/* * Copyright (c) 2003 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __EXEC_CONTEXT_HH__ #define __EXEC_CONTEXT_HH__ #include "sim/host.hh" #include "targetarch/mem_req.hh" // forward declaration: see functional_memory.hh class FunctionalMemory; class PhysicalMemory; class BaseCPU; #ifdef FULL_SYSTEM #include "targetarch/alpha_memory.hh" class MemoryController; #include "kern/tru64/kernel_stats.hh" #include "sim/system.hh" #else // !FULL_SYSTEM #include "sim/prog.hh" #endif // FULL_SYSTEM // // The ExecContext object represents a functional context for // instruction execution. It incorporates everything required for // architecture-level functional simulation of a single thread. // class ExecContext { public: enum Status { Unallocated, Active, Suspended, Halted }; private: Status _status; public: Status status() const { return _status; } void setStatus(Status new_status); #ifdef FULL_SYSTEM public: KernelStats kernelStats; #endif public: RegFile regs; // correct-path register context // pointer to CPU associated with this context BaseCPU *cpu; // Index of hardware thread context on the CPU that this represents. int thread_num; #ifdef FULL_SYSTEM FunctionalMemory *mem; AlphaItb *itb; AlphaDtb *dtb; int cpu_id; System *system; // the following two fields are redundant, since we can always // look them up through the system pointer, but we'll leave them // here for now for convenience MemoryController *memCtrl; PhysicalMemory *physmem; #else Process *process; FunctionalMemory *mem; // functional storage for process address space // Address space ID. Note that this is used for TIMING cache // simulation only; all functional memory accesses should use // one of the FunctionalMemory pointers above. short asid; #endif /* * number of executed instructions, for matching with syscall trace * points in EIO files. */ Counter func_exe_insn; // // Count failed store conditionals so we can warn of apparent // application deadlock situations. unsigned storeCondFailures; // constructor: initialize context from given process structure #ifdef FULL_SYSTEM ExecContext(BaseCPU *_cpu, int _thread_num, System *_system, AlphaItb *_itb, AlphaDtb *_dtb, FunctionalMemory *_dem, int _cpu_id); #else ExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid); ExecContext(BaseCPU *_cpu, int _thread_num, FunctionalMemory *_mem, int _asid); #endif virtual ~ExecContext() {} void regStats(const std::string &name); #ifdef FULL_SYSTEM bool validInstAddr(Addr addr) { return true; } bool validDataAddr(Addr addr) { return true; } int getInstAsid() { return ITB_ASN_ASN(regs.ipr[TheISA::IPR_ITB_ASN]); } int getDataAsid() { return DTB_ASN_ASN(regs.ipr[TheISA::IPR_DTB_ASN]); } Fault translateInstReq(MemReqPtr req) { return itb->translate(req); } Fault translateDataReadReq(MemReqPtr req) { return dtb->translate(req, false); } Fault translateDataWriteReq(MemReqPtr req) { return dtb->translate(req, true); } #else bool validInstAddr(Addr addr) { return process->validInstAddr(addr); } bool validDataAddr(Addr addr) { return process->validDataAddr(addr); } int getInstAsid() { return asid; } int getDataAsid() { return asid; } Fault dummyTranslation(MemReqPtr req) { #if 0 assert((req->vaddr >> 48 & 0xffff) == 0); #endif // put the asid in the upper 16 bits of the paddr req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16); req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16; return No_Fault; } Fault translateInstReq(MemReqPtr req) { return dummyTranslation(req); } Fault translateDataReadReq(MemReqPtr req) { return dummyTranslation(req); } Fault translateDataWriteReq(MemReqPtr req) { return dummyTranslation(req); } #endif template Fault read(MemReqPtr req, T& data) { #if defined(TARGET_ALPHA) && defined(FULL_SYSTEM) if (req->flags & LOCKED) { MiscRegFile *cregs = &req->xc->regs.miscRegs; cregs->lock_addr = req->paddr; cregs->lock_flag = true; } #endif return mem->read(req, data); } template Fault write(MemReqPtr req, T& data) { #if defined(TARGET_ALPHA) && defined(FULL_SYSTEM) MiscRegFile *cregs; // If this is a store conditional, act appropriately if (req->flags & LOCKED) { cregs = &req->xc->regs.miscRegs; if (req->flags & UNCACHEABLE) { // Don't update result register (see machine.def) req->result = 2; req->xc->storeCondFailures = 0;//Needed? [RGD] } else { req->result = cregs->lock_flag; if (!cregs->lock_flag || ((cregs->lock_addr & ~0xf) != (req->paddr & ~0xf))) { cregs->lock_flag = false; if (((++req->xc->storeCondFailures) % 100000) == 0) { std::cerr << "Warning: " << req->xc->storeCondFailures << " consecutive store conditional failures " << "on cpu " << req->xc->cpu_id << std::endl; } return No_Fault; } else req->xc->storeCondFailures = 0; } } // Need to clear any locked flags on other proccessors for this // address // Only do this for succsful Store Conditionals and all other // stores (WH64?) // Unsuccesful Store Conditionals would have returned above, // and wouldn't fall through for(int i = 0; i < system->xcvec.size(); i++){ cregs = &system->xcvec[i]->regs.miscRegs; if((cregs->lock_addr & ~0xf) == (req->paddr & ~0xf)) { cregs->lock_flag = false; } } #endif return mem->write(req, data); } virtual bool misspeculating(); // // New accessors for new decoder. // uint64_t readIntReg(int reg_idx) { return regs.intRegFile[reg_idx]; } float readFloatRegSingle(int reg_idx) { return (float)regs.floatRegFile.d[reg_idx]; } double readFloatRegDouble(int reg_idx) { return regs.floatRegFile.d[reg_idx]; } uint64_t readFloatRegInt(int reg_idx) { return regs.floatRegFile.q[reg_idx]; } void setIntReg(int reg_idx, uint64_t val) { regs.intRegFile[reg_idx] = val; } void setFloatRegSingle(int reg_idx, float val) { regs.floatRegFile.d[reg_idx] = (double)val; } void setFloatRegDouble(int reg_idx, double val) { regs.floatRegFile.d[reg_idx] = val; } void setFloatRegInt(int reg_idx, uint64_t val) { regs.floatRegFile.q[reg_idx] = val; } uint64_t readPC() { return regs.pc; } void setNextPC(uint64_t val) { regs.npc = val; } uint64_t readUniq() { return regs.miscRegs.uniq; } void setUniq(uint64_t val) { regs.miscRegs.uniq = val; } uint64_t readFpcr() { return regs.miscRegs.fpcr; } void setFpcr(uint64_t val) { regs.miscRegs.fpcr = val; } #ifdef FULL_SYSTEM uint64_t readIpr(int idx, Fault &fault); Fault setIpr(int idx, uint64_t val); Fault hwrei(); void ev5_trap(Fault fault); bool simPalCheck(int palFunc); #endif #ifndef FULL_SYSTEM void syscall() { process->syscall(this); } #endif }; // for non-speculative execution context, spec_mode is always false inline bool ExecContext::misspeculating() { return false; } #endif // __EXEC_CONTEXT_HH__