1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/** @file
This file provides control over block-oriented firmware devices.
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
@par Revision Reference: PI
Version 1.0 and 1.2.
**/
#ifndef __FIRMWARE_VOLUME_BLOCK_H__
#define __FIRMWARE_VOLUME_BLOCK_H__
//
// EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL is defined in PI 1.0 spec and its GUID value
// is later updated to be the same as that of EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
// defined in PI 1.2 spec.
//
#define EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL_GUID \
{ 0x8f644fa9, 0xe850, 0x4db1, {0x9c, 0xe2, 0xb, 0x44, 0x69, 0x8e, 0x8d, 0xa4 } }
#define EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL_GUID \
{ 0x8f644fa9, 0xe850, 0x4db1, {0x9c, 0xe2, 0xb, 0x44, 0x69, 0x8e, 0x8d, 0xa4 } }
typedef struct _EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL;
typedef EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL;
/**
The GetAttributes() function retrieves the attributes and
current settings of the block.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the
attributes and current settings are
returned. Type EFI_FVB_ATTRIBUTES_2 is defined
in EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were
returned.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_ATTRIBUTES)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);
/**
The SetAttributes() function sets configurable firmware volume
attributes and returns the new settings of the firmware volume.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Attributes On input, Attributes is a pointer to
EFI_FVB_ATTRIBUTES_2 that contains the
desired firmware volume settings. On
successful return, it contains the new
settings of the firmware volume. Type
EFI_FVB_ATTRIBUTES_2 is defined in
EFI_FIRMWARE_VOLUME_HEADER.
@retval EFI_SUCCESS The firmware volume attributes were returned.
@retval EFI_INVALID_PARAMETER The attributes requested are in
conflict with the capabilities
as declared in the firmware
volume header.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_SET_ATTRIBUTES)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes
);
/**
The GetPhysicalAddress() function retrieves the base address of
a memory-mapped firmware volume. This function should be called
only for memory-mapped firmware volumes.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Address Pointer to a caller-allocated
EFI_PHYSICAL_ADDRESS that, on successful
return from GetPhysicalAddress(), contains the
base address of the firmware volume.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_PHYSICAL_ADDRESS)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
OUT EFI_PHYSICAL_ADDRESS *Address
);
/**
The GetBlockSize() function retrieves the size of the requested
block. It also returns the number of additional blocks with
the identical size. The GetBlockSize() function is used to
retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER).
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba Indicates the block for which to return the size.
@param BlockSize Pointer to a caller-allocated UINTN in which
the size of the block is returned.
@param NumberOfBlocks Pointer to a caller-allocated UINTN in
which the number of consecutive blocks,
starting with Lba, is returned. All
blocks in this range have a size of
BlockSize.
@retval EFI_SUCCESS The firmware volume base address was returned.
@retval EFI_INVALID_PARAMETER The requested LBA is out of range.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_GET_BLOCK_SIZE)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
OUT UINTN *BlockSize,
OUT UINTN *NumberOfBlocks
);
/**
Reads the specified number of bytes into a buffer from the specified block.
The Read() function reads the requested number of bytes from the
requested block and stores them in the provided buffer.
Implementations should be mindful that the firmware volume
might be in the ReadDisabled state. If it is in this state,
the Read() function must return the status code
EFI_ACCESS_DENIED without modifying the contents of the
buffer. The Read() function must also prevent spanning block
boundaries. If a read is requested that would span a block
boundary, the read must read up to the boundary but not
beyond. The output parameter NumBytes must be set to correctly
indicate the number of bytes actually read. The caller must be
aware that a read may be partially completed.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index
from which to read.
@param Offset Offset into the block at which to begin reading.
@param NumBytes Pointer to a UINTN. At entry, *NumBytes
contains the total size of the buffer. At
exit, *NumBytes contains the total number of
bytes read.
@param Buffer Pointer to a caller-allocated buffer that will
be used to hold the data that is read.
@retval EFI_SUCCESS The firmware volume was read successfully,
and contents are in Buffer.
@retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA
boundary. On output, NumBytes
contains the total number of bytes
returned in Buffer.
@retval EFI_ACCESS_DENIED The firmware volume is in the
ReadDisabled state.
@retval EFI_DEVICE_ERROR The block device is not
functioning correctly and could
not be read.
**/
typedef
EFI_STATUS
(EFIAPI *EFI_FVB_READ)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN OUT UINT8 *Buffer
);
/**
Writes the specified number of bytes from the input buffer to the block.
The Write() function writes the specified number of bytes from
the provided buffer to the specified block and offset. If the
firmware volume is sticky write, the caller must ensure that
all the bits of the specified range to write are in the
EFI_FVB_ERASE_POLARITY state before calling the Write()
function, or else the result will be unpredictable. This
unpredictability arises because, for a sticky-write firmware
volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY
state but cannot flip it back again. Before calling the
Write() function, it is recommended for the caller to first call
the EraseBlocks() function to erase the specified block to
write. A block erase cycle will transition bits from the
(NOT)EFI_FVB_ERASE_POLARITY state back to the
EFI_FVB_ERASE_POLARITY state. Implementations should be
mindful that the firmware volume might be in the WriteDisabled
state. If it is in this state, the Write() function must
return the status code EFI_ACCESS_DENIED without modifying the
contents of the firmware volume. The Write() function must
also prevent spanning block boundaries. If a write is
requested that spans a block boundary, the write must store up
to the boundary but not beyond. The output parameter NumBytes
must be set to correctly indicate the number of bytes actually
written. The caller must be aware that a write may be
partially completed. All writes, partial or otherwise, must be
fully flushed to the hardware before the Write() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance.
@param Lba The starting logical block index to write to.
@param Offset Offset into the block at which to begin writing.
@param NumBytes The pointer to a UINTN. At entry, *NumBytes
contains the total size of the buffer. At
exit, *NumBytes contains the total number of
bytes actually written.
@param Buffer The pointer to a caller-allocated buffer that
contains the source for the write.
@retval EFI_SUCCESS The firmware volume was written successfully.
@retval EFI_BAD_BUFFER_SIZE The write was attempted across an
LBA boundary. On output, NumBytes
contains the total number of bytes
actually written.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is malfunctioning
and could not be written.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_WRITE)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
);
///
/// EFI_LBA_LIST_TERMINATOR
///
#define EFI_LBA_LIST_TERMINATOR 0xFFFFFFFFFFFFFFFFULL
/**
Erases and initializes a firmware volume block.
The EraseBlocks() function erases one or more blocks as denoted
by the variable argument list. The entire parameter list of
blocks must be verified before erasing any blocks. If a block is
requested that does not exist within the associated firmware
volume (it has a larger index than the last block of the
firmware volume), the EraseBlocks() function must return the
status code EFI_INVALID_PARAMETER without modifying the contents
of the firmware volume. Implementations should be mindful that
the firmware volume might be in the WriteDisabled state. If it
is in this state, the EraseBlocks() function must return the
status code EFI_ACCESS_DENIED without modifying the contents of
the firmware volume. All calls to EraseBlocks() must be fully
flushed to the hardware before the EraseBlocks() service
returns.
@param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL
instance.
@param ... The variable argument list is a list of tuples.
Each tuple describes a range of LBAs to erase
and consists of the following:
- An EFI_LBA that indicates the starting LBA
- A UINTN that indicates the number of blocks to
erase.
The list is terminated with an
EFI_LBA_LIST_TERMINATOR. For example, the
following indicates that two ranges of blocks
(5-7 and 10-11) are to be erased: EraseBlocks
(This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR);
@retval EFI_SUCCESS The erase request successfully
completed.
@retval EFI_ACCESS_DENIED The firmware volume is in the
WriteDisabled state.
@retval EFI_DEVICE_ERROR The block device is not functioning
correctly and could not be written.
The firmware device may have been
partially erased.
@retval EFI_INVALID_PARAMETER One or more of the LBAs listed
in the variable argument list do
not exist in the firmware volume.
**/
typedef
EFI_STATUS
(EFIAPI * EFI_FVB_ERASE_BLOCKS)(
IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This,
...
);
///
/// The Firmware Volume Block Protocol is the low-level interface
/// to a firmware volume. File-level access to a firmware volume
/// should not be done using the Firmware Volume Block Protocol.
/// Normal access to a firmware volume must use the Firmware
/// Volume Protocol. Typically, only the file system driver that
/// produces the Firmware Volume Protocol will bind to the
/// Firmware Volume Block Protocol.
///
struct _EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL{
EFI_FVB_GET_ATTRIBUTES GetAttributes;
EFI_FVB_SET_ATTRIBUTES SetAttributes;
EFI_FVB_GET_PHYSICAL_ADDRESS GetPhysicalAddress;
EFI_FVB_GET_BLOCK_SIZE GetBlockSize;
EFI_FVB_READ Read;
EFI_FVB_WRITE Write;
EFI_FVB_ERASE_BLOCKS EraseBlocks;
///
/// The handle of the parent firmware volume.
///
EFI_HANDLE ParentHandle;
};
extern EFI_GUID gEfiFirmwareVolumeBlockProtocolGuid;
extern EFI_GUID gEfiFirmwareVolumeBlock2ProtocolGuid;
#endif
|