summaryrefslogtreecommitdiff
path: root/PerformancePkg/Library/DxeTscTimerLib/DxeTscTimerLib.c
blob: 3e7e0254a609ce8ded78f040cf605137727f6611 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/** @file
  A Dxe Timer Library implementation which uses the Time Stamp Counter in the processor.

  For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]);
    for Intel Core Solo and Intel Core Duo processors (family [06H], model [0EH]);
    for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors (family [06H], model [0FH]);
    for Intel Core 2 and Intel Xeon processors (family [06H], display_model [17H]);
    for Intel Atom processors (family [06H], display_model [1CH]):
  the time-stamp counter increments at a constant rate.
  That rate may be set by the maximum core-clock to bus-clock ratio of the processor or may be set by
  the maximum resolved frequency at which the processor is booted. The maximum resolved frequency may
  differ from the maximum qualified frequency of the processor.

  The specific processor configuration determines the behavior. Constant TSC behavior ensures that the
  duration of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if
  the processor core changes frequency. This is the architectural behavior moving forward.

  A Processor's support for invariant TSC is indicated by CPUID.0x80000007.EDX[8].

  Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials
  are licensed and made available under the terms and conditions of the BSD License
  which accompanies this distribution. The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include <PiDxe.h>
#include <Ich/GenericIch.h>

#include <Library/UefiBootServicesTableLib.h>
#include <Library/TimerLib.h>
#include <Library/BaseLib.h>
#include <Library/IoLib.h>
#include <Library/PciLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiLib.h>
#include <Library/DebugLib.h>

#include <Guid/TscFrequency.h>

UINT64 mTscFrequency;

/** The constructor function determines the actual TSC frequency.

  First, Get TSC frequency from system configuration table with TSC frequency GUID,
  if the table is not found, install it.

  The TSC counting frequency is determined by comparing how far it counts
  during a 1ms period as determined by the ACPI timer. The ACPI timer is
  used because it counts at a known frequency.
  If ACPI I/O space not enabled, this function will enable it. Then the
  TSC is sampled, followed by waiting for 3579 clocks of the ACPI timer, or 1ms.
  The TSC is then sampled again. The difference multiplied by 1000 is the TSC
  frequency. There will be a small error because of the overhead of reading
  the ACPI timer. An attempt is made to determine and compensate for this error.
  This function will always return EFI_SUCCESS.

  @param  ImageHandle       The firmware allocated handle for the EFI image.
  @param  SystemTable       A pointer to the EFI System Table.

  @retval EFI_SUCCESS   The constructor always returns EFI_SUCCESS.

**/
EFI_STATUS
EFIAPI
DxeTscTimerLibConstructor (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  )
{
  EFI_STATUS  Status;
  UINT64      *TscFrequency;
  UINT64      StartTSC;
  UINT64      EndTSC;
  UINT32      TimerAddr;
  UINT32      Ticks;

  //
  // Get TSC frequency from system configuration table with TSC frequency GUID.
  //
  Status = EfiGetSystemConfigurationTable (&gEfiTscFrequencyGuid, (VOID **) &TscFrequency);
  if (Status == EFI_SUCCESS) {
    mTscFrequency = *TscFrequency;
    return EFI_SUCCESS;
  }

  //
  // TSC frequency GUID system configuration table is not found, install it.
  //

  //
  // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.
  //
  if ((PciRead8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT)) & B_ICH_LPC_ACPI_CNT_ACPI_EN) == 0) {
    PciWrite16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE), PcdGet16 (PcdPerfPkgAcpiIoPortBaseAddress));
    PciOr8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT), B_ICH_LPC_ACPI_CNT_ACPI_EN);
  }

  //
  // ACPI I/O space should be enabled now, locate the ACPI Timer.
  // ACPI I/O base address maybe have be initialized by other driver with different value,
  // So get it from PCI space directly.
  //
  TimerAddr = ((PciRead16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE))) & B_ICH_LPC_ACPI_BASE_BAR) + R_ACPI_PM1_TMR;
  Ticks    = IoRead32 (TimerAddr) + (3579);   // Set Ticks to 1ms in the future
  StartTSC = AsmReadTsc();                    // Get base value for the TSC
  //
  // Wait until the ACPI timer has counted 1ms.
  // Timer wrap-arounds are handled correctly by this function.
  // When the current ACPI timer value is greater than 'Ticks', the while loop will exit.
  //
  while (((Ticks - IoRead32 (TimerAddr)) & BIT23) == 0) {
    CpuPause();
  }
  EndTSC = AsmReadTsc();    // TSC value 1ms later

  Status = gBS->AllocatePool (EfiBootServicesData, sizeof (UINT64), &TscFrequency);
  ASSERT_EFI_ERROR (Status);

  *TscFrequency = MultU64x32 (
                    (EndTSC - StartTSC),      // Number of TSC counts in 1ms
                    1000                      // Number of ms in a second
                  );
  //
  // TscFrequency now points to the number of TSC counts per second, install system configuration table for it.
  //
  gBS->InstallConfigurationTable (&gEfiTscFrequencyGuid, TscFrequency);

  mTscFrequency = *TscFrequency;
  return EFI_SUCCESS;
}

/**  Stalls the CPU for at least the given number of ticks.

  Stalls the CPU for at least the given number of ticks. It's invoked by
  MicroSecondDelay() and NanoSecondDelay().

  @param[in]  Delay     A period of time to delay in ticks.

**/
VOID
InternalX86Delay (
  IN      UINT64                    Delay
  )
{
  UINT64                             Ticks;

  //
  // The target timer count is calculated here
  //
  Ticks = AsmReadTsc() + Delay;

  //
  // Wait until time out
  // Timer wrap-arounds are NOT handled correctly by this function.
  // Thus, this function must be called within 10 years of reset since
  // Intel guarantees a minimum of 10 years before the TSC wraps.
  //
  while (AsmReadTsc() <= Ticks) CpuPause();
}

/**  Stalls the CPU for at least the specified number of MicroSeconds.

  @param[in]  MicroSeconds  The minimum number of microseconds to delay.

  @return The value of MicroSeconds input.

**/
UINTN
EFIAPI
MicroSecondDelay (
  IN      UINTN                     MicroSeconds
  )
{
  InternalX86Delay (
    DivU64x32 (
      MultU64x64 (
        mTscFrequency,
        MicroSeconds
      ),
      1000000u
    )
  );
  return MicroSeconds;
}

/**  Stalls the CPU for at least the specified number of NanoSeconds.

  @param[in]  NanoSeconds The minimum number of nanoseconds to delay.

  @return The value of NanoSeconds input.

**/
UINTN
EFIAPI
NanoSecondDelay (
  IN      UINTN                     NanoSeconds
  )
{
  InternalX86Delay (
    DivU64x32 (
      MultU64x32 (
        mTscFrequency,
        (UINT32)NanoSeconds
      ),
    1000000000u
    )
  );
  return NanoSeconds;
}

/**  Retrieves the current value of the 64-bit free running Time-Stamp counter.

  The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M,
  Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and
  later processors) is a 64-bit counter that is set to 0 following a RESET of
  the processor.  Following a RESET, the counter increments even when the
  processor is halted by the HLT instruction or the external STPCLK# pin. Note
  that the assertion of the external DPSLP# pin may cause the time-stamp
  counter to stop.

  The properties of the counter can be retrieved by the
  GetPerformanceCounterProperties() function.

  @return The current value of the free running performance counter.

**/
UINT64
EFIAPI
GetPerformanceCounter (
  VOID
  )
{
  return AsmReadTsc();
}

/**  Retrieves the 64-bit frequency in Hz and the range of performance counter
  values.

  If StartValue is not NULL, then the value that the performance counter starts
  with, 0x0, is returned in StartValue. If EndValue is not NULL, then the value
  that the performance counter end with, 0xFFFFFFFFFFFFFFFF, is returned in
  EndValue.

  The 64-bit frequency of the performance counter, in Hz, is always returned.
  To determine average processor clock frequency, Intel recommends the use of
  EMON logic to count processor core clocks over the period of time for which
  the average is required.


  @param[out]   StartValue  Pointer to where the performance counter's starting value is saved, or NULL.
  @param[out]   EndValue    Pointer to where the performance counter's ending value is saved, or NULL.

  @return The frequency in Hz.

**/
UINT64
EFIAPI
GetPerformanceCounterProperties (
  OUT      UINT64                    *StartValue,  OPTIONAL
  OUT      UINT64                    *EndValue     OPTIONAL
  )
{
  if (StartValue != NULL) {
    *StartValue = 0;
  }
  if (EndValue != NULL) {
    *EndValue = 0xFFFFFFFFFFFFFFFFull;
  }

  return mTscFrequency;
}