From e553a7bfa7f0eb47b78632cd63e6e1e814025c9a Mon Sep 17 00:00:00 2001 From: Anthony Gutierrez Date: Tue, 1 Apr 2014 12:44:30 -0400 Subject: ext: add McPAT source this patch adds the source for mcpat, a power, area, and timing modeling framework. --- ext/mcpat/cacti/decoder.cc | 1577 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1577 insertions(+) create mode 100644 ext/mcpat/cacti/decoder.cc (limited to 'ext/mcpat/cacti/decoder.cc') diff --git a/ext/mcpat/cacti/decoder.cc b/ext/mcpat/cacti/decoder.cc new file mode 100644 index 000000000..0de6f6157 --- /dev/null +++ b/ext/mcpat/cacti/decoder.cc @@ -0,0 +1,1577 @@ +/***************************************************************************** + * McPAT/CACTI + * SOFTWARE LICENSE AGREEMENT + * Copyright 2012 Hewlett-Packard Development Company, L.P. + * All Rights Reserved + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer; + * redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution; + * neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” + * + ***************************************************************************/ + + + +#include +#include +#include + +#include "area.h" +#include "decoder.h" +#include "parameter.h" + +using namespace std; + + +Decoder::Decoder( + int _num_dec_signals, + bool flag_way_select, + double _C_ld_dec_out, + double _R_wire_dec_out, + bool fully_assoc_, + bool is_dram_, + bool is_wl_tr_, + const Area & cell_) +:exist(false), + C_ld_dec_out(_C_ld_dec_out), + R_wire_dec_out(_R_wire_dec_out), + num_gates(0), num_gates_min(2), + delay(0), + //power(), + fully_assoc(fully_assoc_), is_dram(is_dram_), + is_wl_tr(is_wl_tr_), cell(cell_) +{ + + for (int i = 0; i < MAX_NUMBER_GATES_STAGE; i++) + { + w_dec_n[i] = 0; + w_dec_p[i] = 0; + } + + /* + * _num_dec_signals is the number of decoded signal as output + * num_addr_bits_dec is the number of signal to be decoded + * as the decoders input. + */ + int num_addr_bits_dec = _log2(_num_dec_signals); + + if (num_addr_bits_dec < 4) + { + if (flag_way_select) + { + exist = true; + num_in_signals = 2; + } + else + { + num_in_signals = 0; + } + } + else + { + exist = true; + + if (flag_way_select) + { + num_in_signals = 3; + } + else + { + num_in_signals = 2; + } + } + + assert(cell.h>0); + assert(cell.w>0); + // the height of a row-decoder-driver cell is fixed to be 4 * cell.h; + //area.h = 4 * cell.h; + area.h = g_tp.h_dec * cell.h; + + compute_widths(); + compute_area(); +} + + + +void Decoder::compute_widths() +{ + double F; + double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram, is_wl_tr); + double gnand2 = (2 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio); + double gnand3 = (3 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio); + + if (exist) + { + if (num_in_signals == 2 || fully_assoc) + { + w_dec_n[0] = 2 * g_tp.min_w_nmos_; + w_dec_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + F = gnand2; + } + else + { + w_dec_n[0] = 3 * g_tp.min_w_nmos_; + w_dec_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + F = gnand3; + } + + F *= C_ld_dec_out / (gate_C(w_dec_n[0], 0, is_dram, false, is_wl_tr) + + gate_C(w_dec_p[0], 0, is_dram, false, is_wl_tr)); + num_gates = logical_effort( + num_gates_min, + num_in_signals == 2 ? gnand2 : gnand3, + F, + w_dec_n, + w_dec_p, + C_ld_dec_out, + p_to_n_sz_ratio, + is_dram, + is_wl_tr, + g_tp.max_w_nmos_dec); + } +} + + + +void Decoder::compute_area() +{ + double cumulative_area = 0; + double cumulative_curr = 0; // cumulative leakage current + double cumulative_curr_Ig = 0; // cumulative leakage current + + if (exist) + { // First check if this decoder exists + if (num_in_signals == 2) + { + cumulative_area = compute_gate_area(NAND, 2, w_dec_p[0], w_dec_n[0], area.h); + cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram); + cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram); + } + else if (num_in_signals == 3) + { + cumulative_area = compute_gate_area(NAND, 3, w_dec_p[0], w_dec_n[0], area.h); + cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram);; + cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram); + } + + for (int i = 1; i < num_gates; i++) + { + cumulative_area += compute_gate_area(INV, 1, w_dec_p[i], w_dec_n[i], area.h); + cumulative_curr += cmos_Isub_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram); + cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram); + } + power.readOp.leakage = cumulative_curr * g_tp.peri_global.Vdd; + power.readOp.gate_leakage = cumulative_curr_Ig * g_tp.peri_global.Vdd; + + area.w = (cumulative_area / area.h); + } +} + + + +double Decoder::compute_delays(double inrisetime) +{ + if (exist) + { + double ret_val = 0; // outrisetime + int i; + double rd, tf, this_delay, c_load, c_intrinsic, Vpp; + double Vdd = g_tp.peri_global.Vdd; + + if ((is_wl_tr) && (is_dram)) + { + Vpp = g_tp.vpp; + } + else if (is_wl_tr) + { + Vpp = g_tp.sram_cell.Vdd; + } + else + { + Vpp = g_tp.peri_global.Vdd; + } + + // first check whether a decoder is required at all + rd = tr_R_on(w_dec_n[0], NCH, num_in_signals, is_dram, false, is_wl_tr); + c_load = gate_C(w_dec_n[1] + w_dec_p[1], 0.0, is_dram, false, is_wl_tr); + c_intrinsic = drain_C_(w_dec_p[0], PCH, 1, 1, area.h, is_dram, false, is_wl_tr) * num_in_signals + + drain_C_(w_dec_n[0], NCH, num_in_signals, 1, area.h, is_dram, false, is_wl_tr); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE); + delay += this_delay; + inrisetime = this_delay / (1.0 - 0.5); + power.readOp.dynamic += (c_load + c_intrinsic) * Vdd * Vdd; + + for (i = 1; i < num_gates - 1; ++i) + { + rd = tr_R_on(w_dec_n[i], NCH, 1, is_dram, false, is_wl_tr); + c_load = gate_C(w_dec_p[i+1] + w_dec_n[i+1], 0.0, is_dram, false, is_wl_tr); + c_intrinsic = drain_C_(w_dec_p[i], PCH, 1, 1, area.h, is_dram, false, is_wl_tr) + + drain_C_(w_dec_n[i], NCH, 1, 1, area.h, is_dram, false, is_wl_tr); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE); + delay += this_delay; + inrisetime = this_delay / (1.0 - 0.5); + power.readOp.dynamic += (c_load + c_intrinsic) * Vdd * Vdd; + } + + // add delay of final inverter that drives the wordline + i = num_gates - 1; + c_load = C_ld_dec_out; + rd = tr_R_on(w_dec_n[i], NCH, 1, is_dram, false, is_wl_tr); + c_intrinsic = drain_C_(w_dec_p[i], PCH, 1, 1, area.h, is_dram, false, is_wl_tr) + + drain_C_(w_dec_n[i], NCH, 1, 1, area.h, is_dram, false, is_wl_tr); + tf = rd * (c_intrinsic + c_load) + R_wire_dec_out * c_load / 2; + this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE); + delay += this_delay; + ret_val = this_delay / (1.0 - 0.5); + power.readOp.dynamic += c_load * Vpp * Vpp + c_intrinsic * Vdd * Vdd; + + return ret_val; + } + else + { + return 0.0; + } +} + +void Decoder::leakage_feedback(double temperature) +{ + double cumulative_curr = 0; // cumulative leakage current + double cumulative_curr_Ig = 0; // cumulative leakage current + + if (exist) + { // First check if this decoder exists + if (num_in_signals == 2) + { + cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram); + cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 2, nand,is_dram); + } + else if (num_in_signals == 3) + { + cumulative_curr = cmos_Isub_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram);; + cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[0], w_dec_p[0], 3, nand, is_dram); + } + + for (int i = 1; i < num_gates; i++) + { + cumulative_curr += cmos_Isub_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram); + cumulative_curr_Ig = cmos_Ig_leakage(w_dec_n[i], w_dec_p[i], 1, inv, is_dram); + } + + power.readOp.leakage = cumulative_curr * g_tp.peri_global.Vdd; + power.readOp.gate_leakage = cumulative_curr_Ig * g_tp.peri_global.Vdd; + } +} + +PredecBlk::PredecBlk( + int num_dec_signals, + Decoder * dec_, + double C_wire_predec_blk_out, + double R_wire_predec_blk_out_, + int num_dec_per_predec, + bool is_dram, + bool is_blk1) + :dec(dec_), + exist(false), + number_input_addr_bits(0), + C_ld_predec_blk_out(0), + R_wire_predec_blk_out(0), + branch_effort_nand2_gate_output(1), + branch_effort_nand3_gate_output(1), + flag_two_unique_paths(false), + flag_L2_gate(0), + number_inputs_L1_gate(0), + number_gates_L1_nand2_path(0), + number_gates_L1_nand3_path(0), + number_gates_L2(0), + min_number_gates_L1(2), + min_number_gates_L2(2), + num_L1_active_nand2_path(0), + num_L1_active_nand3_path(0), + delay_nand2_path(0), + delay_nand3_path(0), + power_nand2_path(), + power_nand3_path(), + power_L2(), + is_dram_(is_dram) +{ + int branch_effort_predec_out; + double C_ld_dec_gate; + int num_addr_bits_dec = _log2(num_dec_signals); + int blk1_num_input_addr_bits = (num_addr_bits_dec + 1) / 2; + int blk2_num_input_addr_bits = num_addr_bits_dec - blk1_num_input_addr_bits; + + w_L1_nand2_n[0] = 0; + w_L1_nand2_p[0] = 0; + w_L1_nand3_n[0] = 0; + w_L1_nand3_p[0] = 0; + + if (is_blk1 == true) + { + if (num_addr_bits_dec <= 0) + { + return; + } + else if (num_addr_bits_dec < 4) + { + // Just one predecoder block is required with NAND2 gates. No decoder required. + // The first level of predecoding directly drives the decoder output load + exist = true; + number_input_addr_bits = num_addr_bits_dec; + R_wire_predec_blk_out = dec->R_wire_dec_out; + C_ld_predec_blk_out = dec->C_ld_dec_out; + } + else + { + exist = true; + number_input_addr_bits = blk1_num_input_addr_bits; + branch_effort_predec_out = (1 << blk2_num_input_addr_bits); + C_ld_dec_gate = num_dec_per_predec * gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_, false, false); + R_wire_predec_blk_out = R_wire_predec_blk_out_; + C_ld_predec_blk_out = branch_effort_predec_out * C_ld_dec_gate + C_wire_predec_blk_out; + } + } + else + { + if (num_addr_bits_dec >= 4) + { + exist = true; + number_input_addr_bits = blk2_num_input_addr_bits; + branch_effort_predec_out = (1 << blk1_num_input_addr_bits); + C_ld_dec_gate = num_dec_per_predec * gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_, false, false); + R_wire_predec_blk_out = R_wire_predec_blk_out_; + C_ld_predec_blk_out = branch_effort_predec_out * C_ld_dec_gate + C_wire_predec_blk_out; + } + } + + compute_widths(); + compute_area(); +} + + + +void PredecBlk::compute_widths() +{ + double F, c_load_nand3_path, c_load_nand2_path; + double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram_); + double gnand2 = (2 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio); + double gnand3 = (3 + p_to_n_sz_ratio) / (1 + p_to_n_sz_ratio); + + if (exist == false) return; + + + switch (number_input_addr_bits) + { + case 1: + flag_two_unique_paths = false; + number_inputs_L1_gate = 2; + flag_L2_gate = 0; + break; + case 2: + flag_two_unique_paths = false; + number_inputs_L1_gate = 2; + flag_L2_gate = 0; + break; + case 3: + flag_two_unique_paths = false; + number_inputs_L1_gate = 3; + flag_L2_gate = 0; + break; + case 4: + flag_two_unique_paths = false; + number_inputs_L1_gate = 2; + flag_L2_gate = 2; + branch_effort_nand2_gate_output = 4; + break; + case 5: + flag_two_unique_paths = true; + flag_L2_gate = 2; + branch_effort_nand2_gate_output = 8; + branch_effort_nand3_gate_output = 4; + break; + case 6: + flag_two_unique_paths = false; + number_inputs_L1_gate = 3; + flag_L2_gate = 2; + branch_effort_nand3_gate_output = 8; + break; + case 7: + flag_two_unique_paths = true; + flag_L2_gate = 3; + branch_effort_nand2_gate_output = 32; + branch_effort_nand3_gate_output = 16; + break; + case 8: + flag_two_unique_paths = true; + flag_L2_gate = 3; + branch_effort_nand2_gate_output = 64; + branch_effort_nand3_gate_output = 32; + break; + case 9: + flag_two_unique_paths = false; + number_inputs_L1_gate = 3; + flag_L2_gate = 3; + branch_effort_nand3_gate_output = 64; + break; + default: + assert(0); + break; + } + + // find the number of gates and sizing in second level of predecoder (if there is a second level) + if (flag_L2_gate) + { + if (flag_L2_gate == 2) + { // 2nd level is a NAND2 gate + w_L2_n[0] = 2 * g_tp.min_w_nmos_; + F = gnand2; + } + else + { // 2nd level is a NAND3 gate + w_L2_n[0] = 3 * g_tp.min_w_nmos_; + F = gnand3; + } + w_L2_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + F *= C_ld_predec_blk_out / (gate_C(w_L2_n[0], 0, is_dram_) + gate_C(w_L2_p[0], 0, is_dram_)); + number_gates_L2 = logical_effort( + min_number_gates_L2, + flag_L2_gate == 2 ? gnand2 : gnand3, + F, + w_L2_n, + w_L2_p, + C_ld_predec_blk_out, + p_to_n_sz_ratio, + is_dram_, false, + g_tp.max_w_nmos_); + + // Now find the number of gates and widths in first level of predecoder + if ((flag_two_unique_paths)||(number_inputs_L1_gate == 2)) + { // Whenever flag_two_unique_paths is true, it means first level of decoder employs + // both NAND2 and NAND3 gates. Or when number_inputs_L1_gate is 2, it means + // a NAND2 gate is used in the first level of the predecoder + c_load_nand2_path = branch_effort_nand2_gate_output * + (gate_C(w_L2_n[0], 0, is_dram_) + + gate_C(w_L2_p[0], 0, is_dram_)); + w_L1_nand2_n[0] = 2 * g_tp.min_w_nmos_; + w_L1_nand2_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + F = gnand2 * c_load_nand2_path / + (gate_C(w_L1_nand2_n[0], 0, is_dram_) + + gate_C(w_L1_nand2_p[0], 0, is_dram_)); + number_gates_L1_nand2_path = logical_effort( + min_number_gates_L1, + gnand2, + F, + w_L1_nand2_n, + w_L1_nand2_p, + c_load_nand2_path, + p_to_n_sz_ratio, + is_dram_, false, + g_tp.max_w_nmos_); + } + + //Now find widths of gates along path in which first gate is a NAND3 + if ((flag_two_unique_paths)||(number_inputs_L1_gate == 3)) + { // Whenever flag_two_unique_paths is TRUE, it means first level of decoder employs + // both NAND2 and NAND3 gates. Or when number_inputs_L1_gate is 3, it means + // a NAND3 gate is used in the first level of the predecoder + c_load_nand3_path = branch_effort_nand3_gate_output * + (gate_C(w_L2_n[0], 0, is_dram_) + + gate_C(w_L2_p[0], 0, is_dram_)); + w_L1_nand3_n[0] = 3 * g_tp.min_w_nmos_; + w_L1_nand3_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + F = gnand3 * c_load_nand3_path / + (gate_C(w_L1_nand3_n[0], 0, is_dram_) + + gate_C(w_L1_nand3_p[0], 0, is_dram_)); + number_gates_L1_nand3_path = logical_effort( + min_number_gates_L1, + gnand3, + F, + w_L1_nand3_n, + w_L1_nand3_p, + c_load_nand3_path, + p_to_n_sz_ratio, + is_dram_, false, + g_tp.max_w_nmos_); + } + } + else + { // find number of gates and widths in first level of predecoder block when there is no second level + if (number_inputs_L1_gate == 2) + { + w_L1_nand2_n[0] = 2 * g_tp.min_w_nmos_; + w_L1_nand2_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + F = gnand2*C_ld_predec_blk_out / + (gate_C(w_L1_nand2_n[0], 0, is_dram_) + + gate_C(w_L1_nand2_p[0], 0, is_dram_)); + number_gates_L1_nand2_path = logical_effort( + min_number_gates_L1, + gnand2, + F, + w_L1_nand2_n, + w_L1_nand2_p, + C_ld_predec_blk_out, + p_to_n_sz_ratio, + is_dram_, false, + g_tp.max_w_nmos_); + } + else if (number_inputs_L1_gate == 3) + { + w_L1_nand3_n[0] = 3 * g_tp.min_w_nmos_; + w_L1_nand3_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + F = gnand3*C_ld_predec_blk_out / + (gate_C(w_L1_nand3_n[0], 0, is_dram_) + + gate_C(w_L1_nand3_p[0], 0, is_dram_)); + number_gates_L1_nand3_path = logical_effort( + min_number_gates_L1, + gnand3, + F, + w_L1_nand3_n, + w_L1_nand3_p, + C_ld_predec_blk_out, + p_to_n_sz_ratio, + is_dram_, false, + g_tp.max_w_nmos_); + } + } +} + + + +void PredecBlk::compute_area() +{ + if (exist) + { // First check whether a predecoder block is needed + int num_L1_nand2 = 0; + int num_L1_nand3 = 0; + int num_L2 = 0; + double tot_area_L1_nand3 =0; + double leak_L1_nand3 =0; + double gate_leak_L1_nand3 =0; + + double tot_area_L1_nand2 = compute_gate_area(NAND, 2, w_L1_nand2_p[0], w_L1_nand2_n[0], g_tp.cell_h_def); + double leak_L1_nand2 = cmos_Isub_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_); + double gate_leak_L1_nand2 = cmos_Ig_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_); + if (number_inputs_L1_gate != 3) { + tot_area_L1_nand3 = 0; + leak_L1_nand3 = 0; + gate_leak_L1_nand3 =0; + } + else { + tot_area_L1_nand3 = compute_gate_area(NAND, 3, w_L1_nand3_p[0], w_L1_nand3_n[0], g_tp.cell_h_def); + leak_L1_nand3 = cmos_Isub_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand); + gate_leak_L1_nand3 = cmos_Ig_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand); + } + + switch (number_input_addr_bits) + { + case 1: //2 NAND2 gates + num_L1_nand2 = 2; + num_L2 = 0; + num_L1_active_nand2_path =1; + num_L1_active_nand3_path =0; + break; + case 2: //4 NAND2 gates + num_L1_nand2 = 4; + num_L2 = 0; + num_L1_active_nand2_path =1; + num_L1_active_nand3_path =0; + break; + case 3: //8 NAND3 gates + num_L1_nand3 = 8; + num_L2 = 0; + num_L1_active_nand2_path =0; + num_L1_active_nand3_path =1; + break; + case 4: //4 + 4 NAND2 gates + num_L1_nand2 = 8; + num_L2 = 16; + num_L1_active_nand2_path =2; + num_L1_active_nand3_path =0; + break; + case 5: //4 NAND2 gates, 8 NAND3 gates + num_L1_nand2 = 4; + num_L1_nand3 = 8; + num_L2 = 32; + num_L1_active_nand2_path =1; + num_L1_active_nand3_path =1; + break; + case 6: //8 + 8 NAND3 gates + num_L1_nand3 = 16; + num_L2 = 64; + num_L1_active_nand2_path =0; + num_L1_active_nand3_path =2; + break; + case 7: //4 + 4 NAND2 gates, 8 NAND3 gates + num_L1_nand2 = 8; + num_L1_nand3 = 8; + num_L2 = 128; + num_L1_active_nand2_path =2; + num_L1_active_nand3_path =1; + break; + case 8: //4 NAND2 gates, 8 + 8 NAND3 gates + num_L1_nand2 = 4; + num_L1_nand3 = 16; + num_L2 = 256; + num_L1_active_nand2_path =2; + num_L1_active_nand3_path =2; + break; + case 9: //8 + 8 + 8 NAND3 gates + num_L1_nand3 = 24; + num_L2 = 512; + num_L1_active_nand2_path =0; + num_L1_active_nand3_path =3; + break; + default: + break; + } + + for (int i = 1; i < number_gates_L1_nand2_path; ++i) + { + tot_area_L1_nand2 += compute_gate_area(INV, 1, w_L1_nand2_p[i], w_L1_nand2_n[i], g_tp.cell_h_def); + leak_L1_nand2 += cmos_Isub_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_); + gate_leak_L1_nand2 += cmos_Ig_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_); + } + tot_area_L1_nand2 *= num_L1_nand2; + leak_L1_nand2 *= num_L1_nand2; + gate_leak_L1_nand2 *= num_L1_nand2; + + for (int i = 1; i < number_gates_L1_nand3_path; ++i) + { + tot_area_L1_nand3 += compute_gate_area(INV, 1, w_L1_nand3_p[i], w_L1_nand3_n[i], g_tp.cell_h_def); + leak_L1_nand3 += cmos_Isub_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_); + gate_leak_L1_nand3 += cmos_Ig_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_); + } + tot_area_L1_nand3 *= num_L1_nand3; + leak_L1_nand3 *= num_L1_nand3; + gate_leak_L1_nand3 *= num_L1_nand3; + + double cumulative_area_L1 = tot_area_L1_nand2 + tot_area_L1_nand3; + double cumulative_area_L2 = 0.0; + double leakage_L2 = 0.0; + double gate_leakage_L2 = 0.0; + + if (flag_L2_gate == 2) + { + cumulative_area_L2 = compute_gate_area(NAND, 2, w_L2_p[0], w_L2_n[0], g_tp.cell_h_def); + leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_); + gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_); + } + else if (flag_L2_gate == 3) + { + cumulative_area_L2 = compute_gate_area(NAND, 3, w_L2_p[0], w_L2_n[0], g_tp.cell_h_def); + leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_); + gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_); + } + + for (int i = 1; i < number_gates_L2; ++i) + { + cumulative_area_L2 += compute_gate_area(INV, 1, w_L2_p[i], w_L2_n[i], g_tp.cell_h_def); + leakage_L2 += cmos_Isub_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_); + gate_leakage_L2 += cmos_Ig_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_); + } + cumulative_area_L2 *= num_L2; + leakage_L2 *= num_L2; + gate_leakage_L2 *= num_L2; + + power_nand2_path.readOp.leakage = leak_L1_nand2 * g_tp.peri_global.Vdd; + power_nand3_path.readOp.leakage = leak_L1_nand3 * g_tp.peri_global.Vdd; + power_L2.readOp.leakage = leakage_L2 * g_tp.peri_global.Vdd; + area.set_area(cumulative_area_L1 + cumulative_area_L2); + power_nand2_path.readOp.gate_leakage = gate_leak_L1_nand2 * g_tp.peri_global.Vdd; + power_nand3_path.readOp.gate_leakage = gate_leak_L1_nand3 * g_tp.peri_global.Vdd; + power_L2.readOp.gate_leakage = gate_leakage_L2 * g_tp.peri_global.Vdd; + } +} + + + +pair PredecBlk::compute_delays( + pair inrisetime) // +{ + pair ret_val; + ret_val.first = 0; // outrisetime_nand2_path + ret_val.second = 0; // outrisetime_nand3_path + + double inrisetime_nand2_path = inrisetime.first; + double inrisetime_nand3_path = inrisetime.second; + int i; + double rd, c_load, c_intrinsic, tf, this_delay; + double Vdd = g_tp.peri_global.Vdd; + + // TODO: following delay calculation part can be greatly simplified. + // first check whether a predecoder block is required + if (exist) + { + //Find delay in first level of predecoder block + //First find delay in path + if ((flag_two_unique_paths) || (number_inputs_L1_gate == 2)) + { + //First gate is a NAND2 gate + rd = tr_R_on(w_L1_nand2_n[0], NCH, 2, is_dram_); + c_load = gate_C(w_L1_nand2_n[1] + w_L1_nand2_p[1], 0.0, is_dram_); + c_intrinsic = 2 * drain_C_(w_L1_nand2_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand2_n[0], NCH, 2, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + inrisetime_nand2_path = this_delay / (1.0 - 0.5); + power_nand2_path.readOp.dynamic += (c_load + c_intrinsic) * Vdd * Vdd; + + //Add delays of all but the last inverter in the chain + for (i = 1; i < number_gates_L1_nand2_path - 1; ++i) + { + rd = tr_R_on(w_L1_nand2_n[i], NCH, 1, is_dram_); + c_load = gate_C(w_L1_nand2_n[i+1] + w_L1_nand2_p[i+1], 0.0, is_dram_); + c_intrinsic = drain_C_(w_L1_nand2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + inrisetime_nand2_path = this_delay / (1.0 - 0.5); + power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + + //Add delay of the last inverter + i = number_gates_L1_nand2_path - 1; + rd = tr_R_on(w_L1_nand2_n[i], NCH, 1, is_dram_); + if (flag_L2_gate) + { + c_load = branch_effort_nand2_gate_output*(gate_C(w_L2_n[0], 0, is_dram_) + gate_C(w_L2_p[0], 0, is_dram_)); + c_intrinsic = drain_C_(w_L1_nand2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + inrisetime_nand2_path = this_delay / (1.0 - 0.5); + power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + else + { //First level directly drives decoder output load + c_load = C_ld_predec_blk_out; + c_intrinsic = drain_C_(w_L1_nand2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load) + R_wire_predec_blk_out * c_load / 2; + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + ret_val.first = this_delay / (1.0 - 0.5); + power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + } + + if ((flag_two_unique_paths) || (number_inputs_L1_gate == 3)) + { //Check if the number of gates in the first level is more than 1. + //First gate is a NAND3 gate + rd = tr_R_on(w_L1_nand3_n[0], NCH, 3, is_dram_); + c_load = gate_C(w_L1_nand3_n[1] + w_L1_nand3_p[1], 0.0, is_dram_); + c_intrinsic = 3 * drain_C_(w_L1_nand3_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand3_n[0], NCH, 3, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE); + delay_nand3_path += this_delay; + inrisetime_nand3_path = this_delay / (1.0 - 0.5); + power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + + //Add delays of all but the last inverter in the chain + for (i = 1; i < number_gates_L1_nand3_path - 1; ++i) + { + rd = tr_R_on(w_L1_nand3_n[i], NCH, 1, is_dram_); + c_load = gate_C(w_L1_nand3_n[i+1] + w_L1_nand3_p[i+1], 0.0, is_dram_); + c_intrinsic = drain_C_(w_L1_nand3_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand3_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE); + delay_nand3_path += this_delay; + inrisetime_nand3_path = this_delay / (1.0 - 0.5); + power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + + //Add delay of the last inverter + i = number_gates_L1_nand3_path - 1; + rd = tr_R_on(w_L1_nand3_n[i], NCH, 1, is_dram_); + if (flag_L2_gate) + { + c_load = branch_effort_nand3_gate_output*(gate_C(w_L2_n[0], 0, is_dram_) + gate_C(w_L2_p[0], 0, is_dram_)); + c_intrinsic = drain_C_(w_L1_nand3_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand3_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE); + delay_nand3_path += this_delay; + inrisetime_nand3_path = this_delay / (1.0 - 0.5); + power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + else + { //First level directly drives decoder output load + c_load = C_ld_predec_blk_out; + c_intrinsic = drain_C_(w_L1_nand3_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L1_nand3_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load) + R_wire_predec_blk_out * c_load / 2; + this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE); + delay_nand3_path += this_delay; + ret_val.second = this_delay / (1.0 - 0.5); + power_nand3_path.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + } + + // Find delay through second level + if (flag_L2_gate) + { + if (flag_L2_gate == 2) + { + rd = tr_R_on(w_L2_n[0], NCH, 2, is_dram_); + c_load = gate_C(w_L2_n[1] + w_L2_p[1], 0.0, is_dram_); + c_intrinsic = 2 * drain_C_(w_L2_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L2_n[0], NCH, 2, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + inrisetime_nand2_path = this_delay / (1.0 - 0.5); + power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + else + { // flag_L2_gate = 3 + rd = tr_R_on(w_L2_n[0], NCH, 3, is_dram_); + c_load = gate_C(w_L2_n[1] + w_L2_p[1], 0.0, is_dram_); + c_intrinsic = 3 * drain_C_(w_L2_p[0], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L2_n[0], NCH, 3, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE); + delay_nand3_path += this_delay; + inrisetime_nand3_path = this_delay / (1.0 - 0.5); + power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + + for (i = 1; i < number_gates_L2 - 1; ++i) + { + rd = tr_R_on(w_L2_n[i], NCH, 1, is_dram_); + c_load = gate_C(w_L2_n[i+1] + w_L2_p[i+1], 0.0, is_dram_); + c_intrinsic = drain_C_(w_L2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + inrisetime_nand2_path = this_delay / (1.0 - 0.5); + this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE); + delay_nand3_path += this_delay; + inrisetime_nand3_path = this_delay / (1.0 - 0.5); + power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + + //Add delay of final inverter that drives the wordline decoders + i = number_gates_L2 - 1; + c_load = C_ld_predec_blk_out; + rd = tr_R_on(w_L2_n[i], NCH, 1, is_dram_); + c_intrinsic = drain_C_(w_L2_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(w_L2_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load) + R_wire_predec_blk_out * c_load / 2; + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + ret_val.first = this_delay / (1.0 - 0.5); + this_delay = horowitz(inrisetime_nand3_path, tf, 0.5, 0.5, RISE); + delay_nand3_path += this_delay; + ret_val.second = this_delay / (1.0 - 0.5); + power_L2.readOp.dynamic += (c_intrinsic + c_load) * Vdd * Vdd; + } + } + + delay = (ret_val.first > ret_val.second) ? ret_val.first : ret_val.second; + return ret_val; +} + +void PredecBlk::leakage_feedback(double temperature) +{ + if (exist) + { // First check whether a predecoder block is needed + int num_L1_nand2 = 0; + int num_L1_nand3 = 0; + int num_L2 = 0; + double leak_L1_nand3 =0; + double gate_leak_L1_nand3 =0; + + double leak_L1_nand2 = cmos_Isub_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_); + double gate_leak_L1_nand2 = cmos_Ig_leakage(w_L1_nand2_n[0], w_L1_nand2_p[0], 2, nand, is_dram_); + if (number_inputs_L1_gate != 3) { + leak_L1_nand3 = 0; + gate_leak_L1_nand3 =0; + } + else { + leak_L1_nand3 = cmos_Isub_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand); + gate_leak_L1_nand3 = cmos_Ig_leakage(w_L1_nand3_n[0], w_L1_nand3_p[0], 3, nand); + } + + switch (number_input_addr_bits) + { + case 1: //2 NAND2 gates + num_L1_nand2 = 2; + num_L2 = 0; + num_L1_active_nand2_path =1; + num_L1_active_nand3_path =0; + break; + case 2: //4 NAND2 gates + num_L1_nand2 = 4; + num_L2 = 0; + num_L1_active_nand2_path =1; + num_L1_active_nand3_path =0; + break; + case 3: //8 NAND3 gates + num_L1_nand3 = 8; + num_L2 = 0; + num_L1_active_nand2_path =0; + num_L1_active_nand3_path =1; + break; + case 4: //4 + 4 NAND2 gates + num_L1_nand2 = 8; + num_L2 = 16; + num_L1_active_nand2_path =2; + num_L1_active_nand3_path =0; + break; + case 5: //4 NAND2 gates, 8 NAND3 gates + num_L1_nand2 = 4; + num_L1_nand3 = 8; + num_L2 = 32; + num_L1_active_nand2_path =1; + num_L1_active_nand3_path =1; + break; + case 6: //8 + 8 NAND3 gates + num_L1_nand3 = 16; + num_L2 = 64; + num_L1_active_nand2_path =0; + num_L1_active_nand3_path =2; + break; + case 7: //4 + 4 NAND2 gates, 8 NAND3 gates + num_L1_nand2 = 8; + num_L1_nand3 = 8; + num_L2 = 128; + num_L1_active_nand2_path =2; + num_L1_active_nand3_path =1; + break; + case 8: //4 NAND2 gates, 8 + 8 NAND3 gates + num_L1_nand2 = 4; + num_L1_nand3 = 16; + num_L2 = 256; + num_L1_active_nand2_path =2; + num_L1_active_nand3_path =2; + break; + case 9: //8 + 8 + 8 NAND3 gates + num_L1_nand3 = 24; + num_L2 = 512; + num_L1_active_nand2_path =0; + num_L1_active_nand3_path =3; + break; + default: + break; + } + + for (int i = 1; i < number_gates_L1_nand2_path; ++i) + { + leak_L1_nand2 += cmos_Isub_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_); + gate_leak_L1_nand2 += cmos_Ig_leakage(w_L1_nand2_n[i], w_L1_nand2_p[i], 2, nand, is_dram_); + } + leak_L1_nand2 *= num_L1_nand2; + gate_leak_L1_nand2 *= num_L1_nand2; + + for (int i = 1; i < number_gates_L1_nand3_path; ++i) + { + leak_L1_nand3 += cmos_Isub_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_); + gate_leak_L1_nand3 += cmos_Ig_leakage(w_L1_nand3_n[i], w_L1_nand3_p[i], 3, nand, is_dram_); + } + leak_L1_nand3 *= num_L1_nand3; + gate_leak_L1_nand3 *= num_L1_nand3; + + double leakage_L2 = 0.0; + double gate_leakage_L2 = 0.0; + + if (flag_L2_gate == 2) + { + leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_); + gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 2, nand, is_dram_); + } + else if (flag_L2_gate == 3) + { + leakage_L2 = cmos_Isub_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_); + gate_leakage_L2 = cmos_Ig_leakage(w_L2_n[0], w_L2_p[0], 3, nand, is_dram_); + } + + for (int i = 1; i < number_gates_L2; ++i) + { + leakage_L2 += cmos_Isub_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_); + gate_leakage_L2 += cmos_Ig_leakage(w_L2_n[i], w_L2_p[i], 2, inv, is_dram_); + } + leakage_L2 *= num_L2; + gate_leakage_L2 *= num_L2; + + power_nand2_path.readOp.leakage = leak_L1_nand2 * g_tp.peri_global.Vdd; + power_nand3_path.readOp.leakage = leak_L1_nand3 * g_tp.peri_global.Vdd; + power_L2.readOp.leakage = leakage_L2 * g_tp.peri_global.Vdd; + + power_nand2_path.readOp.gate_leakage = gate_leak_L1_nand2 * g_tp.peri_global.Vdd; + power_nand3_path.readOp.gate_leakage = gate_leak_L1_nand3 * g_tp.peri_global.Vdd; + power_L2.readOp.gate_leakage = gate_leakage_L2 * g_tp.peri_global.Vdd; + } +} + +PredecBlkDrv::PredecBlkDrv( + int way_select_, + PredecBlk * blk_, + bool is_dram) + :flag_driver_exists(0), + number_gates_nand2_path(0), + number_gates_nand3_path(0), + min_number_gates(2), + num_buffers_driving_1_nand2_load(0), + num_buffers_driving_2_nand2_load(0), + num_buffers_driving_4_nand2_load(0), + num_buffers_driving_2_nand3_load(0), + num_buffers_driving_8_nand3_load(0), + num_buffers_nand3_path(0), + c_load_nand2_path_out(0), + c_load_nand3_path_out(0), + r_load_nand2_path_out(0), + r_load_nand3_path_out(0), + delay_nand2_path(0), + delay_nand3_path(0), + power_nand2_path(), + power_nand3_path(), + blk(blk_), dec(blk->dec), + is_dram_(is_dram), + way_select(way_select_) +{ + for (int i = 0; i < MAX_NUMBER_GATES_STAGE; i++) + { + width_nand2_path_n[i] = 0; + width_nand2_path_p[i] = 0; + width_nand3_path_n[i] = 0; + width_nand3_path_p[i] = 0; + } + + number_input_addr_bits = blk->number_input_addr_bits; + + if (way_select > 1) + { + flag_driver_exists = 1; + number_input_addr_bits = way_select; + if (dec->num_in_signals == 2) + { + c_load_nand2_path_out = gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_); + num_buffers_driving_2_nand2_load = number_input_addr_bits; + } + else if (dec->num_in_signals == 3) + { + c_load_nand3_path_out = gate_C(dec->w_dec_n[0] + dec->w_dec_p[0], 0, is_dram_); + num_buffers_driving_2_nand3_load = number_input_addr_bits; + } + } + else if (way_select == 0) + { + if (blk->exist) + { + flag_driver_exists = 1; + } + } + + compute_widths(); + compute_area(); +} + + + +void PredecBlkDrv::compute_widths() +{ + // The predecode block driver accepts as input the address bits from the h-tree network. For + // each addr bit it then generates addr and addrbar as outputs. For now ignore the effect of + // inversion to generate addrbar and simply treat addrbar as addr. + + double F; + double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram_); + + if (flag_driver_exists) + { + double C_nand2_gate_blk = gate_C(blk->w_L1_nand2_n[0] + blk->w_L1_nand2_p[0], 0, is_dram_); + double C_nand3_gate_blk = gate_C(blk->w_L1_nand3_n[0] + blk->w_L1_nand3_p[0], 0, is_dram_); + + if (way_select == 0) + { + if (blk->number_input_addr_bits == 1) + { //2 NAND2 gates + num_buffers_driving_2_nand2_load = 1; + c_load_nand2_path_out = 2 * C_nand2_gate_blk; + } + else if (blk->number_input_addr_bits == 2) + { //4 NAND2 gates one 2-4 decoder + num_buffers_driving_4_nand2_load = 2; + c_load_nand2_path_out = 4 * C_nand2_gate_blk; + } + else if (blk->number_input_addr_bits == 3) + { //8 NAND3 gates one 3-8 decoder + num_buffers_driving_8_nand3_load = 3; + c_load_nand3_path_out = 8 * C_nand3_gate_blk; + } + else if (blk->number_input_addr_bits == 4) + { //4 + 4 NAND2 gates two 2-4 decoder + num_buffers_driving_4_nand2_load = 4; + c_load_nand2_path_out = 4 * C_nand2_gate_blk; + } + else if (blk->number_input_addr_bits == 5) + { //4 NAND2 gates, 8 NAND3 gates one 2-4 decoder and one 3-8 decoder + num_buffers_driving_4_nand2_load = 2; + num_buffers_driving_8_nand3_load = 3; + c_load_nand2_path_out = 4 * C_nand2_gate_blk; + c_load_nand3_path_out = 8 * C_nand3_gate_blk; + } + else if (blk->number_input_addr_bits == 6) + { //8 + 8 NAND3 gates two 3-8 decoder + num_buffers_driving_8_nand3_load = 6; + c_load_nand3_path_out = 8 * C_nand3_gate_blk; + } + else if (blk->number_input_addr_bits == 7) + { //4 + 4 NAND2 gates, 8 NAND3 gates two 2-4 decoder and one 3-8 decoder + num_buffers_driving_4_nand2_load = 4; + num_buffers_driving_8_nand3_load = 3; + c_load_nand2_path_out = 4 * C_nand2_gate_blk; + c_load_nand3_path_out = 8 * C_nand3_gate_blk; + } + else if (blk->number_input_addr_bits == 8) + { //4 NAND2 gates, 8 + 8 NAND3 gates one 2-4 decoder and two 3-8 decoder + num_buffers_driving_4_nand2_load = 2; + num_buffers_driving_8_nand3_load = 6; + c_load_nand2_path_out = 4 * C_nand2_gate_blk; + c_load_nand3_path_out = 8 * C_nand3_gate_blk; + } + else if (blk->number_input_addr_bits == 9) + { //8 + 8 + 8 NAND3 gates three 3-8 decoder + num_buffers_driving_8_nand3_load = 9; + c_load_nand3_path_out = 8 * C_nand3_gate_blk; + } + } + + if ((blk->flag_two_unique_paths) || + (blk->number_inputs_L1_gate == 2) || + (number_input_addr_bits == 0) || + ((way_select)&&(dec->num_in_signals == 2))) + { //this means that way_select is driving NAND2 in decoder. + width_nand2_path_n[0] = g_tp.min_w_nmos_; + width_nand2_path_p[0] = p_to_n_sz_ratio * width_nand2_path_n[0]; + F = c_load_nand2_path_out / gate_C(width_nand2_path_n[0] + width_nand2_path_p[0], 0, is_dram_); + number_gates_nand2_path = logical_effort( + min_number_gates, + 1, + F, + width_nand2_path_n, + width_nand2_path_p, + c_load_nand2_path_out, + p_to_n_sz_ratio, + is_dram_, false, g_tp.max_w_nmos_); + } + + if ((blk->flag_two_unique_paths) || + (blk->number_inputs_L1_gate == 3) || + ((way_select)&&(dec->num_in_signals == 3))) + { //this means that way_select is driving NAND3 in decoder. + width_nand3_path_n[0] = g_tp.min_w_nmos_; + width_nand3_path_p[0] = p_to_n_sz_ratio * width_nand3_path_n[0]; + F = c_load_nand3_path_out / gate_C(width_nand3_path_n[0] + width_nand3_path_p[0], 0, is_dram_); + number_gates_nand3_path = logical_effort( + min_number_gates, + 1, + F, + width_nand3_path_n, + width_nand3_path_p, + c_load_nand3_path_out, + p_to_n_sz_ratio, + is_dram_, false, g_tp.max_w_nmos_); + } + } +} + + + +void PredecBlkDrv::compute_area() +{ + double area_nand2_path = 0; + double area_nand3_path = 0; + double leak_nand2_path = 0; + double leak_nand3_path = 0; + double gate_leak_nand2_path = 0; + double gate_leak_nand3_path = 0; + + if (flag_driver_exists) + { // first check whether a predecoder block driver is needed + for (int i = 0; i < number_gates_nand2_path; ++i) + { + area_nand2_path += compute_gate_area(INV, 1, width_nand2_path_p[i], width_nand2_path_n[i], g_tp.cell_h_def); + leak_nand2_path += cmos_Isub_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_); + gate_leak_nand2_path += cmos_Ig_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_); + } + area_nand2_path *= (num_buffers_driving_1_nand2_load + + num_buffers_driving_2_nand2_load + + num_buffers_driving_4_nand2_load); + leak_nand2_path *= (num_buffers_driving_1_nand2_load + + num_buffers_driving_2_nand2_load + + num_buffers_driving_4_nand2_load); + gate_leak_nand2_path *= (num_buffers_driving_1_nand2_load + + num_buffers_driving_2_nand2_load + + num_buffers_driving_4_nand2_load); + + for (int i = 0; i < number_gates_nand3_path; ++i) + { + area_nand3_path += compute_gate_area(INV, 1, width_nand3_path_p[i], width_nand3_path_n[i], g_tp.cell_h_def); + leak_nand3_path += cmos_Isub_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_); + gate_leak_nand3_path += cmos_Ig_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_); + } + area_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load); + leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load); + gate_leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load); + + power_nand2_path.readOp.leakage = leak_nand2_path * g_tp.peri_global.Vdd; + power_nand3_path.readOp.leakage = leak_nand3_path * g_tp.peri_global.Vdd; + power_nand2_path.readOp.gate_leakage = gate_leak_nand2_path * g_tp.peri_global.Vdd; + power_nand3_path.readOp.gate_leakage = gate_leak_nand3_path * g_tp.peri_global.Vdd; + area.set_area(area_nand2_path + area_nand3_path); + } +} + + + +pair PredecBlkDrv::compute_delays( + double inrisetime_nand2_path, + double inrisetime_nand3_path) +{ + pair ret_val; + ret_val.first = 0; // outrisetime_nand2_path + ret_val.second = 0; // outrisetime_nand3_path + int i; + double rd, c_gate_load, c_load, c_intrinsic, tf, this_delay; + double Vdd = g_tp.peri_global.Vdd; + + if (flag_driver_exists) + { + for (i = 0; i < number_gates_nand2_path - 1; ++i) + { + rd = tr_R_on(width_nand2_path_n[i], NCH, 1, is_dram_); + c_gate_load = gate_C(width_nand2_path_p[i+1] + width_nand2_path_n[i+1], 0.0, is_dram_); + c_intrinsic = drain_C_(width_nand2_path_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(width_nand2_path_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_gate_load); + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + inrisetime_nand2_path = this_delay / (1.0 - 0.5); + power_nand2_path.readOp.dynamic += (c_gate_load + c_intrinsic) * 0.5 * Vdd * Vdd; + } + + // Final inverter drives the predecoder block or the decoder output load + if (number_gates_nand2_path != 0) + { + i = number_gates_nand2_path - 1; + rd = tr_R_on(width_nand2_path_n[i], NCH, 1, is_dram_); + c_intrinsic = drain_C_(width_nand2_path_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(width_nand2_path_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + c_load = c_load_nand2_path_out; + tf = rd * (c_intrinsic + c_load) + r_load_nand2_path_out*c_load/ 2; + this_delay = horowitz(inrisetime_nand2_path, tf, 0.5, 0.5, RISE); + delay_nand2_path += this_delay; + ret_val.first = this_delay / (1.0 - 0.5); + power_nand2_path.readOp.dynamic += (c_intrinsic + c_load) * 0.5 * Vdd * Vdd; +// cout<< "c_intrinsic = " << c_intrinsic << "c_load" << c_load <blk), blk2(drv2_->blk), drv1(drv1_), drv2(drv2_) +{ + driver_power.readOp.leakage = drv1->power_nand2_path.readOp.leakage + + drv1->power_nand3_path.readOp.leakage + + drv2->power_nand2_path.readOp.leakage + + drv2->power_nand3_path.readOp.leakage; + block_power.readOp.leakage = blk1->power_nand2_path.readOp.leakage + + blk1->power_nand3_path.readOp.leakage + + blk1->power_L2.readOp.leakage + + blk2->power_nand2_path.readOp.leakage + + blk2->power_nand3_path.readOp.leakage + + blk2->power_L2.readOp.leakage; + power.readOp.leakage = driver_power.readOp.leakage + block_power.readOp.leakage; + + driver_power.readOp.gate_leakage = drv1->power_nand2_path.readOp.gate_leakage + + drv1->power_nand3_path.readOp.gate_leakage + + drv2->power_nand2_path.readOp.gate_leakage + + drv2->power_nand3_path.readOp.gate_leakage; + block_power.readOp.gate_leakage = blk1->power_nand2_path.readOp.gate_leakage + + blk1->power_nand3_path.readOp.gate_leakage + + blk1->power_L2.readOp.gate_leakage + + blk2->power_nand2_path.readOp.gate_leakage + + blk2->power_nand3_path.readOp.gate_leakage + + blk2->power_L2.readOp.gate_leakage; + power.readOp.gate_leakage = driver_power.readOp.gate_leakage + block_power.readOp.gate_leakage; +} + +void PredecBlkDrv::leakage_feedback(double temperature) +{ + double leak_nand2_path = 0; + double leak_nand3_path = 0; + double gate_leak_nand2_path = 0; + double gate_leak_nand3_path = 0; + + if (flag_driver_exists) + { // first check whether a predecoder block driver is needed + for (int i = 0; i < number_gates_nand2_path; ++i) + { + leak_nand2_path += cmos_Isub_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_); + gate_leak_nand2_path += cmos_Ig_leakage(width_nand2_path_n[i], width_nand2_path_p[i], 1, inv,is_dram_); + } + leak_nand2_path *= (num_buffers_driving_1_nand2_load + + num_buffers_driving_2_nand2_load + + num_buffers_driving_4_nand2_load); + gate_leak_nand2_path *= (num_buffers_driving_1_nand2_load + + num_buffers_driving_2_nand2_load + + num_buffers_driving_4_nand2_load); + + for (int i = 0; i < number_gates_nand3_path; ++i) + { + leak_nand3_path += cmos_Isub_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_); + gate_leak_nand3_path += cmos_Ig_leakage(width_nand3_path_n[i], width_nand3_path_p[i], 1, inv,is_dram_); + } + leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load); + gate_leak_nand3_path *= (num_buffers_driving_2_nand3_load + num_buffers_driving_8_nand3_load); + + power_nand2_path.readOp.leakage = leak_nand2_path * g_tp.peri_global.Vdd; + power_nand3_path.readOp.leakage = leak_nand3_path * g_tp.peri_global.Vdd; + power_nand2_path.readOp.gate_leakage = gate_leak_nand2_path * g_tp.peri_global.Vdd; + power_nand3_path.readOp.gate_leakage = gate_leak_nand3_path * g_tp.peri_global.Vdd; + } +} + +double Predec::compute_delays(double inrisetime) +{ + // TODO: Jung Ho thinks that predecoder block driver locates between decoder and predecoder block. + pair tmp_pair1, tmp_pair2; + tmp_pair1 = drv1->compute_delays(inrisetime, inrisetime); + tmp_pair1 = blk1->compute_delays(tmp_pair1); + tmp_pair2 = drv2->compute_delays(inrisetime, inrisetime); + tmp_pair2 = blk2->compute_delays(tmp_pair2); + tmp_pair1 = get_max_delay_before_decoder(tmp_pair1, tmp_pair2); + + driver_power.readOp.dynamic = + drv1->num_addr_bits_nand2_path() * drv1->power_nand2_path.readOp.dynamic + + drv1->num_addr_bits_nand3_path() * drv1->power_nand3_path.readOp.dynamic + + drv2->num_addr_bits_nand2_path() * drv2->power_nand2_path.readOp.dynamic + + drv2->num_addr_bits_nand3_path() * drv2->power_nand3_path.readOp.dynamic; + + block_power.readOp.dynamic = + blk1->power_nand2_path.readOp.dynamic*blk1->num_L1_active_nand2_path + + blk1->power_nand3_path.readOp.dynamic*blk1->num_L1_active_nand3_path + + blk1->power_L2.readOp.dynamic + + blk2->power_nand2_path.readOp.dynamic*blk1->num_L1_active_nand2_path + + blk2->power_nand3_path.readOp.dynamic*blk1->num_L1_active_nand3_path + + blk2->power_L2.readOp.dynamic; + + power.readOp.dynamic = driver_power.readOp.dynamic + block_power.readOp.dynamic; + + delay = tmp_pair1.first; + return tmp_pair1.second; +} + + +void Predec::leakage_feedback(double temperature) +{ + drv1->leakage_feedback(temperature); + drv2->leakage_feedback(temperature); + blk1->leakage_feedback(temperature); + blk2->leakage_feedback(temperature); + + driver_power.readOp.leakage = drv1->power_nand2_path.readOp.leakage + + drv1->power_nand3_path.readOp.leakage + + drv2->power_nand2_path.readOp.leakage + + drv2->power_nand3_path.readOp.leakage; + block_power.readOp.leakage = blk1->power_nand2_path.readOp.leakage + + blk1->power_nand3_path.readOp.leakage + + blk1->power_L2.readOp.leakage + + blk2->power_nand2_path.readOp.leakage + + blk2->power_nand3_path.readOp.leakage + + blk2->power_L2.readOp.leakage; + power.readOp.leakage = driver_power.readOp.leakage + block_power.readOp.leakage; + + driver_power.readOp.gate_leakage = drv1->power_nand2_path.readOp.gate_leakage + + drv1->power_nand3_path.readOp.gate_leakage + + drv2->power_nand2_path.readOp.gate_leakage + + drv2->power_nand3_path.readOp.gate_leakage; + block_power.readOp.gate_leakage = blk1->power_nand2_path.readOp.gate_leakage + + blk1->power_nand3_path.readOp.gate_leakage + + blk1->power_L2.readOp.gate_leakage + + blk2->power_nand2_path.readOp.gate_leakage + + blk2->power_nand3_path.readOp.gate_leakage + + blk2->power_L2.readOp.gate_leakage; + power.readOp.gate_leakage = driver_power.readOp.gate_leakage + block_power.readOp.gate_leakage; +} + +// returns +pair Predec::get_max_delay_before_decoder( + pair input_pair1, + pair input_pair2) +{ + pair ret_val; + double delay; + + delay = drv1->delay_nand2_path + blk1->delay_nand2_path; + ret_val.first = delay; + ret_val.second = input_pair1.first; + delay = drv1->delay_nand3_path + blk1->delay_nand3_path; + if (ret_val.first < delay) + { + ret_val.first = delay; + ret_val.second = input_pair1.second; + } + delay = drv2->delay_nand2_path + blk2->delay_nand2_path; + if (ret_val.first < delay) + { + ret_val.first = delay; + ret_val.second = input_pair2.first; + } + delay = drv2->delay_nand3_path + blk2->delay_nand3_path; + if (ret_val.first < delay) + { + ret_val.first = delay; + ret_val.second = input_pair2.second; + } + + return ret_val; +} + + + +Driver::Driver(double c_gate_load_, double c_wire_load_, double r_wire_load_, bool is_dram) +:number_gates(0), + min_number_gates(2), + c_gate_load(c_gate_load_), + c_wire_load(c_wire_load_), + r_wire_load(r_wire_load_), + delay(0), + power(), + is_dram_(is_dram) +{ + for (int i = 0; i < MAX_NUMBER_GATES_STAGE; i++) + { + width_n[i] = 0; + width_p[i] = 0; + } + + compute_widths(); +} + + +void Driver::compute_widths() +{ + double p_to_n_sz_ratio = pmos_to_nmos_sz_ratio(is_dram_); + double c_load = c_gate_load + c_wire_load; + width_n[0] = g_tp.min_w_nmos_; + width_p[0] = p_to_n_sz_ratio * g_tp.min_w_nmos_; + + double F = c_load / gate_C(width_n[0] + width_p[0], 0, is_dram_); + number_gates = logical_effort( + min_number_gates, + 1, + F, + width_n, + width_p, + c_load, + p_to_n_sz_ratio, + is_dram_, false, + g_tp.max_w_nmos_); +} + + + +double Driver::compute_delay(double inrisetime) +{ + int i; + double rd, c_load, c_intrinsic, tf; + double this_delay = 0; + + for (i = 0; i < number_gates - 1; ++i) + { + rd = tr_R_on(width_n[i], NCH, 1, is_dram_); + c_load = gate_C(width_n[i+1] + width_p[i+1], 0.0, is_dram_); + c_intrinsic = drain_C_(width_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(width_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load); + this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE); + delay += this_delay; + inrisetime = this_delay / (1.0 - 0.5); + power.readOp.dynamic += (c_intrinsic + c_load) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd; + power.readOp.leakage += cmos_Isub_leakage(width_n[i], width_p[i], 1, inv, is_dram_) *g_tp.peri_global.Vdd; + power.readOp.gate_leakage += cmos_Ig_leakage(width_n[i], width_p[i], 1, inv, is_dram_)* g_tp.peri_global.Vdd; + } + + i = number_gates - 1; + c_load = c_gate_load + c_wire_load; + rd = tr_R_on(width_n[i], NCH, 1, is_dram_); + c_intrinsic = drain_C_(width_p[i], PCH, 1, 1, g_tp.cell_h_def, is_dram_) + + drain_C_(width_n[i], NCH, 1, 1, g_tp.cell_h_def, is_dram_); + tf = rd * (c_intrinsic + c_load) + r_wire_load * (c_wire_load / 2 + c_gate_load); + this_delay = horowitz(inrisetime, tf, 0.5, 0.5, RISE); + delay += this_delay; + power.readOp.dynamic += (c_intrinsic + c_load) * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd; + power.readOp.leakage += cmos_Isub_leakage(width_n[i], width_p[i], 1, inv, is_dram_) * g_tp.peri_global.Vdd; + power.readOp.gate_leakage += cmos_Ig_leakage(width_n[i], width_p[i], 1, inv, is_dram_)* g_tp.peri_global.Vdd; + + return this_delay / (1.0 - 0.5); +} + -- cgit v1.2.3