From e8ed7b1d1b5bef31e9874f679a5797c2e00d06f1 Mon Sep 17 00:00:00 2001 From: Nilay Vaish Date: Sat, 11 Oct 2014 15:02:23 -0500 Subject: ext: add the source code for DSENT This patch adds a tool called DSENT to the ext/ directory. DSENT is a tool that models power and area for on-chip networks. The next patch adds a script for using the tool. --- ext/dsent/model/std_cells/XOR2.cc | 345 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 345 insertions(+) create mode 100644 ext/dsent/model/std_cells/XOR2.cc (limited to 'ext/dsent/model/std_cells/XOR2.cc') diff --git a/ext/dsent/model/std_cells/XOR2.cc b/ext/dsent/model/std_cells/XOR2.cc new file mode 100644 index 000000000..5b57b55e5 --- /dev/null +++ b/ext/dsent/model/std_cells/XOR2.cc @@ -0,0 +1,345 @@ +#include "model/std_cells/XOR2.h" + +#include + +#include "model/PortInfo.h" +#include "model/EventInfo.h" +#include "model/TransitionInfo.h" +#include "model/std_cells/StdCellLib.h" +#include "model/std_cells/CellMacros.h" +#include "model/timing_graph/ElectricalNet.h" +#include "model/timing_graph/ElectricalDriver.h" +#include "model/timing_graph/ElectricalLoad.h" +#include "model/timing_graph/ElectricalDelay.h" + +namespace DSENT +{ + using std::ceil; + using std::max; + + XOR2::XOR2(const String& instance_name_, const TechModel* tech_model_) + : StdCell(instance_name_, tech_model_) + { + initProperties(); + } + + XOR2::~XOR2() + {} + + void XOR2::initProperties() + { + return; + } + + void XOR2::constructModel() + { + // All constructModel should do is create Area/NDDPower/Energy Results as + // well as instantiate any sub-instances using only the hard parameters + + createInputPort("A"); + createInputPort("B"); + createOutputPort("Y"); + + createLoad("A_Cap"); + createLoad("B_Cap"); + createDelay("A_to_Y_delay"); + createDelay("B_to_Y_delay"); + createDriver("Y_Ron", true); + + ElectricalLoad* a_cap = getLoad("A_Cap"); + ElectricalLoad* b_cap = getLoad("B_Cap"); + ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); + ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); + ElectricalDriver* y_ron = getDriver("Y_Ron"); + + getNet("A")->addDownstreamNode(a_cap); + getNet("B")->addDownstreamNode(b_cap); + a_cap->addDownstreamNode(a_to_y_delay); + b_cap->addDownstreamNode(b_to_y_delay); + a_to_y_delay->addDownstreamNode(y_ron); + b_to_y_delay->addDownstreamNode(y_ron); + y_ron->addDownstreamNode(getNet("Y")); + + // Create Area result + // Create NDD Power result + createElectricalAtomicResults(); + // Create XOR2 Event Energy Result + createElectricalEventAtomicResult("XOR2"); + + getEventInfo("Idle")->setStaticTransitionInfos(); + + return; + } + + void XOR2::updateModel() + { + // Get parameters + double drive_strength = getDrivingStrength(); + Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); + + // Standard cell cache string + String cell_name = "XOR2_X" + (String) drive_strength; + + // Get timing parameters + getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); + getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); + + getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); + getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); + + getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); + + // Set the cell area + getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea")); + getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea")); + + return; + } + + void XOR2::evaluateModel() + { + return; + } + + void XOR2::useModel() + { + // Get parameters + double drive_strength = getDrivingStrength(); + Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); + + // Standard cell cache string + String cell_name = "XOR2_X" + (String) drive_strength; + + // Propagate the transition info and get the 0->1 transtion count + propagateTransitionInfo(); + double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); + double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); + double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01(); + double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01(); + double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); + + // Calculate leakage + double leakage = 0; + leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B); + leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B; + leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B); + leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B; + getNddPowerResult("Leakage")->setValue(leakage); + + // Get VDD + double vdd = getTechModel()->get("Vdd"); + + // Get capacitances + double a_b_cap = cache->get(cell_name + "->Cap->A_b"); + double b_b_cap = cache->get(cell_name + "->Cap->B_b"); + double y_cap = cache->get(cell_name + "->Cap->Y"); + double y_load_cap = getNet("Y")->getTotalDownstreamCap(); + + // Calculate XOR Event energy + double xor2_event_result = 0.0; + xor2_event_result += a_b_cap * A_num_trans_01; + xor2_event_result += b_b_cap * B_num_trans_01; + xor2_event_result += (y_cap + y_load_cap) * Y_num_trans_01; + xor2_event_result *= vdd * vdd; + getEventResult("XOR2")->setValue(xor2_event_result); + + return; + } + + void XOR2::propagateTransitionInfo() + { + // Get input signal transition info + const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); + const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); + + double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()); + const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); + const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); + + + double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; + double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; + double A_prob_10 = A_prob_01; + double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; + double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; + double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; + double B_prob_10 = B_prob_01; + double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; + + // Set output transition info + double Y_prob_00 = A_prob_00 * B_prob_00 + + A_prob_01 * B_prob_01 + + A_prob_10 * B_prob_10 + + A_prob_11 * B_prob_11; + double Y_prob_01 = A_prob_00 * B_prob_01 + + A_prob_01 * B_prob_00 + + A_prob_10 * B_prob_11 + + A_prob_11 * B_prob_10; + double Y_prob_11 = A_prob_00 * B_prob_11 + + A_prob_01 * B_prob_10 + + A_prob_10 * B_prob_01 + + A_prob_11 * B_prob_00; + + // Check that probabilities add up to 1.0 with some finite tolerance + ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), + "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" + + (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); + + // Turn probability of transitions per cycle into number of transitions per time unit + TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); + getOutputPort("Y")->setTransitionInfo(trans_Y); + return; + } + + // Creates the standard cell, characterizes and abstracts away the details + void XOR2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) + { + // Get parameters + double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); + Map* cache = cell_lib_->getStdCellCache(); + + // Standard cell cache string + String cell_name = "XOR2_X" + (String) drive_strength_; + + Log::printLine("=== " + cell_name + " ==="); + + // Now actually build the full standard cell model + createInputPort("A"); + createInputPort("B"); + createOutputPort("Y"); + + createNet("A_b"); + createNet("B_b"); + + // Adds macros + CellMacros::addInverter(this, "INV1", false, true, "A", "A_b"); + CellMacros::addInverter(this, "INV2", false, true, "B", "B_b"); + CellMacros::addTristate(this, "INVZ1", true, true, true, true, "B", "A", "A_b", "Y"); + CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B_b", "A_b", "A", "Y"); + + // I have no idea how to size each of the parts haha + CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.500); + CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.500); + CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 1.000); + CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 1.000); + + // Cache area result + double area = 0.0; + area += gate_pitch * getTotalHeight() * 1; + area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); + area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); + area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); + area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); + cache->set(cell_name + "->ActiveArea", area); + Log::printLine(cell_name + "->ActiveArea=" + (String) area); + + // -------------------------------------------------------------------- + // Leakage Model Calculation + // -------------------------------------------------------------------- + // Cache leakage power results (for every single signal combination) + double leakage_00 = 0; //!A, !B + double leakage_01 = 0; //!A, B + double leakage_10 = 0; //A, !B + double leakage_11 = 0; //A, B + + //This is so painful... + leakage_00 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); + leakage_00 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); + leakage_00 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); + leakage_00 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); + + leakage_01 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); + leakage_01 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); + leakage_01 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); + leakage_01 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); + + leakage_10 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); + leakage_10 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); + leakage_10 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); + leakage_10 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble(); + + leakage_11 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); + leakage_11 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); + leakage_11 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); + leakage_11 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble(); + + cache->set(cell_name + "->Leakage->!A!B", leakage_00); + cache->set(cell_name + "->Leakage->!AB", leakage_01); + cache->set(cell_name + "->Leakage->A!B", leakage_10); + cache->set(cell_name + "->Leakage->AB", leakage_11); + Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00); + Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01); + Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10); + Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11); + // -------------------------------------------------------------------- + + // Cache event energy results + /* + double event_a_flip = 0.0; + event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble(); + event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble(); + event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble(); + cache->set(cell_name + "->Event_A_Flip", event_a_flip); + Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); + + double event_b_flip = 0.0; + event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble(); + event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble(); + event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble(); + cache->set(cell_name + "->Event_B_Flip", event_b_flip); + Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); + + double event_y_flip = 0.0; + event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble(); + event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble(); + cache->set(cell_name + "->Event_Y_Flip", event_y_flip); + Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip); + */ + + // -------------------------------------------------------------------- + // Get Node Capacitances + // -------------------------------------------------------------------- + // Build abstracted timing model + double a_cap = getNet("A")->getTotalDownstreamCap(); + double b_cap = getNet("B")->getTotalDownstreamCap(); + double a_b_cap = getNet("A_b")->getTotalDownstreamCap(); + double b_b_cap = getNet("B_b")->getTotalDownstreamCap(); + double y_cap = getNet("Y")->getTotalDownstreamCap(); + + cache->set(cell_name + "->Cap->A", a_cap); + cache->set(cell_name + "->Cap->B", b_cap); + cache->set(cell_name + "->Cap->A_b", a_b_cap); + cache->set(cell_name + "->Cap->B_b", b_b_cap); + cache->set(cell_name + "->Cap->Y", y_cap); + Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); + Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); + Log::printLine(cell_name + "->Cap->A=" + (String) a_b_cap); + Log::printLine(cell_name + "->Cap->B=" + (String) b_b_cap); + Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); + // -------------------------------------------------------------------- + + // -------------------------------------------------------------------- + // Build Internal Delay Model + // -------------------------------------------------------------------- + double y_ron = (getDriver("INVZ1_RonZN")->getOutputRes() + getDriver("INVZ2_RonZN")->getOutputRes()) / 2; + + double a_to_y_delay = 0.0; + a_to_y_delay += getDriver("INV1_RonZN")->calculateDelay(); + a_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()); + + double b_to_y_delay = 0.0; + b_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()); + + cache->set(cell_name + "->DriveRes->Y", y_ron); + cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); + cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); + Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); + Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); + Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); + // -------------------------------------------------------------------- + + return; + } + +} // namespace DSENT + -- cgit v1.2.3