summaryrefslogtreecommitdiff
path: root/StdLib/LibC/Containers/Queues/Fifo.c
blob: 996498e1d9038005877a5ced3058425d11b78387 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/** @file
  Class for arbitrary sized FIFO queues.

  The FIFO is empty if both the Read and Write indexes are equal.
  The FIFO is full if the next write would make the Read and Write indexes equal.

  Member variable NumElements is the maximum number of elements that can be
  contained in the FIFO.
    If NumElements is ZERO, there is an error.
    NumElements should be in the range 1:N.

  Members WriteIndex and ReadIndex are indexes into the array implementing the
  FIFO.  They should be in the range 0:(NumElements - 1).

  One element of the FIFO is always reserved as the "terminator" element.  Thus,
  the capacity of a FIFO is actually NumElements-1.

  Copyright (c) 2012, Intel Corporation. All rights reserved.<BR>
  This program and the accompanying materials are licensed and made available
  under the terms and conditions of the BSD License which accompanies this
  distribution.  The full text of the license may be found at
  http://opensource.org/licenses/bsd-license.php.

  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include  <Uefi.h>
#include  <Library/BaseLib.h>
#include  <Library/BaseMemoryLib.h>
#include  <Library/MemoryAllocationLib.h>

#include  <LibConfig.h>

#include  <assert.h>
#include  <errno.h>
#include  <stdlib.h>
#include  <stdint.h>
#include  <wchar.h>
#include  <Containers/Fifo.h>

/** Determine number of items available to read from the FIFO.

    The number of items are either the number of bytes, or the number of elements
    depending upon the value of the As enumerator.

    @param[in]    Self      Pointer to the FIFO instance.
    @param[in]    As        An enumeration variable whose value determines whether the
                            returned value is the number of bytes or the number of elements
                            currently contained by the FIFO.

    @retval   0       The FIFO is empty.
    @retval   >=0     The number of items contained by the FIFO.
**/
static
size_t
EFIAPI
FIFO_NumInQueue (
  cFIFO        *Self,
  FIFO_ElemBytes    As
)
{
  size_t    Count;

  if(Self->ReadIndex <= Self->WriteIndex) {
    Count = Self->WriteIndex - Self->ReadIndex;
  }
  else {
    Count = Self->NumElements - (Self->ReadIndex - Self->WriteIndex);
  }
  if(As == AsBytes) {
    Count *= Self->ElementSize;
  }
  return Count;
}

/** Determine amount of free space in the FIFO that can be written into.

    The number of items are either the number of bytes, or the number of elements
    depending upon the value of the As enumerator.

    @param[in]    Self      Pointer to the FIFO instance.
    @param[in]    As        An enumeration variable whose value determines whether the
                            returned value is the number of bytes or the number of elements
                            currently available in the FIFO.

    @retval   0       The FIFO is full.
    @retval   >=0     The number of items which can be accepted by the FIFO.
**/
static
size_t
EFIAPI
FIFO_FreeSpace (
  cFIFO            *Self,
  FIFO_ElemBytes    As
)
{
  size_t    Count;
  UINT32    RDex;
  UINT32    WDex;

  RDex = Self->ReadIndex;
  WDex = Self->WriteIndex;

  if(RDex <= WDex) {
    Count = Self->NumElements - ((WDex - RDex) - 1);
  }
  else {
    Count = (RDex - WDex);
  }
  if(As == AsBytes) {
    Count *= Self->ElementSize;
  }
  return Count;
}

/** Reduce the FIFO contents by NumElem elements.

    @param[in]    Self      Pointer to the FIFO instance.
    @param[in]    NumElem   Number of elements to delete from the FIFO.

    @retval   0   FIFO is now empty.
    @retval   N>0 There are still N elements in the FIFO.
    @retval   -1  There are fewer than NumElem elements in the FIFO.
**/
static
ssize_t
FIFO_Reduce (
  cFIFO    *Self,
  size_t    NumElem
  )
{
  size_t    QCount;
  ssize_t   RetVal;

  assert(Self != NULL);

  QCount = FIFO_NumInQueue(Self, AsElements);
  if(NumElem > QCount) {
    RetVal = -1;
    errno   = EINVAL;
  }
  else {
    RetVal = (ssize_t)ModuloAdd(Self->ReadIndex, (UINT32)NumElem, Self->NumElements);
    Self->ReadIndex = (UINT32)RetVal;

    RetVal = (ssize_t)(QCount - NumElem);
  }
  return RetVal;
}

/** Test whether the FIFO is empty.

    @param[in]    Self      Pointer to the FIFO instance.

    @retval   TRUE    The FIFO is empty.
    @retval   FALSE   There is data in the FIFO.
**/
static
BOOLEAN
EFIAPI
FIFO_IsEmpty (
  cFIFO *Self
  )
{
  assert(Self != NULL);

  return (BOOLEAN)(Self->WriteIndex == Self->ReadIndex);
}

/** Test whether the FIFO is full.

    @param[in]    Self      Pointer to the FIFO instance.

    @retval   TRUE    The FIFO is full.
    @retval   FALSE   There is free space in the FIFO.
**/
static
BOOLEAN
EFIAPI
FIFO_IsFull (
  cFIFO *Self
  )
{
  assert(Self != NULL);

  return (BOOLEAN)(ModuloIncrement(Self->WriteIndex, Self->NumElements) == (INT32)Self->ReadIndex);
}

/** Add one or more elements to the FIFO.

    This function allows one to add one or more elements, as specified by Count,
    to the FIFO.  Each element is of the size specified when the FIFO object
    was instantiated (FIFO.ElementSize).

    pElement points to the first byte of the first element to be added.
    If multiple elements are to be added, the elements are expected to be
    organized as a packed array.

    @param[in]    Self        Pointer to the FIFO instance.
    @param[in]    pElement    Pointer to the element(s) to enqueue (add).
    @param[in]    Count       Number of elements to add.

    @retval   0       The FIFO is full.
    @retval   >=0     The number of elements added to the FIFO.
**/
static
size_t
EFIAPI
FIFO_Enqueue (
  cFIFO        *Self,
  const void   *pElement,
  size_t        Count
  )
{
  uintptr_t     ElemPtr;
  uintptr_t     QPtr;
  size_t        i;
  UINT32        SizeOfElement;
  UINT32        Windex;

  assert(Self != NULL);
  assert(pElement != NULL);

  if(FIFO_IsFull(Self)) {
    Count = 0;
  }
  else {
    Count = MIN(Count, Self->FreeSpace(Self, AsElements));
    SizeOfElement = Self->ElementSize;
    Windex = Self->WriteIndex;

    ElemPtr = (uintptr_t)pElement;

    QPtr   = (uintptr_t)Self->Queue + (SizeOfElement * Windex);
    for(i = 0; i < Count; ++i) {
      (void)CopyMem((void *)QPtr, (const void *)ElemPtr, SizeOfElement);
      Windex = (UINT32)ModuloIncrement(Windex, Self->NumElements);
      if(Windex == 0) {   // If the index wrapped
        QPtr = (uintptr_t)Self->Queue;
      }
      else {
        QPtr += SizeOfElement;
      }
      ElemPtr += SizeOfElement;
    }
    (void)ZeroMem((void*)QPtr, SizeOfElement);
    Self->WriteIndex = Windex;
  }
  return Count;
}

/** Read or copy elements from the FIFO.

    This function allows one to read one or more elements, as specified by Count,
    from the FIFO.  Each element is of the size specified when the FIFO object
    was instantiated (FIFO.ElementSize).

    pElement points to the destination of the first byte of the first element
    to be read. If multiple elements are to be read, the elements are expected
    to be organized as a packed array.

    @param[in]    Self        Pointer to the FIFO instance.
    @param[out]   pElement    Pointer to where to store the element(s) read from the FIFO.
    @param[in]    Count       Number of elements to dequeue.
    @param[in]    Consume     If TRUE, consume read elements.  Otherwise, preserve.

    @retval   0       The FIFO is empty.
    @retval   >=0     The number of elements read from the FIFO.
**/
static
size_t
EFIAPI
FIFO_Dequeue (
  cFIFO    *Self,
  void     *pElement,
  size_t    Count,
  BOOLEAN   Consume
  )
{
  UINTN         ElemPtr;
  UINTN         QPtr;
  UINT32        RDex;
  UINT32        SizeOfElement;
  UINT32        i;

  assert(Self != NULL);
  assert(pElement != NULL);
  assert(Count != 0);

  if(FIFO_IsEmpty(Self)) {
    Count = 0;
  }
  else {
    RDex          = Self->ReadIndex;
    SizeOfElement = Self->ElementSize;
    ElemPtr       = (UINTN)pElement;
    Count         = MIN(Count, Self->Count(Self, AsElements));

    QPtr = (UINTN)Self->Queue + (RDex * Self->ElementSize);
    for(i = 0; i < Count; ++i) {
      (void)CopyMem((void *)ElemPtr, (const void *)QPtr, Self->ElementSize);
      RDex = (UINT32)ModuloIncrement(RDex, Self->NumElements);
      if(RDex == 0) {   // If the index wrapped
        QPtr = (UINTN)Self->Queue;
      }
      else {
        QPtr += Self->ElementSize;
      }
      ElemPtr += Self->ElementSize;
    }
    if(Consume) {
      Self->ReadIndex = RDex;
    }
  }
  return Count;
}

/** Read elements from the FIFO.

    @param[in]    Self        Pointer to the FIFO instance.
    @param[out]   pElement    Pointer to where to store the element read from the FIFO.
    @param[in]    Count       Number of elements to dequeue.

    @retval   0       The FIFO is empty.
    @retval   >=0     The number of elements read from the FIFO.
**/
static
size_t
EFIAPI
FIFO_Read (
  cFIFO    *Self,
  void     *pElement,
  size_t    Count
  )
{
  return FIFO_Dequeue(Self, pElement, Count, TRUE);
}

/** Make a copy of the FIFO's data.
    The contents of the FIFO is copied out and linearized without affecting the
    FIFO contents.

    @param[in]    Self        Pointer to the FIFO instance.
    @param[out]   pElement    Pointer to where to store the elements copied from the FIFO.
    @param[in]    Count       Number of elements to copy.

    @retval   0       The FIFO is empty.
    @retval   >=0     The number of elements copied from the FIFO.
**/
static
size_t
EFIAPI
FIFO_Copy (
  cFIFO    *Self,
  void     *pElement,
  size_t    Count
  )
{
  return FIFO_Dequeue(Self, pElement, Count, FALSE);
}

/** Get the FIFO's current Read Index.

    @param[in]    Self      Pointer to the FIFO instance.
**/
static
UINT32
EFIAPI
FIFO_GetRDex (
  cFIFO *Self
)
{
  assert(Self != NULL);

  return Self->ReadIndex;
}

/** Get the FIFO's current Write Index.

    @param[in]    Self      Pointer to the FIFO instance.

    @return   The current value of the FIFO's WriteIndex member is returned.
**/
static
UINT32
EFIAPI
FIFO_GetWDex (
  cFIFO *Self
)
{
  assert(Self != NULL);

  return Self->WriteIndex;
}

/** Cleanly delete a FIFO instance.

    @param[in]    Self              Pointer to the FIFO instance.
**/
static
void
EFIAPI
FIFO_Delete (
  cFIFO *Self
  )
{
  assert(Self != NULL);

  if(Self->Queue != NULL) {
    FreePool(Self->Queue);
    Self->Queue = NULL;     // Zombie catcher
  }
  FreePool(Self);
}

/** Empty the FIFO, discarding up to NumToFlush elements.

    @param[in]    Self              Pointer to the FIFO instance.
    @param[in]    NumToFlush        Number of elements to flush from the FIFO.
                                    If larger than the number of elements in the
                                    FIFO, the FIFO is emptied.

    @return     Returns the number of elements remaining in the FIFO after the flush.
**/
static
size_t
EFIAPI
FIFO_Flush (
  cFIFO  *Self,
  size_t  NumToFlush
  )
{
  size_t  NumInQ;
  size_t  Remainder;

  assert(Self != NULL);

  NumInQ = FIFO_FreeSpace(Self, AsElements);
  if(NumToFlush >= NumInQ) {
    Self->ReadIndex   = 0;
    Self->WriteIndex  = 0;
    Remainder = 0;
  }
  else {
    Remainder = FIFO_Reduce(Self, NumToFlush);
  }
  return Remainder;
}

/** Remove the most recently added element from the FIFO.

    @param[in]    Self              Pointer to the FIFO instance.

    @return     Returns the number of elements remaining in the FIFO.
**/
static
size_t
EFIAPI
FIFO_Truncate (
  cFIFO  *Self
  )
{
  size_t  Remainder;

  assert(Self != NULL);

  Remainder = Self->Count(Self, AsElements);
  if(Remainder > 0) {
    Self->WriteIndex = (UINT32)ModuloDecrement(Self->WriteIndex, Self->NumElements);
    --Remainder;
  }
  return Remainder;
}

/** Construct a new instance of a FIFO Queue.

    @param[in]    NumElements   Number of elements to be contained in the new FIFO.
    @param[in]    ElementSize   Size, in bytes, of an element.

    @retval   NULL      Unable to create the instance.
    @retval   NonNULL   Pointer to the new FIFO instance.
**/
cFIFO *
EFIAPI
New_cFIFO(
  UINT32    NumElements,
  size_t    ElementSize
  )
{
  cFIFO        *FIFO;
  UINT8        *Queue;

  FIFO = NULL;
  if((NumElements > 2) && (ElementSize > 0)) {
    FIFO = (cFIFO *)AllocatePool(sizeof(cFIFO));
    if(FIFO != NULL) {
      Queue = (UINT8 *)AllocateZeroPool(NumElements * ElementSize);
      if(Queue != NULL) {
        FIFO->Write       = FIFO_Enqueue;
        FIFO->Read        = FIFO_Read;
        FIFO->Copy        = FIFO_Copy;
        FIFO->IsEmpty     = FIFO_IsEmpty;
        FIFO->IsFull      = FIFO_IsFull;
        FIFO->Count       = FIFO_NumInQueue;
        FIFO->FreeSpace   = FIFO_FreeSpace;
        FIFO->Flush       = FIFO_Flush;
        FIFO->Truncate    = FIFO_Truncate;
        FIFO->Delete      = FIFO_Delete;
        FIFO->GetRDex     = FIFO_GetRDex;
        FIFO->GetWDex     = FIFO_GetWDex;

        FIFO->Queue       = Queue;
        FIFO->ElementSize = (UINT32)ElementSize;
        FIFO->NumElements = (UINT32)NumElements;
        FIFO->ReadIndex   = 0;
        FIFO->WriteIndex  = 0;
      }
      else {
        FreePool(FIFO);
        FIFO = NULL;
      }
    }
  }
  return FIFO;
}