1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
/** @file
Copyright (c) 2004 - 2014, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
Platform.c
Abstract:
This is a generic template for a child of the IchSmm driver.
--*/
#include "SmmPlatform.h"
#include <Protocol/CpuIo2.h>
//
// Local variables
//
typedef struct {
UINT8 Device;
UINT8 Function;
} EFI_PCI_BUS_MASTER;
EFI_PCI_BUS_MASTER mPciBm[] = {
{ PCI_DEVICE_NUMBER_PCH_PCIE_ROOT_PORTS, PCI_FUNCTION_NUMBER_PCH_PCIE_ROOT_PORT_1 },
{ PCI_DEVICE_NUMBER_PCH_PCIE_ROOT_PORTS, PCI_FUNCTION_NUMBER_PCH_PCIE_ROOT_PORT_2 },
{ PCI_DEVICE_NUMBER_PCH_PCIE_ROOT_PORTS, PCI_FUNCTION_NUMBER_PCH_PCIE_ROOT_PORT_3 },
{ PCI_DEVICE_NUMBER_PCH_PCIE_ROOT_PORTS, PCI_FUNCTION_NUMBER_PCH_PCIE_ROOT_PORT_4 },
{ PCI_DEVICE_NUMBER_PCH_USB, PCI_FUNCTION_NUMBER_PCH_EHCI }
};
UINT16 mAcpiBaseAddr;
SYSTEM_CONFIGURATION mSystemConfiguration;
EFI_SMM_VARIABLE_PROTOCOL *mSmmVariable;
EFI_GLOBAL_NVS_AREA_PROTOCOL *mGlobalNvsAreaPtr;
UINT16 mPM1_SaveState16;
UINT32 mGPE_SaveState32;
BOOLEAN mSetSmmVariableProtocolSmiAllowed = TRUE;
//
// Variables. Need to initialize this from Setup
//
BOOLEAN mWakeOnLanS5Variable;
BOOLEAN mWakeOnRtcVariable;
UINT8 mWakeupDay;
UINT8 mWakeupHour;
UINT8 mWakeupMinute;
UINT8 mWakeupSecond;
//
// Use an enum. 0 is Stay Off, 1 is Last State, 2 is Stay On
//
UINT8 mAcLossVariable;
static
UINT8 mTco1Sources[] = {
IchnNmi
};
UINTN
DevicePathSize (
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
);
VOID
S4S5ProgClock();
EFI_STATUS
InitRuntimeScriptTable (
IN EFI_SYSTEM_TABLE *SystemTable
);
VOID
S5SleepWakeOnRtcCallBack (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SX_DISPATCH_CONTEXT *DispatchContext
);
VOID
EnableS5WakeOnRtc();
UINT8
HexToBcd(
UINT8 HexValue
);
UINT8
BcdToHex(
IN UINT8 BcdValue
);
VOID
CpuSmmSxWorkAround(
);
/**
Initializes the SMM Handler Driver
@param ImageHandle
@param SystemTable
@retval None
**/
EFI_STATUS
EFIAPI
InitializePlatformSmm (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINT8 Index;
EFI_HANDLE Handle;
EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT PowerButtonContext;
EFI_SMM_POWER_BUTTON_DISPATCH_PROTOCOL *PowerButtonDispatch;
EFI_SMM_ICHN_DISPATCH_CONTEXT IchnContext;
EFI_SMM_ICHN_DISPATCH_PROTOCOL *IchnDispatch;
EFI_SMM_SX_DISPATCH_PROTOCOL *SxDispatch;
EFI_SMM_SX_DISPATCH_CONTEXT EntryDispatchContext;
EFI_SMM_SW_DISPATCH_PROTOCOL *SwDispatch;
EFI_SMM_SW_DISPATCH_CONTEXT SwContext;
UINTN VarSize;
EFI_BOOT_MODE BootMode;
Handle = NULL;
//
// Locate the Global NVS Protocol.
//
Status = gBS->LocateProtocol (
&gEfiGlobalNvsAreaProtocolGuid,
NULL,
(void **)&mGlobalNvsAreaPtr
);
ASSERT_EFI_ERROR (Status);
//
// Get the ACPI Base Address
//
mAcpiBaseAddr = PchLpcPciCfg16( R_PCH_LPC_ACPI_BASE ) & B_PCH_LPC_ACPI_BASE_BAR;
VarSize = sizeof(SYSTEM_CONFIGURATION);
Status = SystemTable->RuntimeServices->GetVariable(
L"Setup",
&gEfiSetupVariableGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
if (EFI_ERROR (Status) || VarSize != sizeof(SYSTEM_CONFIGURATION)) {
//The setup variable is corrupted
VarSize = sizeof(SYSTEM_CONFIGURATION);
Status = SystemTable->RuntimeServices->GetVariable(
L"SetupRecovery",
&gEfiSetupVariableGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
ASSERT_EFI_ERROR (Status);
}
if (!EFI_ERROR(Status)) {
mAcLossVariable = mSystemConfiguration.StateAfterG3;
//
// If LAN is disabled, WOL function should be disabled too.
//
if (mSystemConfiguration.Lan == 0x01){
mWakeOnLanS5Variable = mSystemConfiguration.WakeOnLanS5;
} else {
mWakeOnLanS5Variable = FALSE;
}
mWakeOnRtcVariable = mSystemConfiguration.WakeOnRtcS5;
}
BootMode = GetBootModeHob ();
//
// Get the Power Button protocol
//
Status = gBS->LocateProtocol(
&gEfiSmmPowerButtonDispatchProtocolGuid,
NULL,
(void **)&PowerButtonDispatch
);
ASSERT_EFI_ERROR(Status);
if (BootMode != BOOT_ON_FLASH_UPDATE) {
//
// Register for the power button event
//
PowerButtonContext.Phase = PowerButtonEntry;
Status = PowerButtonDispatch->Register(
PowerButtonDispatch,
PowerButtonCallback,
&PowerButtonContext,
&Handle
);
ASSERT_EFI_ERROR(Status);
}
//
// Get the Sx dispatch protocol
//
Status = gBS->LocateProtocol (
&gEfiSmmSxDispatchProtocolGuid,
NULL,
(void **)&SxDispatch
);
ASSERT_EFI_ERROR(Status);
//
// Register entry phase call back function
//
EntryDispatchContext.Type = SxS3;
EntryDispatchContext.Phase = SxEntry;
Status = SxDispatch->Register (
SxDispatch,
(EFI_SMM_SX_DISPATCH)SxSleepEntryCallBack,
&EntryDispatchContext,
&Handle
);
EntryDispatchContext.Type = SxS4;
Status = SxDispatch->Register (
SxDispatch,
S4S5CallBack,
&EntryDispatchContext,
&Handle
);
ASSERT_EFI_ERROR(Status);
EntryDispatchContext.Type = SxS5;
Status = SxDispatch->Register (
SxDispatch,
S4S5CallBack,
&EntryDispatchContext,
&Handle
);
ASSERT_EFI_ERROR(Status);
Status = SxDispatch->Register (
SxDispatch,
S5SleepAcLossCallBack,
&EntryDispatchContext,
&Handle
);
ASSERT_EFI_ERROR(Status);
//
// Get the Sw dispatch protocol
//
Status = gBS->LocateProtocol (
&gEfiSmmSwDispatchProtocolGuid,
NULL,
(void **)&SwDispatch
);
ASSERT_EFI_ERROR(Status);
//
// Register ACPI enable handler
//
SwContext.SwSmiInputValue = ACPI_ENABLE;
Status = SwDispatch->Register (
SwDispatch,
EnableAcpiCallback,
&SwContext,
&Handle
);
ASSERT_EFI_ERROR(Status);
//
// Register ACPI disable handler
//
SwContext.SwSmiInputValue = ACPI_DISABLE;
Status = SwDispatch->Register (
SwDispatch,
DisableAcpiCallback,
&SwContext,
&Handle
);
ASSERT_EFI_ERROR(Status);
//
// Register for SmmReadyToBootCallback
//
SwContext.SwSmiInputValue = SMI_SET_SMMVARIABLE_PROTOCOL;
Status = SwDispatch->Register(
SwDispatch,
SmmReadyToBootCallback,
&SwContext,
&Handle
);
ASSERT_EFI_ERROR(Status);
//
// Get the ICHn protocol
//
Status = gBS->LocateProtocol(
&gEfiSmmIchnDispatchProtocolGuid,
NULL,
(void **)&IchnDispatch
);
ASSERT_EFI_ERROR(Status);
//
// Register for the events that may happen that we do not care.
// This is true for SMI related to TCO since TCO is enabled by BIOS WP
//
for (Index = 0; Index < sizeof(mTco1Sources)/sizeof(UINT8); Index++) {
IchnContext.Type = mTco1Sources[Index];
Status = IchnDispatch->Register(
IchnDispatch,
(EFI_SMM_ICHN_DISPATCH)DummyTco1Callback,
&IchnContext,
&Handle
);
ASSERT_EFI_ERROR( Status );
}
//
// Lock TCO_EN bit.
//
IoWrite16( mAcpiBaseAddr + R_PCH_TCO_CNT, IoRead16( mAcpiBaseAddr + R_PCH_TCO_CNT ) | B_PCH_TCO_CNT_LOCK );
//
// Set to power on from G3 dependent on WOL instead of AC Loss variable in order to support WOL from G3 feature.
//
//
// Set wake from G3 dependent on AC Loss variable and Wake On LAN variable.
// This is because no matter how, if WOL enabled or AC Loss variable not disabled, the board needs to wake from G3 to program the LAN WOL settings.
// This needs to be done after LAN enable/disable so that the PWR_FLR state clear not impacted the WOL from G3 feature.
//
if (mAcLossVariable != 0x00) {
SetAfterG3On (TRUE);
} else {
SetAfterG3On (FALSE);
}
return EFI_SUCCESS;
}
VOID
EFIAPI
SmmReadyToBootCallback (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SW_DISPATCH_CONTEXT *DispatchContext
)
{
EFI_STATUS Status;
if (mSetSmmVariableProtocolSmiAllowed)
{
//
// It is okay to use gBS->LocateProtocol here because
// we are still in trusted execution.
//
Status = gBS->LocateProtocol(
&gEfiSmmVariableProtocolGuid,
NULL,
(void **)&mSmmVariable
);
ASSERT_EFI_ERROR(Status);
//
// mSetSmmVariableProtocolSmiAllowed will prevent this function from
// being executed more than 1 time.
//
mSetSmmVariableProtocolSmiAllowed = FALSE;
}
}
/**
@param DispatchHandle The handle of this callback, obtained when registering
@param DispatchContext The predefined context which contained sleep type and phase
@retval EFI_SUCCESS Operation successfully performed
**/
EFI_STATUS
EFIAPI
SxSleepEntryCallBack (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SX_DISPATCH_CONTEXT *DispatchContext
)
{
EFI_STATUS Status;
Status = SaveRuntimeScriptTable ();
if (EFI_ERROR(Status)) {
return Status;
}
//
// Workaround for S3 wake hang if C State is enabled
//
CpuSmmSxWorkAround();
return EFI_SUCCESS;
}
VOID
CpuSmmSxWorkAround(
)
{
UINT64 MsrValue;
MsrValue = AsmReadMsr64 (0xE2);
if (MsrValue & BIT15) {
return;
}
if (MsrValue & BIT10) {
MsrValue &= ~BIT10;
AsmWriteMsr64 (0xE2, MsrValue);
}
}
VOID
ClearP2PBusMaster(
)
{
UINT8 Command;
UINT8 Index;
for (Index = 0; Index < sizeof(mPciBm)/sizeof(EFI_PCI_BUS_MASTER); Index++) {
Command = MmioRead8 (
MmPciAddress (0,
DEFAULT_PCI_BUS_NUMBER_PCH,
mPciBm[Index].Device,
mPciBm[Index].Function,
PCI_COMMAND_OFFSET
)
);
Command &= ~EFI_PCI_COMMAND_BUS_MASTER;
MmioWrite8 (
MmPciAddress (0,
DEFAULT_PCI_BUS_NUMBER_PCH,
mPciBm[Index].Device,
mPciBm[Index].Function,
PCI_COMMAND_OFFSET
),
Command
);
}
}
/**
Set the AC Loss to turn on or off.
**/
VOID
SetAfterG3On (
BOOLEAN Enable
)
{
UINT8 PmCon1;
//
// ICH handling portion
//
PmCon1 = MmioRead8 ( PMC_BASE_ADDRESS + R_PCH_PMC_GEN_PMCON_1 );
PmCon1 &= ~B_PCH_PMC_GEN_PMCON_AFTERG3_EN;
if (Enable) {
PmCon1 |= B_PCH_PMC_GEN_PMCON_AFTERG3_EN;
}
MmioWrite8 (PMC_BASE_ADDRESS + R_PCH_PMC_GEN_PMCON_1, PmCon1);
}
/**
When a power button event happens, it shuts off the machine
**/
VOID
EFIAPI
PowerButtonCallback (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_POWER_BUTTON_DISPATCH_CONTEXT *DispatchContext
)
{
//
// Check what the state to return to after AC Loss. If Last State, then
// set it to Off.
//
UINT16 data16;
if (mWakeOnRtcVariable) {
EnableS5WakeOnRtc();
}
if (mAcLossVariable == 1) {
SetAfterG3On (TRUE);
}
ClearP2PBusMaster();
//
// Program clock chip
//
S4S5ProgClock();
data16 = (UINT16)(IoRead16(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN));
data16 &= B_PCH_ACPI_GPE0a_EN_PCI_EXP;
//
// Clear Sleep SMI Status
//
IoWrite16 (mAcpiBaseAddr + R_PCH_SMI_STS,
(UINT16)(IoRead16 (mAcpiBaseAddr + R_PCH_SMI_STS) | B_PCH_SMI_STS_ON_SLP_EN));
//
// Clear Sleep Type Enable
//
IoWrite16 (mAcpiBaseAddr + R_PCH_SMI_EN,
(UINT16)(IoRead16 (mAcpiBaseAddr + R_PCH_SMI_EN) & (~B_PCH_SMI_EN_ON_SLP_EN)));
//
// Clear Power Button Status
//
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS, B_PCH_ACPI_PM1_STS_PWRBTN);
//
// Shut it off now!
//
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT, V_PCH_ACPI_PM1_CNT_S5);
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT, B_PCH_ACPI_PM1_CNT_SLP_EN | V_PCH_ACPI_PM1_CNT_S5);
//
// Should not return
//
CpuDeadLoop();
}
/**
@param DispatchHandle - The handle of this callback, obtained when registering
@param DispatchContext - The predefined context which contained sleep type and phase
**/
VOID
EFIAPI
S5SleepAcLossCallBack (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SX_DISPATCH_CONTEXT *DispatchContext
)
{
//
// Check what the state to return to after AC Loss. If Last State, then
// set it to Off.
//
if (mAcLossVariable == 1) {
SetAfterG3On (TRUE);
}
}
/**
@param DispatchHandle The handle of this callback, obtained when registering
@param DispatchContext The predefined context which contained sleep type and phase
@retval Clears the Save State bit in the clock.
**/
VOID
EFIAPI
S4S5CallBack (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SX_DISPATCH_CONTEXT *DispatchContext
)
{
UINT32 Data32;
//
// Enable/Disable USB Charging
//
if (mSystemConfiguration.UsbCharging == 0x01) {
Data32 = IoRead32 (GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_LVL);
Data32 |= BIT8;
IoWrite32(GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_LVL, Data32);
}
}
VOID
S4S5ProgClock()
{
}
/**
SMI handler to enable ACPI mode
Dispatched on reads from APM port with value 0xA0
Disables the SW SMI Timer.
ACPI events are disabled and ACPI event status is cleared.
SCI mode is then enabled.
Disable SW SMI Timer
Clear all ACPI event status and disable all ACPI events
Disable PM sources except power button
Clear status bits
Disable GPE0 sources
Clear status bits
Disable GPE1 sources
Clear status bits
Guarantee day-of-month alarm is invalid (ACPI 5.0 Section 4.8.2.4 "Real Time Clock Alarm")
Enable SCI
@param DispatchHandle - EFI Handle
@param DispatchContext - Pointer to the EFI_SMM_SW_DISPATCH_CONTEXT
@retval Nothing
**/
VOID
EFIAPI
EnableAcpiCallback (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SW_DISPATCH_CONTEXT *DispatchContext
)
{
UINT32 SmiEn;
UINT16 Pm1Cnt;
UINT16 wordValue;
UINT32 RegData32;
//
// Disable SW SMI Timer
//
SmiEn = IoRead32(mAcpiBaseAddr + R_PCH_SMI_EN);
SmiEn &= ~B_PCH_SMI_STS_SWSMI_TMR;
IoWrite32(mAcpiBaseAddr + R_PCH_SMI_EN, SmiEn);
wordValue = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS);
if(wordValue & B_PCH_ACPI_PM1_STS_WAK) {
IoWrite32((mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN), 0x0000);
IoWrite32((mAcpiBaseAddr + R_PCH_ACPI_GPE0a_STS), 0xffffffff);
}
else {
mPM1_SaveState16 = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN);
//
// Disable PM sources except power button
//
// power button is enabled only for PCAT. Disabled it on Tablet platform
//
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN, B_PCH_ACPI_PM1_EN_PWRBTN);
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS, 0xffff);
mGPE_SaveState32 = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN);
IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN, 0x0000);
IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_STS, 0xffffffff);
}
//
// Guarantee day-of-month alarm is invalid (ACPI 5.0 Section 4.8.2.4 "Real Time Clock Alarm")
// Clear Status D reg VM bit, Date of month Alarm to make Data in CMOS RAM is no longer Valid
//
IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_D);
IoWrite8 (PCAT_RTC_DATA_REGISTER, 0x0);
RegData32 = IoRead32(ACPI_BASE_ADDRESS + R_PCH_ALT_GP_SMI_EN);
RegData32 &= ~(BIT7);
IoWrite32((ACPI_BASE_ADDRESS + R_PCH_ALT_GP_SMI_EN), RegData32);
//
// Enable SCI
//
Pm1Cnt = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT);
Pm1Cnt |= B_PCH_ACPI_PM1_CNT_SCI_EN;
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT, Pm1Cnt);
}
/**
SMI handler to disable ACPI mode
Dispatched on reads from APM port with value 0xA1
ACPI events are disabled and ACPI event status is cleared.
SCI mode is then disabled.
Clear all ACPI event status and disable all ACPI events
Disable PM sources except power button
Clear status bits
Disable GPE0 sources
Clear status bits
Disable GPE1 sources
Clear status bits
Disable SCI
@param DispatchHandle - EFI Handle
@param DispatchContext - Pointer to the EFI_SMM_SW_DISPATCH_CONTEXT
@retval Nothing
**/
VOID
EFIAPI
DisableAcpiCallback (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SW_DISPATCH_CONTEXT *DispatchContext
)
{
UINT16 Pm1Cnt;
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS, 0xffff);
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN, mPM1_SaveState16);
IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_STS, 0xffffffff);
IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN, mGPE_SaveState32);
//
// Disable SCI
//
Pm1Cnt = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT);
Pm1Cnt &= ~B_PCH_ACPI_PM1_CNT_SCI_EN;
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT, Pm1Cnt);
}
/**
When an unknown event happen.
@retval None
**/
VOID
DummyTco1Callback (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_ICHN_DISPATCH_CONTEXT *DispatchContext
)
{
}
UINTN
DevicePathSize (
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath
)
{
EFI_DEVICE_PATH_PROTOCOL *Start;
if (DevicePath == NULL) {
return 0;
}
//
// Search for the end of the device path structure
//
Start = DevicePath;
while (!IsDevicePathEnd (DevicePath)) {
DevicePath = NextDevicePathNode (DevicePath);
}
//
// Compute the size and add back in the size of the end device path structure
//
return ((UINTN)DevicePath - (UINTN)Start) + sizeof(EFI_DEVICE_PATH_PROTOCOL);
}
/**
@param DispatchHandle The handle of this callback, obtained when registering
@param DispatchContext The predefined context which contained sleep type and phase
**/
VOID
S5SleepWakeOnRtcCallBack (
IN EFI_HANDLE DispatchHandle,
IN EFI_SMM_SX_DISPATCH_CONTEXT *DispatchContext
)
{
EnableS5WakeOnRtc();
}
/**
@retval 1. Check Alarm interrupt is not set.
2. Clear Alarm interrupt.
2. Set RTC wake up date and time.
2. Enable RTC wake up alarm.
3. Enable ICH PM1 EN Bit 10(RTC_EN)
**/
VOID
EnableS5WakeOnRtc()
{
UINT8 CmosData;
UINTN i;
EFI_STATUS Status;
UINTN VarSize;
//
// make sure EFI_SMM_VARIABLE_PROTOCOL is available
//
if (!mSmmVariable) {
return;
}
VarSize = sizeof(SYSTEM_CONFIGURATION);
//
// read the variable into the buffer
//
Status = mSmmVariable->SmmGetVariable(
L"Setup",
&gEfiSetupVariableGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
if (EFI_ERROR(Status) || VarSize != sizeof(SYSTEM_CONFIGURATION)) {
//The setup variable is corrupted
VarSize = sizeof(SYSTEM_CONFIGURATION);
Status = mSmmVariable->SmmGetVariable(
L"SetupRecovery",
&gEfiSetupVariableGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
ASSERT_EFI_ERROR (Status);
}
if (!mSystemConfiguration.WakeOnRtcS5) {
return;
}
mWakeupDay = HexToBcd((UINT8)mSystemConfiguration.RTCWakeupDate);
mWakeupHour = HexToBcd((UINT8)mSystemConfiguration.RTCWakeupTimeHour);
mWakeupMinute = HexToBcd((UINT8)mSystemConfiguration.RTCWakeupTimeMinute);
mWakeupSecond = HexToBcd((UINT8)mSystemConfiguration.RTCWakeupTimeSecond);
//
// Check RTC alarm interrupt is enabled. If enabled, someone already
// grabbed RTC alarm. Just return.
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_B);
if(IoRead8(PCAT_RTC_DATA_REGISTER) & B_RTC_ALARM_INT_ENABLE){
return;
}
//
// Set Date
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_D);
CmosData = IoRead8(PCAT_RTC_DATA_REGISTER);
CmosData &= ~(B_RTC_DATE_ALARM_MASK);
CmosData |= mWakeupDay ;
for(i = 0 ; i < 0xffff ; i++){
IoWrite8(PCAT_RTC_DATA_REGISTER, CmosData);
SmmStall(1);
if(((CmosData = IoRead8(PCAT_RTC_DATA_REGISTER)) & B_RTC_DATE_ALARM_MASK)
== mWakeupDay){
break;
}
}
//
// Set Second
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_SECOND_ALARM);
for(i = 0 ; i < 0xffff ; i++){
IoWrite8(PCAT_RTC_DATA_REGISTER, mWakeupSecond);
SmmStall(1);
if(IoRead8(PCAT_RTC_DATA_REGISTER) == mWakeupSecond){
break;
}
}
//
// Set Minute
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_MINUTE_ALARM);
for(i = 0 ; i < 0xffff ; i++){
IoWrite8(PCAT_RTC_DATA_REGISTER, mWakeupMinute);
SmmStall(1);
if(IoRead8(PCAT_RTC_DATA_REGISTER) == mWakeupMinute){
break;
}
}
//
// Set Hour
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_HOUR_ALARM);
for(i = 0 ; i < 0xffff ; i++){
IoWrite8(PCAT_RTC_DATA_REGISTER, mWakeupHour);
SmmStall(1);
if(IoRead8(PCAT_RTC_DATA_REGISTER) == mWakeupHour){
break;
}
}
//
// Wait for UIP to arm RTC alarm
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_A);
while (IoRead8(PCAT_RTC_DATA_REGISTER) & 0x80);
//
// Read RTC register 0C to clear pending RTC interrupts
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_C);
IoRead8(PCAT_RTC_DATA_REGISTER);
//
// Enable RTC Alarm Interrupt
//
IoWrite8(PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_B);
IoWrite8(PCAT_RTC_DATA_REGISTER, IoRead8(PCAT_RTC_DATA_REGISTER) | B_RTC_ALARM_INT_ENABLE);
//
// Clear ICH RTC Status
//
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS, B_PCH_ACPI_PM1_STS_RTC);
//
// Enable ICH RTC event
//
IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN,
(UINT16)(IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN) | B_PCH_ACPI_PM1_EN_RTC));
}
UINT8
HexToBcd(
IN UINT8 HexValue
)
{
UINTN HighByte;
UINTN LowByte;
HighByte = (UINTN)HexValue / 10;
LowByte = (UINTN)HexValue % 10;
return ((UINT8)(LowByte + (HighByte << 4)));
}
UINT8
BcdToHex(
IN UINT8 BcdValue
)
{
UINTN HighByte;
UINTN LowByte;
HighByte = (UINTN)((BcdValue >> 4) * 10);
LowByte = (UINTN)(BcdValue & 0x0F);
return ((UINT8)(LowByte + HighByte));
}
|