summaryrefslogtreecommitdiff
path: root/MdePkg/Library/BaseCacheMaintenanceLib/IpfCache.c
blob: 8e999a40402b251dcf2f0c45d1d173200bea04bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/** @file
  Cache Maintenance Functions.

  Copyright (c) 2006 - 2008, Intel Corporation<BR>
  All rights reserved. This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include <Base.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/PalLib.h>

/**
  Invalidates the entire instruction cache in cache coherency domain of the
  calling CPU.

  Invalidates the entire instruction cache in cache coherency domain of the
  calling CPU.

**/
VOID
EFIAPI
InvalidateInstructionCache (
  VOID
  )
{
  PalCall (PAL_CACHE_FLUSH, PAL_CACHE_FLUSH_INSTRUCTION_ALL, PAL_CACHE_FLUSH_INVALIDATE_LINES | PAL_CACHE_FLUSH_NO_INTERRUPT, 0);
}

/**
  Invalidates a range of instruction cache lines in the cache coherency domain
  of the calling CPU.

  Invalidates the instruction cache lines specified by Address and Length. If
  Address is not aligned on a cache line boundary, then entire instruction
  cache line containing Address is invalidated. If Address + Length is not
  aligned on a cache line boundary, then the entire instruction cache line
  containing Address + Length -1 is invalidated. This function may choose to
  invalidate the entire instruction cache if that is more efficient than
  invalidating the specified range. If Length is 0, the no instruction cache
  lines are invalidated. Address is returned.

  If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().

  @param  Address The base address of the instruction cache lines to
                  invalidate. If the CPU is in a physical addressing mode, then
                  Address is a physical address. If the CPU is in a virtual
                  addressing mode, then Address is a virtual address.

  @param  Length  The number of bytes to invalidate from the instruction cache.

  @return Address.

**/
VOID *
EFIAPI
InvalidateInstructionCacheRange (
  IN      VOID                      *Address,
  IN      UINTN                     Length
  )
{
  ASSERT (Length <= MAX_ADDRESS - (UINTN)Address + 1);
  return IpfFlushCacheRange (Address, Length);
}

/**
  Writes Back and Invalidates the entire data cache in cache coherency domain
  of the calling CPU.

  Writes Back and Invalidates the entire data cache in cache coherency domain
  of the calling CPU. This function guarantees that all dirty cache lines are
  written back to system memory, and also invalidates all the data cache lines
  in the cache coherency domain of the calling CPU.

**/
VOID
EFIAPI
WriteBackInvalidateDataCache (
  VOID
  )
{
  PalCall (PAL_CACHE_FLUSH, PAL_CACHE_FLUSH_DATA_ALL, PAL_CACHE_FLUSH_INVALIDATE_LINES | PAL_CACHE_FLUSH_NO_INTERRUPT, 0);
}

/**
  Writes Back and Invalidates a range of data cache lines in the cache
  coherency domain of the calling CPU.

  Writes Back and Invalidate the data cache lines specified by Address and
  Length. If Address is not aligned on a cache line boundary, then entire data
  cache line containing Address is written back and invalidated. If Address +
  Length is not aligned on a cache line boundary, then the entire data cache
  line containing Address + Length -1 is written back and invalidated. This
  function may choose to write back and invalidate the entire data cache if
  that is more efficient than writing back and invalidating the specified
  range. If Length is 0, the no data cache lines are written back and
  invalidated. Address is returned.

  If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().

  @param  Address The base address of the data cache lines to write back and
                  invalidate. If the CPU is in a physical addressing mode, then
                  Address is a physical address. If the CPU is in a virtual
                  addressing mode, then Address is a virtual address.
  @param  Length  The number of bytes to write back and invalidate from the
                  data cache.

  @return Address of cache invalidation.

**/
VOID *
EFIAPI
WriteBackInvalidateDataCacheRange (
  IN      VOID                      *Address,
  IN      UINTN                     Length
  )
{
  ASSERT (Length <= MAX_ADDRESS - (UINTN)Address + 1);

  return IpfFlushCacheRange (Address, Length);
}

/**
  Writes Back the entire data cache in cache coherency domain of the calling
  CPU.

  Writes Back the entire data cache in cache coherency domain of the calling
  CPU. This function guarantees that all dirty cache lines are written back to
  system memory. This function may also invalidate all the data cache lines in
  the cache coherency domain of the calling CPU.

**/
VOID
EFIAPI
WriteBackDataCache (
  VOID
  )
{
  PalCall (PAL_CACHE_FLUSH, PAL_CACHE_FLUSH_DATA_ALL, PAL_CACHE_FLUSH_NO_INVALIDATE_LINES | PAL_CACHE_FLUSH_NO_INTERRUPT, 0);
}

/**
  Writes Back a range of data cache lines in the cache coherency domain of the
  calling CPU.

  Writes Back the data cache lines specified by Address and Length. If Address
  is not aligned on a cache line boundary, then entire data cache line
  containing Address is written back. If Address + Length is not aligned on a
  cache line boundary, then the entire data cache line containing Address +
  Length -1 is written back. This function may choose to write back the entire
  data cache if that is more efficient than writing back the specified range.
  If Length is 0, the no data cache lines are written back. This function may
  also invalidate all the data cache lines in the specified range of the cache
  coherency domain of the calling CPU. Address is returned.

  If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().

  @param  Address The base address of the data cache lines to write back. If
                  the CPU is in a physical addressing mode, then Address is a
                  physical address. If the CPU is in a virtual addressing
                  mode, then Address is a virtual address.
  @param  Length  The number of bytes to write back from the data cache.

  @return Address of cache written in main memory.

**/
VOID *
EFIAPI
WriteBackDataCacheRange (
  IN      VOID                      *Address,
  IN      UINTN                     Length
  )
{
  ASSERT (Length <= MAX_ADDRESS - (UINTN)Address + 1);

  return IpfFlushCacheRange (Address, Length);
}

/**
  Invalidates the entire data cache in cache coherency domain of the calling
  CPU.

  Invalidates the entire data cache in cache coherency domain of the calling
  CPU. This function must be used with care because dirty cache lines are not
  written back to system memory. It is typically used for cache diagnostics. If
  the CPU does not support invalidation of the entire data cache, then a write
  back and invalidate operation should be performed on the entire data cache.

**/
VOID
EFIAPI
InvalidateDataCache (
  VOID
  )
{
  //
  // Invalidation of entire data cache without writing back is not supported on
  // IPF architecture, so write back and invalidate operation is performed.
  //
  WriteBackInvalidateDataCache ();
}

/**
  Invalidates a range of data cache lines in the cache coherency domain of the
  calling CPU.

  Invalidates the data cache lines specified by Address and Length. If Address
  is not aligned on a cache line boundary, then entire data cache line
  containing Address is invalidated. If Address + Length is not aligned on a
  cache line boundary, then the entire data cache line containing Address +
  Length -1 is invalidated. This function must never invalidate any cache lines
  outside the specified range. If Length is 0, the no data cache lines are
  invalidated. Address is returned. This function must be used with care
  because dirty cache lines are not written back to system memory. It is
  typically used for cache diagnostics. If the CPU does not support
  invalidation of a data cache range, then a write back and invalidate
  operation should be performed on the data cache range.

  If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().

  @param  Address The base address of the data cache lines to invalidate. If
                  the CPU is in a physical addressing mode, then Address is a
                  physical address. If the CPU is in a virtual addressing mode,
                  then Address is a virtual address.
  @param  Length  The number of bytes to invalidate from the data cache.

  @return Address.

**/
VOID *
EFIAPI
InvalidateDataCacheRange (
  IN      VOID                      *Address,
  IN      UINTN                     Length
  )
{
  ASSERT (Length <= MAX_ADDRESS - (UINTN)Address + 1);
  //
  // Invalidation of a data cache range without writing back is not supported on
  // IPF architecture, so write back and invalidate operation is performed.
  //
  return IpfFlushCacheRange (Address, Length);
}