#! /usr/bin/env python # $Id$ # Copyright (c) 2003 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import sys import re import string # get type names from types import * # Check arguments. Right now there are only two: the name of the ISA # description (input) file and the name of the C++ decoder (output) file. isa_desc_filename = sys.argv[1] decoder_filename = sys.argv[2] # Might as well suck the file in while we're here. This way if it's a # bad filename we don't waste a lot of time building the parser :-). input = open(isa_desc_filename) isa_desc = input.read() input.close() # Prepend the directory where the PLY lex & yacc modules are found # to the search path. Assumes we're compiling in a subdirectory # of 'build' in the current tree. sys.path[0:0] = [os.environ['M5_EXT'] + '/ply'] import lex import yacc ##################################################################### # # Lexer # # The PLY lexer module takes two things as input: # - A list of token names (the string list 'tokens') # - A regular expression describing a match for each token. The # regexp for token FOO can be provided in two ways: # - as a string variable named t_FOO # - as the doc string for a function named t_FOO. In this case, # the function is also executed, allowing an action to be # associated with each token match. # ##################################################################### # Reserved words. These are listed separately as they are matched # using the same regexp as generic IDs, but distinguished in the # t_ID() function. The PLY documentation suggests this approach. reserved = ( 'BITFIELD', 'DECLARE', 'DECODE', 'DEFAULT', 'DEF', 'FORMAT', 'LET', 'NAMESPACE', 'SIGNED', 'TEMPLATE' ) # List of tokens. The lex module requires this. tokens = reserved + ( # identifier 'ID', # integer literal 'INTLIT', # string literal 'STRLIT', # code literal 'CODELIT', # ( ) [ ] { } < > , ; : :: * 'LPAREN', 'RPAREN', # not used any more... commented out to suppress PLY warning # 'LBRACKET', 'RBRACKET', 'LBRACE', 'RBRACE', 'LESS', 'GREATER', 'COMMA', 'SEMI', 'COLON', 'DBLCOLON', 'ASTERISK', # C preprocessor directives 'CPPDIRECTIVE' ) # Regular expressions for token matching t_LPAREN = r'\(' t_RPAREN = r'\)' # not used any more... commented out to suppress PLY warning # t_LBRACKET = r'\[' # t_RBRACKET = r'\]' t_LBRACE = r'\{' t_RBRACE = r'\}' t_LESS = r'\<' t_GREATER = r'\>' t_COMMA = r',' t_SEMI = r';' t_COLON = r':' t_DBLCOLON = r'::' t_ASTERISK = r'\*' # Identifiers and reserved words reserved_map = { } for r in reserved: reserved_map[r.lower()] = r def t_ID(t): r'[A-Za-z_]\w*' t.type = reserved_map.get(t.value,'ID') return t # Integer literal def t_INTLIT(t): r'(0x[\da-fA-F]+)|\d+' try: t.value = int(t.value,0) except ValueError: error(t.lineno, 'Integer value "%s" too large' % t.value) t.value = 0 return t # String literal. Note that these use only single quotes, and # can span multiple lines. def t_STRLIT(t): r"(?m)'([^'])+'" # strip off quotes t.value = t.value[1:-1] t.lineno += t.value.count('\n') return t # "Code literal"... like a string literal, but delimiters are # '{{' and '}}' so they get formatted nicely under emacs c-mode def t_CODELIT(t): r"(?m)\{\{([^\}]|}(?!\}))+\}\}" # strip off {{ & }} t.value = t.value[2:-2] t.lineno += t.value.count('\n') return t def t_CPPDIRECTIVE(t): r'^\#.*\n' t.lineno += t.value.count('\n') return t # # The functions t_NEWLINE, t_ignore, and t_error are # special for the lex module. # # Newlines def t_NEWLINE(t): r'\n+' t.lineno += t.value.count('\n') # Comments def t_comment(t): r'//.*' # Completely ignored characters t_ignore = ' \t\x0c' # Error handler def t_error(t): error(t.lineno, "illegal character '%s'" % t.value[0]) t.skip(1) # Build the lexer lex.lex() ##################################################################### # # Parser # # Every function whose name starts with 'p_' defines a grammar rule. # The rule is encoded in the function's doc string, while the # function body provides the action taken when the rule is matched. # The argument to each function is a list of the values of the # rule's symbols: t[0] for the LHS, and t[1..n] for the symbols # on the RHS. For tokens, the value is copied from the t.value # attribute provided by the lexer. For non-terminals, the value # is assigned by the producing rule; i.e., the job of the grammar # rule function is to set the value for the non-terminal on the LHS # (by assigning to t[0]). ##################################################################### # Not sure why, but we get a handful of shift/reduce conflicts on DECLARE. # By default these get resolved as shifts, which is correct, but # warnings are printed. Explicitly marking DECLARE as right-associative # suppresses the warnings. precedence = ( ('right', 'DECLARE'), ) # The LHS of the first grammar rule is used as the start symbol # (in this case, 'specification'). Note that this rule enforces # that there will be exactly one namespace declaration, with 0 or more # global defs/decls before and after it. The defs & decls before # the namespace decl will be outside the namespace; those after # will be inside. The decoder function is always inside the namespace. def p_specification(t): 'specification : opt_defs_and_declares name_decl opt_defs_and_declares decode_block' global_decls1 = t[1] isa_name = t[2] namespace = isa_name + "Inst" global_decls2 = t[3] (inst_decls, code) = t[4] code = indent(code) # grab the last three path components of isa_desc_filename filename = '/'.join(isa_desc_filename.split('/')[-3:]) # if the isa_desc file defines a 'rcs_id' string, # echo that into the output too try: local_rcs_id = rcs_id # strip $s out of ID so it doesn't get re-substituted local_rcs_id = re.sub(r'\$', '', local_rcs_id) except NameError: local_rcs_id = 'Id: no RCS id found' output = open(decoder_filename, 'w') # split string to keep rcs from substituting this file's RCS id in print >> output, '/* $Id' + '''$ */ /* * Copyright (c) 2003 * The Regents of The University of Michigan * All Rights Reserved * * This code is part of the M5 simulator, developed by Nathan Binkert, * Erik Hallnor, Steve Raasch, and Steve Reinhardt, with contributions * from Ron Dreslinski, Dave Greene, and Lisa Hsu. * * Permission is granted to use, copy, create derivative works and * redistribute this software and such derivative works for any * purpose, so long as the copyright notice above, this grant of * permission, and the disclaimer below appear in all copies made; and * so long as the name of The University of Michigan is not used in * any advertising or publicity pertaining to the use or distribution * of this software without specific, written prior authorization. * * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE * UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND * WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER * EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE * LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT, * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM * ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF SUCH * DAMAGES. */ /* * DO NOT EDIT THIS FILE!!! * * It was automatically generated from this ISA description: * Filename: %(filename)s * RCS %(local_rcs_id)s */ #include "base/bitfield.hh" // required for bitfield support ///////////////////////////////////// // Global defs (outside namespace) // ///////////////////////////////////// %(global_decls1)s /** * Namespace for %(isa_name)s static instruction objects. */ namespace %(namespace)s { ///////////////////////////////////// // Global defs (within namespace) // ///////////////////////////////////// %(global_decls2)s //////////////////////////////////// // Declares from inst definitions // //////////////////////////////////// %(inst_decls)s } // namespace %(namespace)s ////////////////////// // Decoder function // ////////////////////// StaticInstPtr<%(isa_name)s> %(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst) { using namespace %(namespace)s; %(code)s } // decodeInst ''' % vars() output.close() # ISA name declaration looks like "namespace <foo>;" def p_name_decl(t): 'name_decl : NAMESPACE ID SEMI' t[0] = t[2] # 'opt_defs_and_declares' is a possibly empty sequence of # defs and/or declares. def p_opt_defs_and_declares_0(t): 'opt_defs_and_declares : empty' t[0] = '' def p_opt_defs_and_declares_1(t): 'opt_defs_and_declares : defs_and_declares' t[0] = t[1] def p_defs_and_declares_0(t): 'defs_and_declares : def_or_declare' t[0] = t[1] def p_defs_and_declares_1(t): 'defs_and_declares : defs_and_declares def_or_declare' t[0] = t[1] + t[2] # The list of possible definition/declaration statements. def p_def_or_declare(t): '''def_or_declare : def_format | def_bitfield | def_template | global_declare | global_let | cpp_directive''' t[0] = t[1] # preprocessor directives are copied directly to the output. def p_cpp_directive(t): '''cpp_directive : CPPDIRECTIVE''' t[0] = t[1] # Global declares 'declare {{...}}' (C++ code blocks) are copied # directly to the output. def p_global_declare(t): 'global_declare : DECLARE CODELIT SEMI' t[0] = substBitOps(t[2]) # global let blocks 'let {{...}}' (Python code blocks) are executed # directly when seen. These are typically used to initialize global # Python variables used in later format definitions. def p_global_let(t): 'global_let : LET CODELIT SEMI' try: exec(fixPythonIndentation(t[2])) except: error_bt(t.lineno(1), 'error in global let block "%s".' % t[2]) t[0] = '' # contributes nothing to the output C++ file # A bitfield definition looks like: # 'def [signed] bitfield <ID> [<first>:<last>]' # This generates a preprocessor macro in the output file. def p_def_bitfield_0(t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) t[0] = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]' def p_def_bitfield_1(t): 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI' expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) if (t[2] == 'signed'): expr = 'sext<%d>(%s)' % (1, expr) t[0] = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) def p_opt_signed_0(t): 'opt_signed : SIGNED' t[0] = t[1] def p_opt_signed_1(t): 'opt_signed : empty' t[0] = '' # Global map variable to hold templates templateMap = {} def p_def_template(t): 'def_template : DEF TEMPLATE ID CODELIT SEMI' templateMap[t[3]] = t[4] t[0] = '' # An instruction format definition looks like # "def format <fmt>(<params>) {{...}};" def p_def_format(t): 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' (id, params, code) = (t[3], t[5], t[7]) defFormat(id, params, code, t.lineno(1)) # insert a comment into the output to note that the def was processed t[0] = ''' // // parser: format %s defined // ''' % id # The formal parameter list for an instruction format is a possibly # empty list of comma-separated parameters. def p_param_list_0(t): 'param_list : empty' t[0] = [ ] def p_param_list_1(t): 'param_list : param' t[0] = [t[1]] def p_param_list_2(t): 'param_list : param_list COMMA param' t[0] = t[1] t[0].append(t[3]) # Each formal parameter is either an identifier or an identifier # preceded by an asterisk. As in Python, the latter (if present) gets # a tuple containing all the excess positional arguments, allowing # varargs functions. def p_param_0(t): 'param : ID' t[0] = t[1] def p_param_1(t): 'param : ASTERISK ID' # just concatenate them: '*ID' t[0] = t[1] + t[2] # End of format definition-related rules. ############## # # A decode block looks like: # decode <field1> [, <field2>]* [default <inst>] { ... } # def p_decode_block(t): 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' default_defaults = defaultStack.pop() (decls, code, has_default) = t[5] # use the "default defaults" only if there was no explicit # default statement in decode_stmt_list if not has_default: (default_decls, default_code) = default_defaults decls += default_decls code += default_code t[0] = (decls, ''' switch (%s) { %s } ''' % (t[2], indent(code))) # The opt_default statement serves only to push the "default defaults" # onto defaultStack. This value will be used by nested decode blocks, # and used and popped off when the current decode_block is processed # (in p_decode_block() above). def p_opt_default_0(t): 'opt_default : empty' # no default specified: reuse the one currently at the top of the stack defaultStack.push(defaultStack.top()) # no meaningful value returned t[0] = None def p_opt_default_1(t): 'opt_default : DEFAULT inst' # push the new default (decls, code) = t[2] defaultStack.push((decls, '\ndefault:\n%sbreak;' % code)) # no meaningful value returned t[0] = None def p_decode_stmt_list_0(t): 'decode_stmt_list : decode_stmt' t[0] = t[1] def p_decode_stmt_list_1(t): 'decode_stmt_list : decode_stmt decode_stmt_list' (decls1, code1, has_default1) = t[1] (decls2, code2, has_default2) = t[2] if (has_default1 and has_default2): error(t.lineno(1), 'Two default cases in decode block') t[0] = (decls1 + '\n' + decls2, code1 + '\n' + code2, has_default1 or has_default2) # # Decode statement rules # # There are four types of statements allowed in a decode block: # 1. Format blocks 'format <foo> { ... }' # 2. Nested decode blocks # 3. Instruction definitions. # 4. C preprocessor directives. # Preprocessor directives found in a decode statement list are passed # through to the output, replicated to both the declaration and decode # streams. This works well for ifdefs, so we can ifdef out both the # declarations and the decode cases generated by an instruction # definition. Handling them as part of the grammar makes it easy to # keep them in the right place with respect to the code generated by # the other statements. def p_decode_stmt_cpp(t): 'decode_stmt : CPPDIRECTIVE' t[0] = (t[1], t[1], 0) # A format block 'format <foo> { ... }' sets the default instruction # format used to handle instruction definitions inside the block. # This format can be overridden by using an explicit format on the # instruction definition or with a nested format block. def p_decode_stmt_format(t): 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE' # The format will be pushed on the stack when 'push_format_id' is # processed (see below). Once the parser has recognized the full # production (though the right brace), we're done with the format, # so now we can pop it. formatStack.pop() t[0] = t[4] # This rule exists so we can set the current format (& push the stack) # when we recognize the format name part of the format block. def p_push_format_id(t): 'push_format_id : ID' try: formatStack.push(formatMap[t[1]]) t[0] = ('', '// format %s' % t[1]) except KeyError: error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) # Nested decode block: if the value of the current field matches the # specified constant, do a nested decode on some other field. def p_decode_stmt_decode(t): 'decode_stmt : case_label COLON decode_block' (label, is_default) = t[1] (decls, code) = t[3] # just wrap the decoding code from the block as a case in the # outer switch statement. t[0] = (decls, '\n%s:\n%s' % (label, indent(code)), is_default) # Instruction definition (finally!). def p_decode_stmt_inst(t): 'decode_stmt : case_label COLON inst SEMI' (label, is_default) = t[1] (decls, code) = t[3] t[0] = (decls, '\n%s:%sbreak;' % (label, indent(code)), is_default) # The case label is either a list of one or more constants or 'default' def p_case_label_0(t): 'case_label : intlit_list' t[0] = (': '.join(map(lambda a: 'case %#x' % a, t[1])), 0) def p_case_label_1(t): 'case_label : DEFAULT' t[0] = ('default', 1) # # The constant list for a decode case label must be non-empty, but may have # one or more comma-separated integer literals in it. # def p_intlit_list_0(t): 'intlit_list : INTLIT' t[0] = [t[1]] def p_intlit_list_1(t): 'intlit_list : intlit_list COMMA INTLIT' t[0] = t[1] t[0].append(t[3]) # Define an instruction using the current instruction format (specified # by an enclosing format block). # "<mnemonic>(<args>)" def p_inst_0(t): 'inst : ID LPAREN arg_list RPAREN' # Pass the ID and arg list to the current format class to deal with. currentFormat = formatStack.top() (decls, code) = currentFormat.defineInst(t[1], t[3], t.lineno(1)) args = ','.join(map(str, t[3])) args = re.sub('(?m)^', '//', args) args = re.sub('^//', '', args) comment = '// %s::%s(%s)\n' % (currentFormat.id, t[1], args) t[0] = (comment + decls, comment + code) # Define an instruction using an explicitly specified format: # "<fmt>::<mnemonic>(<args>)" def p_inst_1(t): 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN' try: format = formatMap[t[1]] except KeyError: error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) (decls, code) = format.defineInst(t[3], t[5], t.lineno(1)) comment = '// %s::%s(%s)\n' % (t[1], t[3], t[5]) t[0] = (comment + decls, comment + code) def p_arg_list_0(t): 'arg_list : empty' t[0] = [ ] def p_arg_list_1(t): 'arg_list : arg' t[0] = [t[1]] def p_arg_list_2(t): 'arg_list : arg_list COMMA arg' t[0] = t[1] t[0].append(t[3]) def p_arg(t): '''arg : ID | INTLIT | STRLIT | CODELIT''' t[0] = t[1] # # Empty production... use in other rules for readability. # def p_empty(t): 'empty :' pass # Parse error handler. Note that the argument here is the offending # *token*, not a grammar symbol (hence the need to use t.value) def p_error(t): if t: error(t.lineno, "syntax error at '%s'" % t.value) else: error_bt(0, "unknown syntax error") # END OF GRAMMAR RULES # # Now build the parser. yacc.yacc() ################ # Format object. # # A format object encapsulates an instruction format. It must provide # a defineInst() method that generates the code for an instruction # definition. class Format: def __init__(self, id, params, code): # constructor: just save away arguments self.id = id self.params = params # strip blank lines from code (ones at the end are troublesome) code = re.sub(r'(?m)^\s*$', '', code); if code == '': code = ' pass\n' param_list = string.join(params, ", ") f = 'def defInst(name, Name, ' + param_list + '):\n' + code exec(f) self.func = defInst def defineInst(self, name, args, lineno): # automatically provide a capitalized version of mnemonic Name = string.capitalize(name) try: retval = self.func(name, Name, *args) except: error_bt(lineno, 'error defining "%s".' % name) return retval # Special null format to catch an implicit-format instruction # definition outside of any format block. class NoFormat: def __init__(self): self.defaultInst = '' def defineInst(self, name, args, lineno): error(lineno, 'instruction definition "%s" with no active format!' % name) # This dictionary maps format name strings to Format objects. formatMap = {} # Define a new format def defFormat(id, params, code, lineno): # make sure we haven't already defined this one if formatMap.get(id, None) != None: error(lineno, 'format %s redefined.' % id) # create new object and store in global map formatMap[id] = Format(id, params, code) ############## # Stack: a simple stack object. Used for both formats (formatStack) # and default cases (defaultStack). class Stack: def __init__(self, initItem): self.stack = [ initItem ] def push(self, item): self.stack.append(item); def pop(self): return self.stack.pop() def top(self): return self.stack[-1] # The global format stack. formatStack = Stack(NoFormat()) # The global default case stack. defaultStack = Stack( None ) ################### # Utility functions # # Indent every line in string 's' by two spaces # (except preprocessor directives). # Used to make nested code blocks look pretty. # def indent(s): return re.sub(r'(?m)^(?!\#)', ' ', s) # # Munge a somewhat arbitrarily formatted piece of Python code # (e.g. from a format 'let' block) into something whose indentation # will get by the Python parser. # # The two keys here are that Python will give a syntax error if # there's any whitespace at the beginning of the first line, and that # all lines at the same lexical nesting level must have identical # indentation. Unfortunately the way code literals work, an entire # let block tends to have some initial indentation. Rather than # trying to figure out what that is and strip it off, we prepend 'if # 1:' to make the let code the nested block inside the if (and have # the parser automatically deal with the indentation for us). # # We don't want to do this if (1) the code block is empty or (2) the # first line of the block doesn't have any whitespace at the front. def fixPythonIndentation(s): # get rid of blank lines first s = re.sub(r'(?m)^\s*\n', '', s); if (s != '' and re.match(r'[ \t]', s[0])): s = 'if 1:\n' + s return s # Error handler. Just call exit. Output formatted to work under # Emacs compile-mode. def error(lineno, string): sys.exit("%s:%d: %s" % (isa_desc_filename, lineno, string)) # Like error(), but include a Python stack backtrace (for processing # Python exceptions). def error_bt(lineno, string): print >> sys.stderr, "%s:%d: %s" % (isa_desc_filename, lineno, string) raise ##################################################################### # # Bitfield Operator Support # ##################################################################### bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>') bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>') bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>') def substBitOps(code): # first convert single-bit selectors to two-index form # i.e., <n> --> <n:n> code = bitOp1ArgRE.sub(r'<\1:\1>', code) # simple case: selector applied to ID (name) # i.e., foo<a:b> --> bits(foo, a, b) code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code) # if selector is applied to expression (ending in ')'), # we need to search backward for matching '(' match = bitOpExprRE.search(code) while match: exprEnd = match.start() here = exprEnd - 1 nestLevel = 1 while nestLevel > 0: if code[here] == '(': nestLevel -= 1 elif code[here] == ')': nestLevel += 1 here -= 1 if here < 0: sys.exit("Didn't find '('!") exprStart = here+1 newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1], match.group(1), match.group(2)) code = code[:exprStart] + newExpr + code[match.end():] match = bitOpExprRE.search(code) return code ##################################################################### # # Code Parser # # The remaining code is the support for automatically extracting # instruction characteristics from pseudocode. # ##################################################################### # Force the argument to be a list def makeList(list_or_item): if not list_or_item: return [] elif type(list_or_item) == ListType: return list_or_item else: return [ list_or_item ] # generate operandSizeMap based on provided operandTypeMap: # basically generate equiv. C++ type and make is_signed flag def buildOperandSizeMap(): global operandSizeMap operandSizeMap = {} for ext in operandTypeMap.keys(): (desc, size) = operandTypeMap[ext] if desc == 'signed int': type = 'int%d_t' % size is_signed = 1 elif desc == 'unsigned int': type = 'uint%d_t' % size is_signed = 0 elif desc == 'float': is_signed = 1 # shouldn't really matter if size == 32: type = 'float' elif size == 64: type = 'double' if type == '': error(0, 'Unrecognized type description "%s" in operandTypeMap') operandSizeMap[ext] = (size, type, is_signed) # # Base class for operand traits. An instance of this class (or actually # a class derived from this one) encapsulates the traits of a particular # operand type (e.g., "32-bit integer register"). # class OperandTraits: def __init__(self, dflt_ext, reg_spec, flags, sort_pri): # Force construction of operandSizeMap from operandTypeMap # if it hasn't happened yet if not globals().has_key('operandSizeMap'): buildOperandSizeMap() self.dflt_ext = dflt_ext (self.dflt_size, self.dflt_type, self.dflt_is_signed) = \ operandSizeMap[dflt_ext] self.reg_spec = reg_spec # Canonical flag structure is a triple of lists, where each list # indicates the set of flags implied by this operand always, when # used as a source, and when used as a dest, respectively. # For simplicity this can be initialized using a variety of fairly # obvious shortcuts; we convert these to canonical form here. if not flags: # no flags specified (e.g., 'None') self.flags = ( [], [], [] ) elif type(flags) == StringType: # a single flag: assumed to be unconditional self.flags = ( [ flags ], [], [] ) elif type(flags) == ListType: # a list of flags: also assumed to be unconditional self.flags = ( flags, [], [] ) elif type(flags) == TupleType: # it's a tuple: it should be a triple, # but each item could be a single string or a list (uncond_flags, src_flags, dest_flags) = flags self.flags = (makeList(uncond_flags), makeList(src_flags), makeList(dest_flags)) self.sort_pri = sort_pri def isMem(self): return 0 def isReg(self): return 0 def isFloatReg(self): return 0 def isIntReg(self): return 0 def isControlReg(self): return 0 def getFlags(self, op_desc): # note the empty slice '[:]' gives us a copy of self.flags[0] # instead of a reference to it my_flags = self.flags[0][:] if op_desc.is_src: my_flags += self.flags[1] if op_desc.is_dest: my_flags += self.flags[2] return my_flags def makeDecl(self, op_desc): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. return type + ' ' + op_desc.munged_name + ' = 0;\n'; class IntRegOperandTraits(OperandTraits): def isReg(self): return 1 def isIntReg(self): return 1 def makeConstructor(self, op_desc): c = '' if op_desc.is_src: c += '\n\t_srcRegIdx[%d] = %s;' % \ (op_desc.src_reg_idx, self.reg_spec) if op_desc.is_dest: c += '\n\t_destRegIdx[%d] = %s;' % \ (op_desc.dest_reg_idx, self.reg_spec) return c def makeRead(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] if (type == 'float' or type == 'double'): error(0, 'Attempt to read integer register as FP') if (size == self.dflt_size): return '%s = xc->readIntReg(_srcRegIdx[%d]);\n' % \ (op_desc.munged_name, op_desc.src_reg_idx) else: return '%s = bits(xc->readIntReg(_srcRegIdx[%d]), %d, 0);\n' % \ (op_desc.munged_name, op_desc.src_reg_idx, size-1) def makeWrite(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] if (type == 'float' or type == 'double'): error(0, 'Attempt to write integer register as FP') if (size != self.dflt_size and is_signed): final_val = 'sext<%d>(%s)' % (size, op_desc.munged_name) else: final_val = op_desc.munged_name wb = ''' { %s final_val = %s; xc->setIntReg(_destRegIdx[%d], final_val);\n if (traceData) { traceData->setData(final_val); } }''' % (self.dflt_type, final_val, op_desc.dest_reg_idx) return wb class FloatRegOperandTraits(OperandTraits): def isReg(self): return 1 def isFloatReg(self): return 1 def makeConstructor(self, op_desc): c = '' if op_desc.is_src: c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \ (op_desc.src_reg_idx, self.reg_spec) if op_desc.is_dest: c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \ (op_desc.dest_reg_idx, self.reg_spec) return c def makeRead(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] bit_select = 0 if (type == 'float'): func = 'readFloatRegSingle' elif (type == 'double'): func = 'readFloatRegDouble' else: func = 'readFloatRegInt' if (size != self.dflt_size): bit_select = 1 base = 'xc->%s(_srcRegIdx[%d] - FP_Base_DepTag)' % \ (func, op_desc.src_reg_idx) if bit_select: return '%s = bits(%s, %d, 0);\n' % \ (op_desc.munged_name, base, size-1) else: return '%s = %s;\n' % (op_desc.munged_name, base) def makeWrite(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] final_val = op_desc.munged_name if (type == 'float'): func = 'setFloatRegSingle' elif (type == 'double'): func = 'setFloatRegDouble' else: func = 'setFloatRegInt' type = 'uint%d_t' % self.dflt_size if (size != self.dflt_size and is_signed): final_val = 'sext<%d>(%s)' % (size, op_desc.munged_name) wb = ''' { %s final_val = %s; xc->%s(_destRegIdx[%d] - FP_Base_DepTag, final_val);\n if (traceData) { traceData->setData(final_val); } }''' % (type, final_val, func, op_desc.dest_reg_idx) return wb class ControlRegOperandTraits(OperandTraits): def isReg(self): return 1 def isControlReg(self): return 1 def makeConstructor(self, op_desc): c = '' if op_desc.is_src: c += '\n\t_srcRegIdx[%d] = %s_DepTag;' % \ (op_desc.src_reg_idx, self.reg_spec) if op_desc.is_dest: c += '\n\t_destRegIdx[%d] = %s_DepTag;' % \ (op_desc.dest_reg_idx, self.reg_spec) return c def makeRead(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] bit_select = 0 if (type == 'float' or type == 'double'): error(0, 'Attempt to read control register as FP') base = 'xc->read%s()' % self.reg_spec if size == self.dflt_size: return '%s = %s;\n' % (op_desc.munged_name, base) else: return '%s = bits(%s, %d, 0);\n' % \ (op_desc.munged_name, base, size-1) def makeWrite(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] if (type == 'float' or type == 'double'): error(0, 'Attempt to write control register as FP') wb = 'xc->set%s(%s);\n' % (self.reg_spec, op_desc.munged_name) wb += 'if (traceData) { traceData->setData(%s); }' % \ op_desc.munged_name return wb class MemOperandTraits(OperandTraits): def isMem(self): return 1 def makeConstructor(self, op_desc): return '' def makeDecl(self, op_desc): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] # Note that initializations in the declarations are solely # to avoid 'uninitialized variable' errors from the compiler. # Declare memory data variable. c = '%s %s = 0;\n' % (type, op_desc.munged_name) # Declare var to hold memory access flags. c += 'unsigned %s_flags = memAccessFlags;\n' % op_desc.base_name # If this operand is a dest (i.e., it's a store operation), # then we need to declare a variable for the write result code # as well. if op_desc.is_dest: c += 'uint64_t %s_write_result = 0;\n' % op_desc.base_name return c def makeRead(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] eff_type = 'uint%d_t' % size return 'fault = memAccessObj->read(EA, (%s&)%s, %s_flags);\n' \ % (eff_type, op_desc.munged_name, op_desc.base_name) def makeWrite(self, op_desc, cpu_model): (size, type, is_signed) = operandSizeMap[op_desc.eff_ext] eff_type = 'uint%d_t' % size return 'fault = memAccessObj->write((%s&)%s, EA, %s_flags,' \ ' &%s_write_result);\n' \ % (eff_type, op_desc.munged_name, op_desc.base_name, op_desc.base_name) class NPCOperandTraits(OperandTraits): def makeConstructor(self, op_desc): return '' def makeRead(self, op_desc, cpu_model): return '%s = xc->readPC() + 4;\n' % op_desc.munged_name def makeWrite(self, op_desc, cpu_model): return 'xc->setNextPC(%s);\n' % op_desc.munged_name # # Define operand variables that get derived from the basic declaration # of ISA-specific operands in operandTraitsMap. This function must be # called by the ISA description file explicitly after defining # operandTraitsMap (in a 'let' block). # def defineDerivedOperandVars(): global operands operands = operandTraitsMap.keys() operandsREString = (r''' (?<![\w\.]) # neg. lookbehind assertion: prevent partial matches ((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix (?![\w\.]) # neg. lookahead assertion: prevent partial matches ''' % string.join(operands, '|')) global operandsRE operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE) # Same as operandsREString, but extension is mandatory, and only two # groups are returned (base and ext, not full name as above). # Used for subtituting '_' for '.' to make C++ identifiers. operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])' % string.join(operands, '|')) global operandsWithExtRE operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE) # # Operand descriptor class. An instance of this class represents # a specific operand for a code block. # class OperandDescriptor: def __init__(self, full_name, base_name, ext, is_src, is_dest): self.full_name = full_name self.base_name = base_name self.ext = ext self.is_src = is_src self.is_dest = is_dest self.traits = operandTraitsMap[base_name] # The 'effective extension' (eff_ext) is either the actual # extension, if one was explicitly provided, or the default. # The 'munged name' replaces the '.' between the base and # extension (if any) with a '_' to make a legal C++ variable name. if ext: self.eff_ext = ext self.munged_name = base_name + '_' + ext else: self.eff_ext = self.traits.dflt_ext self.munged_name = base_name # Finalize additional fields (primarily code fields). This step # is done separately since some of these fields may depend on the # register index enumeration that hasn't been performed yet at the # time of __init__(). def finalize(self): self.flags = self.traits.getFlags(self) self.constructor = self.traits.makeConstructor(self) self.exec_decl = self.traits.makeDecl(self) if self.is_src: self.simple_rd = self.traits.makeRead(self, 'simple') self.dtld_rd = self.traits.makeRead(self, 'dtld') else: self.simple_rd = '' self.dtld_rd = '' if self.is_dest: self.simple_wb = self.traits.makeWrite(self, 'simple') self.dtld_wb = self.traits.makeWrite(self, 'dtld') else: self.simple_wb = '' self.dtld_wb = '' class OperandDescriptorList: def __init__(self): self.items = [] self.bases = {} def __len__(self): return len(self.items) def __getitem__(self, index): return self.items[index] def append(self, op_desc): self.items.append(op_desc) self.bases[op_desc.base_name] = op_desc def find_base(self, base_name): # like self.bases[base_name], but returns None if not found # (rather than raising exception) return self.bases.get(base_name) # internal helper function for concat[Some]Attr{Strings|Lists} def __internalConcatAttrs(self, attr_name, filter, result): for op_desc in self.items: if filter(op_desc): result += getattr(op_desc, attr_name) return result # return a single string that is the concatenation of the (string) # values of the specified attribute for all operands def concatAttrStrings(self, attr_name): return self.__internalConcatAttrs(attr_name, lambda x: 1, '') # like concatAttrStrings, but only include the values for the operands # for which the provided filter function returns true def concatSomeAttrStrings(self, filter, attr_name): return self.__internalConcatAttrs(attr_name, filter, '') # return a single list that is the concatenation of the (list) # values of the specified attribute for all operands def concatAttrLists(self, attr_name): return self.__internalConcatAttrs(attr_name, lambda x: 1, []) # like concatAttrLists, but only include the values for the operands # for which the provided filter function returns true def concatSomeAttrLists(self, filter, attr_name): return self.__internalConcatAttrs(attr_name, filter, []) def sort(self): self.items.sort(lambda a, b: a.traits.sort_pri - b.traits.sort_pri) # Regular expression object to match C++ comments # (used in findOperands()) commentRE = re.compile(r'//.*\n') # Regular expression object to match assignment statements # (used in findOperands()) assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE) # # Find all the operands in the given code block. Returns an operand # descriptor list (instance of class OperandDescriptorList). # def findOperands(code): operands = OperandDescriptorList() # delete comments so we don't accidentally match on reg specifiers inside code = commentRE.sub('', code) # search for operands next_pos = 0 while 1: match = operandsRE.search(code, next_pos) if not match: # no more matches: we're done break op = match.groups() # regexp groups are operand full name, base, and extension (op_full, op_base, op_ext) = op # if the token following the operand is an assignment, this is # a destination (LHS), else it's a source (RHS) is_dest = (assignRE.match(code, match.end()) != None) is_src = not is_dest # see if we've already seen this one op_desc = operands.find_base(op_base) if op_desc: if op_desc.ext != op_ext: error(0, 'Inconsistent extensions for operand %s' % op_base) op_desc.is_src = op_desc.is_src or is_src op_desc.is_dest = op_desc.is_dest or is_dest else: # new operand: create new descriptor op_desc = OperandDescriptor(op_full, op_base, op_ext, is_src, is_dest) operands.append(op_desc) # start next search after end of current match next_pos = match.end() operands.sort() # enumerate source & dest register operands... used in building # constructor later srcRegs = 0 destRegs = 0 operands.numFPDestRegs = 0 operands.numIntDestRegs = 0 for op_desc in operands: if op_desc.traits.isReg(): if op_desc.is_src: op_desc.src_reg_idx = srcRegs srcRegs += 1 if op_desc.is_dest: op_desc.dest_reg_idx = destRegs destRegs += 1 if op_desc.traits.isFloatReg(): operands.numFPDestRegs += 1 elif op_desc.traits.isIntReg(): operands.numIntDestRegs += 1 operands.numSrcRegs = srcRegs operands.numDestRegs = destRegs # now make a final pass to finalize op_desc fields that may depend # on the register enumeration for op_desc in operands: op_desc.finalize() return operands # Munge operand names in code string to make legal C++ variable names. # (Will match munged_name attribute of OperandDescriptor object.) def substMungedOpNames(code): return operandsWithExtRE.sub(r'\1_\2', code) def joinLists(t): return map(string.join, t) def makeFlagConstructor(flag_list): if len(flag_list) == 0: return '' # filter out repeated flags flag_list.sort() i = 1 while i < len(flag_list): if flag_list[i] == flag_list[i-1]: del flag_list[i] else: i += 1 pre = '\n\tflags[' post = '] = true;' code = pre + string.join(flag_list, post + pre) + post return code class CodeBlock: def __init__(self, code): self.orig_code = code self.operands = findOperands(code) self.code = substMungedOpNames(substBitOps(code)) self.constructor = self.operands.concatAttrStrings('constructor') self.constructor += \ '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs self.constructor += \ '\n\t_numDestRegs = %d;' % self.operands.numDestRegs self.constructor += \ '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs self.constructor += \ '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs self.exec_decl = self.operands.concatAttrStrings('exec_decl') is_mem = lambda op: op.traits.isMem() not_mem = lambda op: not op.traits.isMem() self.simple_rd = self.operands.concatAttrStrings('simple_rd') self.simple_wb = self.operands.concatAttrStrings('simple_wb') self.simple_mem_rd = \ self.operands.concatSomeAttrStrings(is_mem, 'simple_rd') self.simple_mem_wb = \ self.operands.concatSomeAttrStrings(is_mem, 'simple_wb') self.simple_nonmem_rd = \ self.operands.concatSomeAttrStrings(not_mem, 'simple_rd') self.simple_nonmem_wb = \ self.operands.concatSomeAttrStrings(not_mem, 'simple_wb') self.dtld_rd = self.operands.concatAttrStrings('dtld_rd') self.dtld_wb = self.operands.concatAttrStrings('dtld_wb') self.dtld_mem_rd = \ self.operands.concatSomeAttrStrings(is_mem, 'dtld_rd') self.dtld_mem_wb = \ self.operands.concatSomeAttrStrings(is_mem, 'dtld_wb') self.dtld_nonmem_rd = \ self.operands.concatSomeAttrStrings(not_mem, 'dtld_rd') self.dtld_nonmem_wb = \ self.operands.concatSomeAttrStrings(not_mem, 'dtld_wb') self.flags = self.operands.concatAttrLists('flags') # Make a basic guess on the operand class (function unit type). # These are good enough for most cases, and will be overridden # later otherwise. if 'IsStore' in self.flags: self.op_class = 'WrPort' elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags: self.op_class = 'RdPort' elif 'IsFloating' in self.flags: self.op_class = 'FloatADD' else: self.op_class = 'IntALU' # Assume all instruction flags are of the form 'IsFoo' instFlagRE = re.compile(r'Is.*') # OpClass constants are just a little more complicated opClassRE = re.compile(r'Int.*|Float.*|.*Port|No_OpClass') class InstObjParams: def __init__(self, mnem, class_name, base_class = '', code_block = None, opt_args = []): self.mnemonic = mnem self.class_name = class_name self.base_class = base_class if code_block: for code_attr in code_block.__dict__.keys(): setattr(self, code_attr, getattr(code_block, code_attr)) else: self.constructor = '' self.flags = [] # Optional arguments are assumed to be either StaticInst flags # or an OpClass value. To avoid having to import a complete # list of these values to match against, we do it ad-hoc # with regexps. for oa in opt_args: if instFlagRE.match(oa): self.flags.append(oa) elif opClassRE.match(oa): self.op_class = oa else: error(0, 'InstObjParams: optional arg "%s" not recognized ' 'as StaticInst::Flag or OpClass.' % oa) # add flag initialization to contructor here to include # any flags added via opt_args self.constructor += makeFlagConstructor(self.flags) # if 'IsFloating' is set, add call to the FP enable check # function (which should be provided by isa_desc via a declare) if 'IsFloating' in self.flags: self.fp_enable_check = 'fault = checkFpEnableFault(xc);' else: self.fp_enable_check = '' def subst(self, *args): result = [] for t in args: if not templateMap.has_key(t): error(0, 'InstObjParams::subst: undefined template "%s"' % t) try: result.append(templateMap[t] % self.__dict__) except KeyError, key: error(0, 'InstObjParams::subst: no definition for "%s"' % key) if len(args) == 1: result = result[0] return result # # All set... read in and parse the ISA description. # yacc.parse(isa_desc)