM->IP to target EBC code directly to avoid another VM
  be startup which cost time and stack space.

  @param  VmPtr                  Pointer to a VM context.
  @param  FuncAddr               Callee's address
  @param  NewStackPointer        New stack pointer after the call
  @param  FramePtr               New frame pointer after the call
  @param  Size                   The size of call instruction

  @return None.

**/
VOID
EbcLLCALLEX (
  IN VM_CONTEXT   *VmPtr,
  IN UINTN        FuncAddr,
  IN UINTN        NewStackPointer,
  IN VOID         *FramePtr,
  IN UINT8        Size
  )
{
  UINTN    IsThunk;
  UINTN    TargetEbcAddr;
  UINTN    CodeOne18;
  UINTN    CodeOne23;
  UINTN    CodeTwoI;
  UINTN    CodeTwoIc;
  UINTN    CodeTwo7b;
  UINTN    CodeTwo5c;
  UINTN    CodeTwo9d;
  UINTN    CalleeAddr;

  IsThunk       = 1;
  TargetEbcAddr = 0;

  //
  // FuncAddr points to the descriptor of the target instructions.
  //
  CalleeAddr = *((UINT64 *)FuncAddr);

  //
  // Processor specific code to check whether the callee is a thunk to EBC.
  //
  if (*((UINT64 *)CalleeAddr) != 0xBCCA000100000005) {
    IsThunk = 0;
    goto Action;
  }
  if (*((UINT64 *)CalleeAddr + 1) != 0x697623C1004A112E)  {
    IsThunk = 0;
    goto Action;
  }

  CodeOne18 = RShiftU64 (*((UINT64 *)CalleeAddr + 2), 46) & 0x3FFFF;
  CodeOne23 = (*((UINT64 *)CalleeAddr + 3)) & 0x7FFFFF;
  CodeTwoI  = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 59) & 0x1;
  CodeTwoIc = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 44) & 0x1;
  CodeTwo7b = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 36) & 0x7F;
  CodeTwo5c = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 45) & 0x1F;
  CodeTwo9d = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 50) & 0x1FF;

  TargetEbcAddr = CodeTwo7b;
  TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo9d, 7);
  TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo5c, 16);
  TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoIc, 21);
  TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne18, 22);
  TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne23, 40);
  TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoI, 63);

Action:
  if (IsThunk == 1){
    //
    // The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
    // put our return address and frame pointer on the VM stack.
    // Then set the VM's IP to new EBC code.
    //
    VmPtr->R[0] -= 8;
    VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], (UINTN) FramePtr);
    VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->R[0];
    VmPtr->R[0] -= 8;
    VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], (UINT64) (VmPtr->Ip + Size));

    VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;
  } else {
    //
    // The callee is not a thunk to EBC, call native code.
    //
    EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);

    //
    // Get return value and advance the IP.
    //
    VmPtr->R[7] = EbcLLGetReturnValue ();
    VmPtr->Ip += Size;
  }
}