1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/** @file
EFI ARP Protocol Definition
The EFI ARP Service Binding Protocol is used to locate EFI
ARP Protocol drivers to create and destroy child of the
driver to communicate with other host using ARP protocol.
The EFI ARP Protocol provides services to map IP network
address to hardware address used by a data link protocol.
Copyright (c) 2006 - 2008, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __EFI_ARP_PROTOCOL_H__
#define __EFI_ARP_PROTOCOL_H__
#define EFI_ARP_SERVICE_BINDING_PROTOCOL_GUID \
{ \
0xf44c00ee, 0x1f2c, 0x4a00, {0xaa, 0x9, 0x1c, 0x9f, 0x3e, 0x8, 0x0, 0xa3 } \
}
#define EFI_ARP_PROTOCOL_GUID \
{ \
0xf4b427bb, 0xba21, 0x4f16, {0xbc, 0x4e, 0x43, 0xe4, 0x16, 0xab, 0x61, 0x9c } \
}
typedef struct _EFI_ARP_PROTOCOL EFI_ARP_PROTOCOL;
typedef struct {
///
/// Length in bytes of this entry.
///
UINT32 Size;
///
/// Set to TRUE if this entry is a "deny" entry.
/// Set to FALSE if this entry is a "normal" entry.
///
BOOLEAN DenyFlag;
///
/// Set to TRUE if this entry will not time out.
/// Set to FALSE if this entry will time out.
///
BOOLEAN StaticFlag;
///
/// 16-bit ARP hardware identifier number.
///
UINT16 HwAddressType;
///
/// 16-bit protocol type number.
///
UINT16 SwAddressType;
///
/// Length of the hardware address.
///
UINT8 HwAddressLength;
///
/// Length of the protocol address.
///
UINT8 SwAddressLength;
} EFI_ARP_FIND_DATA;
typedef struct {
///
/// 16-bit protocol type number in host byte order.
///
UINT16 SwAddressType; ///< Host byte order
///
/// Length in bytes of the station's protocol address to register.
///
UINT8 SwAddressLength;
///
/// Pointer to the first byte of the protocol address to register. For
/// example, if SwAddressType is 0x0800 (IP), then
/// StationAddress points to the first byte of this station's IP
/// address stored in network byte order.
///
VOID *StationAddress; ///< Network byte order
///
/// The timeout value in 100-ns units that is associated with each
/// new dynamic ARP cache entry. If it is set to zero, the value is
/// implementation-specific.
///
UINT32 EntryTimeOut;
///
/// The number of retries before a MAC address is resolved. If it is
/// set to zero, the value is implementation-specific.
///
UINT32 RetryCount;
///
/// The timeout value in 100-ns units that is used to wait for the ARP
/// reply packet or the timeout value between two retries. Set to zero
/// to use implementation-specific value.
///
UINT32 RetryTimeOut;
} EFI_ARP_CONFIG_DATA;
/**
Assigns a station address (protocol type and network address) to this instance of the ARP cache.
@param This A pointer to the EFI_ARP_PROTOCOL instance.
@param ConfigData A pointer to the EFI_ARP_CONFIG_DATA structure.Buffer
@retval EFI_SUCCESS The new station address was successfully registered.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL.
SwAddressLength is zero when ConfigData is not NULL.
StationAddress is NULL when ConfigData is not NULL.
@retval EFI_ACCESS_DENIED The SwAddressType, SwAddressLength, or
StationAddress is different from the one that is already
registered.
@retval EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be allocated.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_CONFIGURE)(
IN EFI_ARP_PROTOCOL *This,
IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL
);
/**
Inserts an entry to the ARP cache.
@param This A pointer to the EFI_ARP_PROTOCOL instance.
@param DenyFlag Set to TRUE if this entry is a "deny" entry. Set to FALSE if this
entry is a "normal" entry.
@param TargetSwAddress Pointer to a protocol address to add (or deny). May be set to
NULL if DenyFlag is TRUE.
@param TargetHwAddress Pointer to a hardware address to add (or deny). May be set to
NULL if DenyFlag is TRUE.
@param TimeoutValue Time in 100-ns units that this entry will remain in the ARP
cache. A value of zero means that the entry is permanent. A
nonzero value will override the one given by Configure() if
the entry to be added is dynamic entry.
@param Overwrite If TRUE, the matching cache entry will be overwritten with the
supplied parameters. If FALSE, EFI_ACCESS_DENIED is returned
if the corresponding cache entry already exists.
@retval EFI_SUCCESS The entry has been added or updated.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. DenyFlag is FALSE and TargetHwAddress is NULL.
DenyFlag is FALSE and TargetSwAddress is NULL. TargetHwAddress is NULL and TargetSwAddress is NULL.
Both TargetSwAddress and TargetHwAddress are not NULL when DenyFlag is TRUE.
@retval EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated.
@retval EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite is not true.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_ADD)(
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN DenyFlag,
IN VOID *TargetSwAddress OPTIONAL,
IN VOID *TargetHwAddress OPTIONAL,
IN UINT32 TimeoutValue,
IN BOOLEAN Overwrite
);
/**
Locates one or more entries in the ARP cache.
@param This A pointer to the EFI_ARP_PROTOCOL instance.
@param BySwAddress Set to TRUE to look for matching software protocol addresses.
Set to FALSE to look for matching hardware protocol addresses.
@param AddressBuffer Pointer to address buffer. Set to NULL to match all addresses.
@param EntryLength The size of an entry in the entries buffer. To keep the
EFI_ARP_FIND_DATA structure properly aligned, this field
may be longer than sizeof(EFI_ARP_FIND_DATA) plus
the length of the software and hardware addresses.
@param EntryCount The number of ARP cache entries that are found by the specified criteria.
@param Entries Pointer to the buffer that will receive the ARP cache entries.
@param Refresh Set to TRUE to refresh the timeout value of the matching ARP
cache entry.
@retval EFI_SUCCESS The requested ARP cache entries were copied into the buffer.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. Both EntryCount and EntryLength are NULL,
when Refresh is FALSE.
@retval EFI_NOT_FOUND No matching entries were found.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_FIND)(
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN BySwAddress,
IN VOID *AddressBuffer OPTIONAL,
OUT UINT32 *EntryLength OPTIONAL,
OUT UINT32 *EntryCount OPTIONAL,
OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,
IN BOOLEAN Refresh
);
/**
Removes entries from the ARP cache.
@param This A pointer to the EFI_ARP_PROTOCOL instance.
@param BySwAddress Set to TRUE to delete matching protocol addresses.
Set to FALSE to delete matching hardware addresses.
@param AddressBuffer Pointer to the address buffer that is used as a key to look for the
cache entry. Set to NULL to delete all entries.
@retval EFI_SUCCESS The entry was removed from the ARP cache.
@retval EFI_INVALID_PARAMETER This is NULL.
@retval EFI_NOT_FOUND The specified deletion key was not found.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_DELETE)(
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN BySwAddress,
IN VOID *AddressBuffer OPTIONAL
);
/**
Removes all dynamic ARP cache entries that were added by this interface.
@param This A pointer to the EFI_ARP_PROTOCOL instance.
@retval EFI_SUCCESS The cache has been flushed.
@retval EFI_INVALID_PARAMETER This is NULL.
@retval EFI_NOT_FOUND There are no matching dynamic cache entries.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_FLUSH)(
IN EFI_ARP_PROTOCOL *This
);
/**
Starts an ARP request session.
@param This A pointer to the EFI_ARP_PROTOCOL instance.
@param TargetSwAddress Pointer to the protocol address to resolve.
@param ResolvedEvent Pointer to the event that will be signaled when the address is
resolved or some error occurs.
@param TargetHwAddress Pointer to the buffer for the resolved hardware address in
network byte order. The buffer must be large enough to hold the
resulting hardware address. TargetHwAddress must not be
NULL.
@retval EFI_SUCCESS The data was copied from the ARP cache into the
TargetHwAddress buffer.
@retval EFI_INVALID_PARAMETER This or TargetHwAddress is NULL.
@retval EFI_ACCESS_DENIED The requested address is not present in the normal ARP cache but
is present in the deny address list. Outgoing traffic to that address is
forbidden.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
@retval EFI_NOT_READY The request has been started and is not finished.
@retval EFI_UNSUPPORTED The requested conversion is not supported in this implementation or
configuration.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_REQUEST)(
IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL,
OUT VOID *TargetHwAddress
);
/**
Cancels an ARP request session.
@param This A pointer to the EFI_ARP_PROTOCOL instance.
@param TargetSwAddress Pointer to the protocol address in previous request session.
@param ResolvedEvent Pointer to the event that is used as the notification event in
previous request session.
@retval EFI_SUCCESS The pending request session(s) is/are aborted and corresponding
event(s) is/are signaled.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL.
TargetSwAddress is not NULL and ResolvedEvent is NULL.
TargetSwAddress is NULL and ResolvedEvent is not NULL
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
@retval EFI_NOT_FOUND The request is not issued by
EFI_ARP_PROTOCOL.Request().
**/
typedef
EFI_STATUS
(EFIAPI *EFI_ARP_CANCEL)(
IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL
);
///
/// ARP is used to resolve local network protocol addresses into
/// network hardware addresses.
///
struct _EFI_ARP_PROTOCOL {
EFI_ARP_CONFIGURE Configure;
EFI_ARP_ADD Add;
EFI_ARP_FIND Find;
EFI_ARP_DELETE Delete;
EFI_ARP_FLUSH Flush;
EFI_ARP_REQUEST Request;
EFI_ARP_CANCEL Cancel;
};
extern EFI_GUID gEfiArpServiceBindingProtocolGuid;
extern EFI_GUID gEfiArpProtocolGuid;
#endif
|