summaryrefslogtreecommitdiff
path: root/StdLib/LibC/Math/k_tan.c
blob: ad83a21d3b0897b98cc00f4d5a499a9f38949b1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/* @(#)k_tan.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */
#include  <LibConfig.h>
#include  <sys/EfiCdefs.h>
#if defined(LIBM_SCCS) && !defined(lint)
__RCSID("$NetBSD: k_tan.c,v 1.12 2004/07/22 18:24:09 drochner Exp $");
#endif

/* __kernel_tan( x, y, k )
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input k indicates whether tan (if k=1) or
 * -1/tan (if k= -1) is returned.
 *
 * Algorithm
 *  1. Since tan(-x) = -tan(x), we need only to consider positive x.
 *  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
 *  3. tan(x) is approximated by a odd polynomial of degree 27 on
 *     [0,0.67434]
 *                 3             27
 *      tan(x) ~ x + T1*x + ... + T13*x
 *     where
 *
 *          |tan(x)         2     4            26   |     -59.2
 *          |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
 *          |  x          |
 *
 *     Note: tan(x+y) = tan(x) + tan'(x)*y
 *              ~ tan(x) + (1+x*x)*y
 *     Therefore, for better accuracy in computing tan(x+y), let
 *         3      2      2       2       2
 *    r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
 *     then
 *            3    2
 *    tan(x+y) = x + (T1*x + (x *(r+y)+y))
 *
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
 *    tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 *           = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 */

#include "math.h"
#include "math_private.h"

static const double xxx[] = {
     3.33333333333334091986e-01,  /* 3FD55555, 55555563 */
     1.33333333333201242699e-01,  /* 3FC11111, 1110FE7A */
     5.39682539762260521377e-02,  /* 3FABA1BA, 1BB341FE */
     2.18694882948595424599e-02,  /* 3F9664F4, 8406D637 */
     8.86323982359930005737e-03,  /* 3F8226E3, E96E8493 */
     3.59207910759131235356e-03,  /* 3F6D6D22, C9560328 */
     1.45620945432529025516e-03,  /* 3F57DBC8, FEE08315 */
     5.88041240820264096874e-04,  /* 3F4344D8, F2F26501 */
     2.46463134818469906812e-04,  /* 3F3026F7, 1A8D1068 */
     7.81794442939557092300e-05,  /* 3F147E88, A03792A6 */
     7.14072491382608190305e-05,  /* 3F12B80F, 32F0A7E9 */
    -1.85586374855275456654e-05,  /* BEF375CB, DB605373 */
     2.59073051863633712884e-05,  /* 3EFB2A70, 74BF7AD4 */
/* one */  1.00000000000000000000e+00,  /* 3FF00000, 00000000 */
/* pio4 */   7.85398163397448278999e-01,  /* 3FE921FB, 54442D18 */
/* pio4lo */   3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
};
#define one xxx[13]
#define pio4  xxx[14]
#define pio4lo  xxx[15]
#define T xxx

double
__kernel_tan(double x, double y, int iy)
{
  double z, r, v, w, s;
  int32_t ix, hx;

  GET_HIGH_WORD(hx, x); /* high word of x */
  ix = hx & 0x7fffffff;     /* high word of |x| */
  if (ix < 0x3e300000) {      /* x < 2**-28 */
    if ((int) x == 0) {   /* generate inexact */
      u_int32_t low;
      GET_LOW_WORD(low, x);
      if(((ix | low) | (iy + 1)) == 0)
        return one / fabs(x);
      else {
        if (iy == 1)
          return x;
        else {  /* compute -1 / (x+y) carefully */
          double a, t;

          z = w = x + y;
          SET_LOW_WORD(z, 0);
          v = y - (z - x);
          t = a = -one / w;
          SET_LOW_WORD(t, 0);
          s = one + t * z;
          return t + a * (s + t * v);
        }
      }
    }
  }
  if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
    if (hx < 0) {
      x = -x;
      y = -y;
    }
    z = pio4 - x;
    w = pio4lo - y;
    x = z + w;
    y = 0.0;
  }
  z = x * x;
  w = z * z;
  /*
   * Break x^5*(T[1]+x^2*T[2]+...) into
   * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
   * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
   */
  r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
    w * T[11]))));
  v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
    w * T[12])))));
  s = z * x;
  r = y + z * (s * (r + v) + y);
  r += T[0] * s;
  w = x + r;
  if (ix >= 0x3FE59428) {
    v = (double) iy;
    return (double) (1 - ((hx >> 30) & 2)) *
      (v - 2.0 * (x - (w * w / (w + v) - r)));
  }
  if (iy == 1)
    return w;
  else {
    /*
     * if allow error up to 2 ulp, simply return
     * -1.0 / (x+r) here
     */
    /* compute -1.0 / (x+r) accurately */
    double a, t;
    z = w;
    SET_LOW_WORD(z, 0);
    v = r - (z - x);  /* z+v = r+x */
    t = a = -1.0 / w; /* a = -1.0/w */
    SET_LOW_WORD(t, 0);
    s = 1.0 + t * z;
    return t + a * (s + t * v);
  }
}