summaryrefslogtreecommitdiff
path: root/OvmfPkg/Sec/SecMain.c
blob: e1993ec347b54d6d83254485718995baae9efff1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
/** @file
  Main SEC phase code.  Transitions to PEI.

  Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.<BR>
  (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>

  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include <PiPei.h>

#include <Library/PeimEntryPoint.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/PeiServicesLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiCpuLib.h>
#include <Library/DebugAgentLib.h>
#include <Library/IoLib.h>
#include <Library/PeCoffLib.h>
#include <Library/PeCoffGetEntryPointLib.h>
#include <Library/PeCoffExtraActionLib.h>
#include <Library/ExtractGuidedSectionLib.h>
#include <Library/LocalApicLib.h>

#include <Ppi/TemporaryRamSupport.h>

#define SEC_IDT_ENTRY_COUNT  34

typedef struct _SEC_IDT_TABLE {
  EFI_PEI_SERVICES          *PeiService;
  IA32_IDT_GATE_DESCRIPTOR  IdtTable[SEC_IDT_ENTRY_COUNT];
} SEC_IDT_TABLE;

VOID
EFIAPI
SecStartupPhase2 (
  IN VOID                     *Context
  );

EFI_STATUS
EFIAPI
TemporaryRamMigration (
  IN CONST EFI_PEI_SERVICES   **PeiServices,
  IN EFI_PHYSICAL_ADDRESS     TemporaryMemoryBase,
  IN EFI_PHYSICAL_ADDRESS     PermanentMemoryBase,
  IN UINTN                    CopySize
  );

//
//
//  
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mTemporaryRamSupportPpi = {
  TemporaryRamMigration
};

EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTable[] = {
  {
    (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
    &gEfiTemporaryRamSupportPpiGuid,
    &mTemporaryRamSupportPpi
  },
};

//
// Template of an IDT entry pointing to 10:FFFFFFE4h.
//
IA32_IDT_GATE_DESCRIPTOR  mIdtEntryTemplate = {
  {                                      // Bits
    0xffe4,                              // OffsetLow
    0x10,                                // Selector
    0x0,                                 // Reserved_0
    IA32_IDT_GATE_TYPE_INTERRUPT_32,     // GateType
    0xffff                               // OffsetHigh
  }    
};

/**
  Locates the main boot firmware volume.

  @param[in,out]  BootFv  On input, the base of the BootFv
                          On output, the decompressed main firmware volume

  @retval EFI_SUCCESS    The main firmware volume was located and decompressed
  @retval EFI_NOT_FOUND  The main firmware volume was not found

**/
EFI_STATUS
FindMainFv (
  IN OUT  EFI_FIRMWARE_VOLUME_HEADER   **BootFv
  )
{
  EFI_FIRMWARE_VOLUME_HEADER  *Fv;
  UINTN                       Distance;

  ASSERT (((UINTN) *BootFv & EFI_PAGE_MASK) == 0);

  Fv = *BootFv;
  Distance = (UINTN) (*BootFv)->FvLength;
  do {
    Fv = (EFI_FIRMWARE_VOLUME_HEADER*) ((UINT8*) Fv - EFI_PAGE_SIZE);
    Distance += EFI_PAGE_SIZE;
    if (Distance > SIZE_32MB) {
      return EFI_NOT_FOUND;
    }

    if (Fv->Signature != EFI_FVH_SIGNATURE) {
      continue;
    }

    if ((UINTN) Fv->FvLength > Distance) {
      continue;
    }

    *BootFv = Fv;
    return EFI_SUCCESS;

  } while (TRUE);
}

/**
  Locates a section within a series of sections
  with the specified section type.

  The Instance parameter indicates which instance of the section
  type to return. (0 is first instance, 1 is second...)

  @param[in]   Sections        The sections to search
  @param[in]   SizeOfSections  Total size of all sections
  @param[in]   SectionType     The section type to locate
  @param[in]   Instance        The section instance number
  @param[out]  FoundSection    The FFS section if found

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
FindFfsSectionInstance (
  IN  VOID                             *Sections,
  IN  UINTN                            SizeOfSections,
  IN  EFI_SECTION_TYPE                 SectionType,
  IN  UINTN                            Instance,
  OUT EFI_COMMON_SECTION_HEADER        **FoundSection
  )
{
  EFI_PHYSICAL_ADDRESS        CurrentAddress;
  UINT32                      Size;
  EFI_PHYSICAL_ADDRESS        EndOfSections;
  EFI_COMMON_SECTION_HEADER   *Section;
  EFI_PHYSICAL_ADDRESS        EndOfSection;

  //
  // Loop through the FFS file sections within the PEI Core FFS file
  //
  EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) Sections;
  EndOfSections = EndOfSection + SizeOfSections;
  for (;;) {
    if (EndOfSection == EndOfSections) {
      break;
    }
    CurrentAddress = (EndOfSection + 3) & ~(3ULL);
    if (CurrentAddress >= EndOfSections) {
      return EFI_VOLUME_CORRUPTED;
    }

    Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress;

    Size = SECTION_SIZE (Section);
    if (Size < sizeof (*Section)) {
      return EFI_VOLUME_CORRUPTED;
    }

    EndOfSection = CurrentAddress + Size;
    if (EndOfSection > EndOfSections) {
      return EFI_VOLUME_CORRUPTED;
    }

    //
    // Look for the requested section type
    //
    if (Section->Type == SectionType) {
      if (Instance == 0) {
        *FoundSection = Section;
        return EFI_SUCCESS;
      } else {
        Instance--;
      }
    }
  }

  return EFI_NOT_FOUND;
}

/**
  Locates a section within a series of sections
  with the specified section type.

  @param[in]   Sections        The sections to search
  @param[in]   SizeOfSections  Total size of all sections
  @param[in]   SectionType     The section type to locate
  @param[out]  FoundSection    The FFS section if found

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
FindFfsSectionInSections (
  IN  VOID                             *Sections,
  IN  UINTN                            SizeOfSections,
  IN  EFI_SECTION_TYPE                 SectionType,
  OUT EFI_COMMON_SECTION_HEADER        **FoundSection
  )
{
  return FindFfsSectionInstance (
           Sections,
           SizeOfSections,
           SectionType,
           0,
           FoundSection
           );
}

/**
  Locates a FFS file with the specified file type and a section
  within that file with the specified section type.

  @param[in]   Fv            The firmware volume to search
  @param[in]   FileType      The file type to locate
  @param[in]   SectionType   The section type to locate
  @param[out]  FoundSection  The FFS section if found

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
FindFfsFileAndSection (
  IN  EFI_FIRMWARE_VOLUME_HEADER       *Fv,
  IN  EFI_FV_FILETYPE                  FileType,
  IN  EFI_SECTION_TYPE                 SectionType,
  OUT EFI_COMMON_SECTION_HEADER        **FoundSection
  )
{
  EFI_STATUS                  Status;
  EFI_PHYSICAL_ADDRESS        CurrentAddress;
  EFI_PHYSICAL_ADDRESS        EndOfFirmwareVolume;
  EFI_FFS_FILE_HEADER         *File;
  UINT32                      Size;
  EFI_PHYSICAL_ADDRESS        EndOfFile;

  if (Fv->Signature != EFI_FVH_SIGNATURE) {
    DEBUG ((EFI_D_ERROR, "FV at %p does not have FV header signature\n", Fv));
    return EFI_VOLUME_CORRUPTED;
  }

  CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Fv;
  EndOfFirmwareVolume = CurrentAddress + Fv->FvLength;

  //
  // Loop through the FFS files in the Boot Firmware Volume
  //
  for (EndOfFile = CurrentAddress + Fv->HeaderLength; ; ) {

    CurrentAddress = (EndOfFile + 7) & ~(7ULL);
    if (CurrentAddress > EndOfFirmwareVolume) {
      return EFI_VOLUME_CORRUPTED;
    }

    File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress;
    Size = *(UINT32*) File->Size & 0xffffff;
    if (Size < (sizeof (*File) + sizeof (EFI_COMMON_SECTION_HEADER))) {
      return EFI_VOLUME_CORRUPTED;
    }

    EndOfFile = CurrentAddress + Size;
    if (EndOfFile > EndOfFirmwareVolume) {
      return EFI_VOLUME_CORRUPTED;
    }

    //
    // Look for the request file type
    //
    if (File->Type != FileType) {
      continue;
    }

    Status = FindFfsSectionInSections (
               (VOID*) (File + 1),
               (UINTN) EndOfFile - (UINTN) (File + 1),
               SectionType,
               FoundSection
               );
    if (!EFI_ERROR (Status) || (Status == EFI_VOLUME_CORRUPTED)) {
      return Status;
    }
  }
}

/**
  Locates the compressed main firmware volume and decompresses it.

  @param[in,out]  Fv            On input, the firmware volume to search
                                On output, the decompressed BOOT/PEI FV

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
DecompressMemFvs (
  IN OUT EFI_FIRMWARE_VOLUME_HEADER       **Fv
  )
{
  EFI_STATUS                        Status;
  EFI_GUID_DEFINED_SECTION          *Section;
  UINT32                            OutputBufferSize;
  UINT32                            ScratchBufferSize;
  UINT16                            SectionAttribute;
  UINT32                            AuthenticationStatus;
  VOID                              *OutputBuffer;
  VOID                              *ScratchBuffer;
  EFI_COMMON_SECTION_HEADER         *FvSection;
  EFI_FIRMWARE_VOLUME_HEADER        *PeiMemFv;
  EFI_FIRMWARE_VOLUME_HEADER        *DxeMemFv;
  UINT32                            FvHeaderSize;
  UINT32                            FvSectionSize;

  FvSection = (EFI_COMMON_SECTION_HEADER*) NULL;

  Status = FindFfsFileAndSection (
             *Fv,
             EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
             EFI_SECTION_GUID_DEFINED,
             (EFI_COMMON_SECTION_HEADER**) &Section
             );
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "Unable to find GUID defined section\n"));
    return Status;
  }

  Status = ExtractGuidedSectionGetInfo (
             Section,
             &OutputBufferSize,
             &ScratchBufferSize,
             &SectionAttribute
             );
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "Unable to GetInfo for GUIDed section\n"));
    return Status;
  }

  OutputBuffer = (VOID*) ((UINT8*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase) + SIZE_1MB);
  ScratchBuffer = ALIGN_POINTER ((UINT8*) OutputBuffer + OutputBufferSize, SIZE_1MB);

  DEBUG ((EFI_D_VERBOSE, "%a: OutputBuffer@%p+0x%x ScratchBuffer@%p+0x%x "
    "PcdOvmfDecompressionScratchEnd=0x%x\n", __FUNCTION__, OutputBuffer,
    OutputBufferSize, ScratchBuffer, ScratchBufferSize,
    PcdGet32 (PcdOvmfDecompressionScratchEnd)));
  ASSERT ((UINTN)ScratchBuffer + ScratchBufferSize ==
    PcdGet32 (PcdOvmfDecompressionScratchEnd));

  Status = ExtractGuidedSectionDecode (
             Section,
             &OutputBuffer,
             ScratchBuffer,
             &AuthenticationStatus
             );
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "Error during GUID section decode\n"));
    return Status;
  }

  Status = FindFfsSectionInstance (
             OutputBuffer,
             OutputBufferSize,
             EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
             0,
             &FvSection
             );
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "Unable to find PEI FV section\n"));
    return Status;
  }

  ASSERT (SECTION_SIZE (FvSection) ==
          (PcdGet32 (PcdOvmfPeiMemFvSize) + sizeof (*FvSection)));
  ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);

  PeiMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase);
  CopyMem (PeiMemFv, (VOID*) (FvSection + 1), PcdGet32 (PcdOvmfPeiMemFvSize));

  if (PeiMemFv->Signature != EFI_FVH_SIGNATURE) {
    DEBUG ((EFI_D_ERROR, "Extracted FV at %p does not have FV header signature\n", PeiMemFv));
    CpuDeadLoop ();
    return EFI_VOLUME_CORRUPTED;
  }

  Status = FindFfsSectionInstance (
             OutputBuffer,
             OutputBufferSize,
             EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
             1,
             &FvSection
             );
  if (EFI_ERROR (Status)) {
    DEBUG ((EFI_D_ERROR, "Unable to find DXE FV section\n"));
    return Status;
  }

  ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);

  if (IS_SECTION2 (FvSection)) {
    FvSectionSize = SECTION2_SIZE (FvSection);
    FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER2);
  } else {
    FvSectionSize = SECTION_SIZE (FvSection);
    FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER);
  }

  ASSERT (FvSectionSize == (PcdGet32 (PcdOvmfDxeMemFvSize) + FvHeaderSize));

  DxeMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase);
  CopyMem (DxeMemFv, (VOID*) ((UINTN)FvSection + FvHeaderSize), PcdGet32 (PcdOvmfDxeMemFvSize));

  if (DxeMemFv->Signature != EFI_FVH_SIGNATURE) {
    DEBUG ((EFI_D_ERROR, "Extracted FV at %p does not have FV header signature\n", DxeMemFv));
    CpuDeadLoop ();
    return EFI_VOLUME_CORRUPTED;
  }

  *Fv = PeiMemFv;
  return EFI_SUCCESS;
}

/**
  Locates the PEI Core entry point address

  @param[in]  Fv                 The firmware volume to search
  @param[out] PeiCoreEntryPoint  The entry point of the PEI Core image

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
EFI_STATUS
FindPeiCoreImageBaseInFv (
  IN  EFI_FIRMWARE_VOLUME_HEADER       *Fv,
  OUT  EFI_PHYSICAL_ADDRESS             *PeiCoreImageBase
  )
{
  EFI_STATUS                  Status;
  EFI_COMMON_SECTION_HEADER   *Section;

  Status = FindFfsFileAndSection (
             Fv,
             EFI_FV_FILETYPE_PEI_CORE,
             EFI_SECTION_PE32,
             &Section
             );
  if (EFI_ERROR (Status)) {
    Status = FindFfsFileAndSection (
               Fv,
               EFI_FV_FILETYPE_PEI_CORE,
               EFI_SECTION_TE,
               &Section
               );
    if (EFI_ERROR (Status)) {
      DEBUG ((EFI_D_ERROR, "Unable to find PEI Core image\n"));
      return Status;
    }
  }

  *PeiCoreImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)(Section + 1);
  return EFI_SUCCESS;
}


/**
  Reads 8-bits of CMOS data.

  Reads the 8-bits of CMOS data at the location specified by Index.
  The 8-bit read value is returned.

  @param  Index  The CMOS location to read.

  @return The value read.

**/
STATIC
UINT8
CmosRead8 (
  IN      UINTN                     Index
  )
{
  IoWrite8 (0x70, (UINT8) Index);
  return IoRead8 (0x71);
}


STATIC
BOOLEAN
IsS3Resume (
  VOID
  )
{
  return (CmosRead8 (0xF) == 0xFE);
}


STATIC
EFI_STATUS
GetS3ResumePeiFv (
  IN OUT EFI_FIRMWARE_VOLUME_HEADER       **PeiFv
  )
{
  *PeiFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase);
  return EFI_SUCCESS;
}


/**
  Locates the PEI Core entry point address

  @param[in,out]  Fv                 The firmware volume to search
  @param[out]     PeiCoreEntryPoint  The entry point of the PEI Core image

  @retval EFI_SUCCESS           The file and section was found
  @retval EFI_NOT_FOUND         The file and section was not found
  @retval EFI_VOLUME_CORRUPTED  The firmware volume was corrupted

**/
VOID
FindPeiCoreImageBase (
  IN OUT  EFI_FIRMWARE_VOLUME_HEADER       **BootFv,
     OUT  EFI_PHYSICAL_ADDRESS             *PeiCoreImageBase
  )
{
  BOOLEAN S3Resume;

  *PeiCoreImageBase = 0;

  S3Resume = IsS3Resume ();
  if (S3Resume && !FeaturePcdGet (PcdSmmSmramRequire)) {
    //
    // A malicious runtime OS may have injected something into our previously
    // decoded PEI FV, but we don't care about that unless SMM/SMRAM is required.
    //
    DEBUG ((EFI_D_VERBOSE, "SEC: S3 resume\n"));
    GetS3ResumePeiFv (BootFv);
  } else {
    //
    // We're either not resuming, or resuming "securely" -- we'll decompress
    // both PEI FV and DXE FV from pristine flash.
    //
    DEBUG ((EFI_D_VERBOSE, "SEC: %a\n",
      S3Resume ? "S3 resume (with PEI decompression)" : "Normal boot"));
    FindMainFv (BootFv);

    DecompressMemFvs (BootFv);
  }

  FindPeiCoreImageBaseInFv (*BootFv, PeiCoreImageBase);
}

/**
  Find core image base.

**/
EFI_STATUS
FindImageBase (
  IN  EFI_FIRMWARE_VOLUME_HEADER       *BootFirmwareVolumePtr,
  OUT EFI_PHYSICAL_ADDRESS             *SecCoreImageBase
  )
{
  EFI_PHYSICAL_ADDRESS        CurrentAddress;
  EFI_PHYSICAL_ADDRESS        EndOfFirmwareVolume;
  EFI_FFS_FILE_HEADER         *File;
  UINT32                      Size;
  EFI_PHYSICAL_ADDRESS        EndOfFile;
  EFI_COMMON_SECTION_HEADER   *Section;
  EFI_PHYSICAL_ADDRESS        EndOfSection;

  *SecCoreImageBase = 0;

  CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) BootFirmwareVolumePtr;
  EndOfFirmwareVolume = CurrentAddress + BootFirmwareVolumePtr->FvLength;

  //
  // Loop through the FFS files in the Boot Firmware Volume
  //
  for (EndOfFile = CurrentAddress + BootFirmwareVolumePtr->HeaderLength; ; ) {

    CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL;
    if (CurrentAddress > EndOfFirmwareVolume) {
      return EFI_NOT_FOUND;
    }

    File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress;
    Size = *(UINT32*) File->Size & 0xffffff;
    if (Size < sizeof (*File)) {
      return EFI_NOT_FOUND;
    }

    EndOfFile = CurrentAddress + Size;
    if (EndOfFile > EndOfFirmwareVolume) {
      return EFI_NOT_FOUND;
    }

    //
    // Look for SEC Core
    //
    if (File->Type != EFI_FV_FILETYPE_SECURITY_CORE) {
      continue;
    }

    //
    // Loop through the FFS file sections within the FFS file
    //
    EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) (File + 1);
    for (;;) {
      CurrentAddress = (EndOfSection + 3) & 0xfffffffffffffffcULL;
      Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress;

      Size = *(UINT32*) Section->Size & 0xffffff;
      if (Size < sizeof (*Section)) {
        return EFI_NOT_FOUND;
      }

      EndOfSection = CurrentAddress + Size;
      if (EndOfSection > EndOfFile) {
        return EFI_NOT_FOUND;
      }

      //
      // Look for executable sections
      //
      if (Section->Type == EFI_SECTION_PE32 || Section->Type == EFI_SECTION_TE) {
        if (File->Type == EFI_FV_FILETYPE_SECURITY_CORE) {
          *SecCoreImageBase = (PHYSICAL_ADDRESS) (UINTN) (Section + 1);
        }
        break;
      }
    }

    //
    // SEC Core image found
    //
    if (*SecCoreImageBase != 0) {
      return EFI_SUCCESS;
    }
  }
}

/*
  Find and return Pei Core entry point.

  It also find SEC and PEI Core file debug information. It will report them if
  remote debug is enabled.

**/
VOID
FindAndReportEntryPoints (
  IN  EFI_FIRMWARE_VOLUME_HEADER       **BootFirmwareVolumePtr,
  OUT EFI_PEI_CORE_ENTRY_POINT         *PeiCoreEntryPoint
  )
{
  EFI_STATUS                       Status;
  EFI_PHYSICAL_ADDRESS             SecCoreImageBase;
  EFI_PHYSICAL_ADDRESS             PeiCoreImageBase;
  PE_COFF_LOADER_IMAGE_CONTEXT     ImageContext;

  //
  // Find SEC Core and PEI Core image base
   //
  Status = FindImageBase (*BootFirmwareVolumePtr, &SecCoreImageBase);
  ASSERT_EFI_ERROR (Status);

  FindPeiCoreImageBase (BootFirmwareVolumePtr, &PeiCoreImageBase);
  
  ZeroMem ((VOID *) &ImageContext, sizeof (PE_COFF_LOADER_IMAGE_CONTEXT));
  //
  // Report SEC Core debug information when remote debug is enabled
  //
  ImageContext.ImageAddress = SecCoreImageBase;
  ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress);
  PeCoffLoaderRelocateImageExtraAction (&ImageContext);

  //
  // Report PEI Core debug information when remote debug is enabled
  //
  ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)PeiCoreImageBase;
  ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress);
  PeCoffLoaderRelocateImageExtraAction (&ImageContext);

  //
  // Find PEI Core entry point
  //
  Status = PeCoffLoaderGetEntryPoint ((VOID *) (UINTN) PeiCoreImageBase, (VOID**) PeiCoreEntryPoint);
  if (EFI_ERROR (Status)) {
    *PeiCoreEntryPoint = 0;
  }

  return;
}

VOID
EFIAPI
SecCoreStartupWithStack (
  IN EFI_FIRMWARE_VOLUME_HEADER       *BootFv,
  IN VOID                             *TopOfCurrentStack
  )
{
  EFI_SEC_PEI_HAND_OFF        SecCoreData;
  SEC_IDT_TABLE               IdtTableInStack;
  IA32_DESCRIPTOR             IdtDescriptor;
  UINT32                      Index;
  volatile UINT8              *Table;

  //
  // To ensure SMM can't be compromised on S3 resume, we must force re-init of
  // the BaseExtractGuidedSectionLib. Since this is before library contructors
  // are called, we must use a loop rather than SetMem.
  //
  Table = (UINT8*)(UINTN)FixedPcdGet64 (PcdGuidedExtractHandlerTableAddress);
  for (Index = 0;
       Index < FixedPcdGet32 (PcdGuidedExtractHandlerTableSize);
       ++Index) {
    Table[Index] = 0;
  }

  ProcessLibraryConstructorList (NULL, NULL);

  DEBUG ((EFI_D_INFO,
    "SecCoreStartupWithStack(0x%x, 0x%x)\n",
    (UINT32)(UINTN)BootFv,
    (UINT32)(UINTN)TopOfCurrentStack
    ));

  //
  // Initialize floating point operating environment
  // to be compliant with UEFI spec.
  //
  InitializeFloatingPointUnits ();

  //
  // Initialize IDT
  //  
  IdtTableInStack.PeiService = NULL;
  for (Index = 0; Index < SEC_IDT_ENTRY_COUNT; Index ++) {
    CopyMem (&IdtTableInStack.IdtTable[Index], &mIdtEntryTemplate, sizeof (mIdtEntryTemplate));
  }

  IdtDescriptor.Base  = (UINTN)&IdtTableInStack.IdtTable;
  IdtDescriptor.Limit = (UINT16)(sizeof (IdtTableInStack.IdtTable) - 1);

  AsmWriteIdtr (&IdtDescriptor);

#if defined (MDE_CPU_X64)
  //
  // ASSERT that the Page Tables were set by the reset vector code to
  // the address we expect.
  //
  ASSERT (AsmReadCr3 () == (UINTN) PcdGet32 (PcdOvmfSecPageTablesBase));
#endif

  //
  // |-------------|       <-- TopOfCurrentStack
  // |   Stack     | 32k
  // |-------------|
  // |    Heap     | 32k
  // |-------------|       <-- SecCoreData.TemporaryRamBase
  //

  ASSERT ((UINTN) (PcdGet32 (PcdOvmfSecPeiTempRamBase) +
                   PcdGet32 (PcdOvmfSecPeiTempRamSize)) ==
          (UINTN) TopOfCurrentStack);

  //
  // Initialize SEC hand-off state
  //
  SecCoreData.DataSize = sizeof(EFI_SEC_PEI_HAND_OFF);

  SecCoreData.TemporaryRamSize       = (UINTN) PcdGet32 (PcdOvmfSecPeiTempRamSize);
  SecCoreData.TemporaryRamBase       = (VOID*)((UINT8 *)TopOfCurrentStack - SecCoreData.TemporaryRamSize);

  SecCoreData.PeiTemporaryRamBase    = SecCoreData.TemporaryRamBase;
  SecCoreData.PeiTemporaryRamSize    = SecCoreData.TemporaryRamSize >> 1;

  SecCoreData.StackBase              = (UINT8 *)SecCoreData.TemporaryRamBase + SecCoreData.PeiTemporaryRamSize;
  SecCoreData.StackSize              = SecCoreData.TemporaryRamSize >> 1;

  SecCoreData.BootFirmwareVolumeBase = BootFv;
  SecCoreData.BootFirmwareVolumeSize = (UINTN) BootFv->FvLength;

  //
  // Make sure the 8259 is masked before initializing the Debug Agent and the debug timer is enabled
  //
  IoWrite8 (0x21, 0xff);
  IoWrite8 (0xA1, 0xff);

  //
  // Initialize Local APIC Timer hardware and disable Local APIC Timer
  // interrupts before initializing the Debug Agent and the debug timer is
  // enabled.
  //
  InitializeApicTimer (0, MAX_UINT32, TRUE, 5);
  DisableApicTimerInterrupt ();
  
  //
  // Initialize Debug Agent to support source level debug in SEC/PEI phases before memory ready.
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, &SecCoreData, SecStartupPhase2);
}
  
/**
  Caller provided function to be invoked at the end of InitializeDebugAgent().

  Entry point to the C language phase of SEC. After the SEC assembly
  code has initialized some temporary memory and set up the stack,
  the control is transferred to this function.

  @param[in] Context    The first input parameter of InitializeDebugAgent().

**/
VOID
EFIAPI
SecStartupPhase2(
  IN VOID                     *Context
  )
{
  EFI_SEC_PEI_HAND_OFF        *SecCoreData;
  EFI_FIRMWARE_VOLUME_HEADER  *BootFv;
  EFI_PEI_CORE_ENTRY_POINT    PeiCoreEntryPoint;
  
  SecCoreData = (EFI_SEC_PEI_HAND_OFF *) Context;
  
  //
  // Find PEI Core entry point. It will report SEC and Pei Core debug information if remote debug
  // is enabled.
  //
  BootFv = (EFI_FIRMWARE_VOLUME_HEADER *)SecCoreData->BootFirmwareVolumeBase;
  FindAndReportEntryPoints (&BootFv, &PeiCoreEntryPoint);
  SecCoreData->BootFirmwareVolumeBase = BootFv;
  SecCoreData->BootFirmwareVolumeSize = (UINTN) BootFv->FvLength;

  //
  // Transfer the control to the PEI core
  //
  (*PeiCoreEntryPoint) (SecCoreData, (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTable);
  
  //
  // If we get here then the PEI Core returned, which is not recoverable.
  //
  ASSERT (FALSE);
  CpuDeadLoop ();
}

EFI_STATUS
EFIAPI
TemporaryRamMigration (
  IN CONST EFI_PEI_SERVICES   **PeiServices,
  IN EFI_PHYSICAL_ADDRESS     TemporaryMemoryBase,
  IN EFI_PHYSICAL_ADDRESS     PermanentMemoryBase,
  IN UINTN                    CopySize
  )
{
  IA32_DESCRIPTOR                  IdtDescriptor;
  VOID                             *OldHeap;
  VOID                             *NewHeap;
  VOID                             *OldStack;
  VOID                             *NewStack;
  DEBUG_AGENT_CONTEXT_POSTMEM_SEC  DebugAgentContext;
  BOOLEAN                          OldStatus;
  BASE_LIBRARY_JUMP_BUFFER         JumpBuffer;
  
  DEBUG ((EFI_D_INFO,
    "TemporaryRamMigration(0x%Lx, 0x%Lx, 0x%Lx)\n",
    TemporaryMemoryBase,
    PermanentMemoryBase,
    (UINT64)CopySize
    ));
  
  OldHeap = (VOID*)(UINTN)TemporaryMemoryBase;
  NewHeap = (VOID*)((UINTN)PermanentMemoryBase + (CopySize >> 1));
  
  OldStack = (VOID*)((UINTN)TemporaryMemoryBase + (CopySize >> 1));
  NewStack = (VOID*)(UINTN)PermanentMemoryBase;

  DebugAgentContext.HeapMigrateOffset = (UINTN)NewHeap - (UINTN)OldHeap;
  DebugAgentContext.StackMigrateOffset = (UINTN)NewStack - (UINTN)OldStack;
  
  OldStatus = SaveAndSetDebugTimerInterrupt (FALSE);
  InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, (VOID *) &DebugAgentContext, NULL);

  //
  // Migrate Heap
  //
  CopyMem (NewHeap, OldHeap, CopySize >> 1);

  //
  // Migrate Stack
  //
  CopyMem (NewStack, OldStack, CopySize >> 1);
  
  //
  // Rebase IDT table in permanent memory
  //
  AsmReadIdtr (&IdtDescriptor);
  IdtDescriptor.Base = IdtDescriptor.Base - (UINTN)OldStack + (UINTN)NewStack;

  AsmWriteIdtr (&IdtDescriptor);

  //
  // Use SetJump()/LongJump() to switch to a new stack.
  // 
  if (SetJump (&JumpBuffer) == 0) {
#if defined (MDE_CPU_IA32)
    JumpBuffer.Esp = JumpBuffer.Esp + DebugAgentContext.StackMigrateOffset;
#endif    
#if defined (MDE_CPU_X64)
    JumpBuffer.Rsp = JumpBuffer.Rsp + DebugAgentContext.StackMigrateOffset;
#endif    
    LongJump (&JumpBuffer, (UINTN)-1);
  }

  SaveAndSetDebugTimerInterrupt (OldStatus);

  return EFI_SUCCESS;
}