/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu/checker/cpu.hh" #include "cpu/o3/lsq_unit.hh" #include "base/str.hh" template LSQUnit::StoreCompletionEvent::StoreCompletionEvent(int store_idx, Event *wb_event, LSQUnit *lsq_ptr) : Event(&mainEventQueue), wbEvent(wb_event), storeIdx(store_idx), lsqPtr(lsq_ptr) { this->setFlags(Event::AutoDelete); } template void LSQUnit::StoreCompletionEvent::process() { DPRINTF(LSQ, "Cache miss complete for store idx:%i\n", storeIdx); DPRINTF(Activity, "Activity: st writeback event idx:%i\n", storeIdx); //lsqPtr->removeMSHR(lsqPtr->storeQueue[storeIdx].inst->seqNum); if (lsqPtr->isSwitchedOut()) { if (wbEvent) delete wbEvent; return; } lsqPtr->cpu->wakeCPU(); if (wbEvent) { wbEvent->process(); delete wbEvent; } lsqPtr->completeStore(storeIdx); } template const char * LSQUnit::StoreCompletionEvent::description() { return "LSQ store completion event"; } template LSQUnit::LSQUnit() : loads(0), stores(0), storesToWB(0), stalled(false), isLoadBlocked(false), loadBlockedHandled(false) { } template void LSQUnit::init(Params *params, unsigned maxLQEntries, unsigned maxSQEntries, unsigned id) { DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id); switchedOut = false; lsqID = id; // Add 1 for the sentinel entry (they are circular queues). LQEntries = maxLQEntries + 1; SQEntries = maxSQEntries + 1; loadQueue.resize(LQEntries); storeQueue.resize(SQEntries); loadHead = loadTail = 0; storeHead = storeWBIdx = storeTail = 0; usedPorts = 0; cachePorts = params->cachePorts; dcacheInterface = params->dcacheInterface; memDepViolator = NULL; blockedLoadSeqNum = 0; } template std::string LSQUnit::name() const { if (Impl::MaxThreads == 1) { return iewStage->name() + ".lsq"; } else { return iewStage->name() + ".lsq.thread." + to_string(lsqID); } } template void LSQUnit::regStats() { lsqForwLoads .name(name() + ".forwLoads") .desc("Number of loads that had data forwarded from stores"); invAddrLoads .name(name() + ".invAddrLoads") .desc("Number of loads ignored due to an invalid address"); lsqSquashedLoads .name(name() + ".squashedLoads") .desc("Number of loads squashed"); lsqIgnoredResponses .name(name() + ".ignoredResponses") .desc("Number of memory responses ignored because the instruction is squashed"); lsqSquashedStores .name(name() + ".squashedStores") .desc("Number of stores squashed"); invAddrSwpfs .name(name() + ".invAddrSwpfs") .desc("Number of software prefetches ignored due to an invalid address"); lsqBlockedLoads .name(name() + ".blockedLoads") .desc("Number of blocked loads due to partial load-store forwarding"); lsqRescheduledLoads .name(name() + ".rescheduledLoads") .desc("Number of loads that were rescheduled"); lsqCacheBlocked .name(name() + ".cacheBlocked") .desc("Number of times an access to memory failed due to the cache being blocked"); } template void LSQUnit::clearLQ() { loadQueue.clear(); } template void LSQUnit::clearSQ() { storeQueue.clear(); } #if 0 template void LSQUnit::setPageTable(PageTable *pt_ptr) { DPRINTF(LSQUnit, "Setting the page table pointer.\n"); pTable = pt_ptr; } #endif template void LSQUnit::switchOut() { switchedOut = true; for (int i = 0; i < loadQueue.size(); ++i) loadQueue[i] = NULL; assert(storesToWB == 0); while (storesToWB > 0 && storeWBIdx != storeTail && storeQueue[storeWBIdx].inst && storeQueue[storeWBIdx].canWB) { if (storeQueue[storeWBIdx].size == 0 || storeQueue[storeWBIdx].inst->isDataPrefetch() || storeQueue[storeWBIdx].committed || storeQueue[storeWBIdx].req->flags & LOCKED) { incrStIdx(storeWBIdx); continue; } assert(storeQueue[storeWBIdx].req); assert(!storeQueue[storeWBIdx].committed); MemReqPtr req = storeQueue[storeWBIdx].req; storeQueue[storeWBIdx].committed = true; req->cmd = Write; req->completionEvent = NULL; req->time = curTick; assert(!req->data); req->data = new uint8_t[64]; memcpy(req->data, (uint8_t *)&storeQueue[storeWBIdx].data, req->size); DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%#x " "to Addr:%#x, data:%#x [sn:%lli]\n", storeWBIdx,storeQueue[storeWBIdx].inst->readPC(), req->paddr, *(req->data), storeQueue[storeWBIdx].inst->seqNum); switch(storeQueue[storeWBIdx].size) { case 1: cpu->write(req, (uint8_t &)storeQueue[storeWBIdx].data); break; case 2: cpu->write(req, (uint16_t &)storeQueue[storeWBIdx].data); break; case 4: cpu->write(req, (uint32_t &)storeQueue[storeWBIdx].data); break; case 8: cpu->write(req, (uint64_t &)storeQueue[storeWBIdx].data); break; default: panic("Unexpected store size!\n"); } incrStIdx(storeWBIdx); } } template void LSQUnit::takeOverFrom() { switchedOut = false; loads = stores = storesToWB = 0; loadHead = loadTail = 0; storeHead = storeWBIdx = storeTail = 0; usedPorts = 0; memDepViolator = NULL; blockedLoadSeqNum = 0; stalled = false; isLoadBlocked = false; loadBlockedHandled = false; } template void LSQUnit::resizeLQ(unsigned size) { unsigned size_plus_sentinel = size + 1; assert(size_plus_sentinel >= LQEntries); if (size_plus_sentinel > LQEntries) { while (size_plus_sentinel > loadQueue.size()) { DynInstPtr dummy; loadQueue.push_back(dummy); LQEntries++; } } else { LQEntries = size_plus_sentinel; } } template void LSQUnit::resizeSQ(unsigned size) { unsigned size_plus_sentinel = size + 1; if (size_plus_sentinel > SQEntries) { while (size_plus_sentinel > storeQueue.size()) { SQEntry dummy; storeQueue.push_back(dummy); SQEntries++; } } else { SQEntries = size_plus_sentinel; } } template void LSQUnit::insert(DynInstPtr &inst) { assert(inst->isMemRef()); assert(inst->isLoad() || inst->isStore()); if (inst->isLoad()) { insertLoad(inst); } else { insertStore(inst); } inst->setInLSQ(); } template void LSQUnit::insertLoad(DynInstPtr &load_inst) { assert((loadTail + 1) % LQEntries != loadHead); assert(loads < LQEntries); DPRINTF(LSQUnit, "Inserting load PC %#x, idx:%i [sn:%lli]\n", load_inst->readPC(), loadTail, load_inst->seqNum); load_inst->lqIdx = loadTail; if (stores == 0) { load_inst->sqIdx = -1; } else { load_inst->sqIdx = storeTail; } loadQueue[loadTail] = load_inst; incrLdIdx(loadTail); ++loads; } template void LSQUnit::insertStore(DynInstPtr &store_inst) { // Make sure it is not full before inserting an instruction. assert((storeTail + 1) % SQEntries != storeHead); assert(stores < SQEntries); DPRINTF(LSQUnit, "Inserting store PC %#x, idx:%i [sn:%lli]\n", store_inst->readPC(), storeTail, store_inst->seqNum); store_inst->sqIdx = storeTail; store_inst->lqIdx = loadTail; storeQueue[storeTail] = SQEntry(store_inst); incrStIdx(storeTail); ++stores; } template typename Impl::DynInstPtr LSQUnit::getMemDepViolator() { DynInstPtr temp = memDepViolator; memDepViolator = NULL; return temp; } template unsigned LSQUnit::numFreeEntries() { unsigned free_lq_entries = LQEntries - loads; unsigned free_sq_entries = SQEntries - stores; // Both the LQ and SQ entries have an extra dummy entry to differentiate // empty/full conditions. Subtract 1 from the free entries. if (free_lq_entries < free_sq_entries) { return free_lq_entries - 1; } else { return free_sq_entries - 1; } } template int LSQUnit::numLoadsReady() { int load_idx = loadHead; int retval = 0; while (load_idx != loadTail) { assert(loadQueue[load_idx]); if (loadQueue[load_idx]->readyToIssue()) { ++retval; } } return retval; } template Fault LSQUnit::executeLoad(DynInstPtr &inst) { // Execute a specific load. Fault load_fault = NoFault; DPRINTF(LSQUnit, "Executing load PC %#x, [sn:%lli]\n", inst->readPC(),inst->seqNum); // load_fault = inst->initiateAcc(); load_fault = inst->execute(); // If the instruction faulted, then we need to send it along to commit // without the instruction completing. if (load_fault != NoFault) { // Send this instruction to commit, also make sure iew stage // realizes there is activity. iewStage->instToCommit(inst); iewStage->activityThisCycle(); } return load_fault; } template Fault LSQUnit::executeStore(DynInstPtr &store_inst) { using namespace TheISA; // Make sure that a store exists. assert(stores != 0); int store_idx = store_inst->sqIdx; DPRINTF(LSQUnit, "Executing store PC %#x [sn:%lli]\n", store_inst->readPC(), store_inst->seqNum); // Check the recently completed loads to see if any match this store's // address. If so, then we have a memory ordering violation. int load_idx = store_inst->lqIdx; Fault store_fault = store_inst->initiateAcc(); // Fault store_fault = store_inst->execute(); if (storeQueue[store_idx].size == 0) { DPRINTF(LSQUnit,"Fault on Store PC %#x, [sn:%lli],Size = 0\n", store_inst->readPC(),store_inst->seqNum); return store_fault; } assert(store_fault == NoFault); if (store_inst->isStoreConditional()) { // Store conditionals need to set themselves as able to // writeback if we haven't had a fault by here. storeQueue[store_idx].canWB = true; ++storesToWB; } if (!memDepViolator) { while (load_idx != loadTail) { // Really only need to check loads that have actually executed // It's safe to check all loads because effAddr is set to // InvalAddr when the dyn inst is created. // @todo: For now this is extra conservative, detecting a // violation if the addresses match assuming all accesses // are quad word accesses. // @todo: Fix this, magic number being used here if ((loadQueue[load_idx]->effAddr >> 8) == (store_inst->effAddr >> 8)) { // A load incorrectly passed this store. Squash and refetch. // For now return a fault to show that it was unsuccessful. memDepViolator = loadQueue[load_idx]; return genMachineCheckFault(); } incrLdIdx(load_idx); } // If we've reached this point, there was no violation. memDepViolator = NULL; } return store_fault; } template void LSQUnit::commitLoad() { assert(loadQueue[loadHead]); DPRINTF(LSQUnit, "Committing head load instruction, PC %#x\n", loadQueue[loadHead]->readPC()); loadQueue[loadHead] = NULL; incrLdIdx(loadHead); --loads; } template void LSQUnit::commitLoads(InstSeqNum &youngest_inst) { assert(loads == 0 || loadQueue[loadHead]); while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) { commitLoad(); } } template void LSQUnit::commitStores(InstSeqNum &youngest_inst) { assert(stores == 0 || storeQueue[storeHead].inst); int store_idx = storeHead; while (store_idx != storeTail) { assert(storeQueue[store_idx].inst); // Mark any stores that are now committed and have not yet // been marked as able to write back. if (!storeQueue[store_idx].canWB) { if (storeQueue[store_idx].inst->seqNum > youngest_inst) { break; } DPRINTF(LSQUnit, "Marking store as able to write back, PC " "%#x [sn:%lli]\n", storeQueue[store_idx].inst->readPC(), storeQueue[store_idx].inst->seqNum); storeQueue[store_idx].canWB = true; ++storesToWB; } incrStIdx(store_idx); } } template void LSQUnit::writebackStores() { while (storesToWB > 0 && storeWBIdx != storeTail && storeQueue[storeWBIdx].inst && storeQueue[storeWBIdx].canWB && usedPorts < cachePorts) { // Store didn't write any data so no need to write it back to // memory. if (storeQueue[storeWBIdx].size == 0) { completeStore(storeWBIdx); incrStIdx(storeWBIdx); continue; } if (dcacheInterface && dcacheInterface->isBlocked()) { DPRINTF(LSQUnit, "Unable to write back any more stores, cache" " is blocked!\n"); ++lsqCacheBlocked; break; } ++usedPorts; if (storeQueue[storeWBIdx].inst->isDataPrefetch()) { incrStIdx(storeWBIdx); continue; } assert(storeQueue[storeWBIdx].req); assert(!storeQueue[storeWBIdx].committed); MemReqPtr req = storeQueue[storeWBIdx].req; storeQueue[storeWBIdx].committed = true; req->cmd = Write; req->completionEvent = NULL; req->time = curTick; assert(!req->data); req->data = new uint8_t[64]; memcpy(req->data, (uint8_t *)&storeQueue[storeWBIdx].data, req->size); DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%#x " "to Addr:%#x, data:%#x [sn:%lli]\n", storeWBIdx,storeQueue[storeWBIdx].inst->readPC(), req->paddr, *(req->data), storeQueue[storeWBIdx].inst->seqNum); switch(storeQueue[storeWBIdx].size) { case 1: cpu->write(req, (uint8_t &)storeQueue[storeWBIdx].data); break; case 2: cpu->write(req, (uint16_t &)storeQueue[storeWBIdx].data); break; case 4: cpu->write(req, (uint32_t &)storeQueue[storeWBIdx].data); break; case 8: cpu->write(req, (uint64_t &)storeQueue[storeWBIdx].data); break; default: panic("Unexpected store size!\n"); } // Stores other than store conditionals are completed at this // time. Mark them as completed and, if we have a checker, // tell it that the instruction is completed. // @todo: Figure out what time I can say stores are complete in // the timing memory. if (!(req->flags & LOCKED)) { storeQueue[storeWBIdx].inst->setCompleted(); if (cpu->checker) { cpu->checker->tick(storeQueue[storeWBIdx].inst); } } if (dcacheInterface) { assert(!req->completionEvent); StoreCompletionEvent *store_event = new StoreCompletionEvent(storeWBIdx, NULL, this); req->completionEvent = store_event; MemAccessResult result = dcacheInterface->access(req); if (isStalled() && storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) { DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " "load idx:%i\n", stallingStoreIsn, stallingLoadIdx); stalled = false; stallingStoreIsn = 0; iewStage->replayMemInst(loadQueue[stallingLoadIdx]); } typename IEW::LdWritebackEvent *wb = NULL; if (req->flags & LOCKED) { // Stx_C should not generate a system port transaction // if it misses in the cache, but that might be hard // to accomplish without explicit cache support. wb = new typename IEW::LdWritebackEvent(storeQueue[storeWBIdx].inst, iewStage); store_event->wbEvent = wb; } if (result != MA_HIT && dcacheInterface->doEvents()) { DPRINTF(LSQUnit,"D-Cache Write Miss on idx:%i!\n", storeWBIdx); DPRINTF(Activity, "Active st accessing mem miss [sn:%lli]\n", storeQueue[storeWBIdx].inst->seqNum); //mshrSeqNums.push_back(storeQueue[storeWBIdx].inst->seqNum); //DPRINTF(LSQUnit, "Added MSHR. count = %i\n",mshrSeqNums.size()); // @todo: Increment stat here. } else { DPRINTF(LSQUnit,"D-Cache: Write Hit on idx:%i !\n", storeWBIdx); DPRINTF(Activity, "Active st accessing mem hit [sn:%lli]\n", storeQueue[storeWBIdx].inst->seqNum); } incrStIdx(storeWBIdx); } else { panic("Must HAVE DCACHE!!!!!\n"); } } // Not sure this should set it to 0. usedPorts = 0; assert(stores >= 0 && storesToWB >= 0); } /*template void LSQUnit::removeMSHR(InstSeqNum seqNum) { list::iterator mshr_it = find(mshrSeqNums.begin(), mshrSeqNums.end(), seqNum); if (mshr_it != mshrSeqNums.end()) { mshrSeqNums.erase(mshr_it); DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size()); } }*/ template void LSQUnit::squash(const InstSeqNum &squashed_num) { DPRINTF(LSQUnit, "Squashing until [sn:%lli]!" "(Loads:%i Stores:%i)\n", squashed_num, loads, stores); int load_idx = loadTail; decrLdIdx(load_idx); while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) { DPRINTF(LSQUnit,"Load Instruction PC %#x squashed, " "[sn:%lli]\n", loadQueue[load_idx]->readPC(), loadQueue[load_idx]->seqNum); if (isStalled() && load_idx == stallingLoadIdx) { stalled = false; stallingStoreIsn = 0; stallingLoadIdx = 0; } // Clear the smart pointer to make sure it is decremented. loadQueue[load_idx]->setSquashed(); loadQueue[load_idx] = NULL; --loads; // Inefficient! loadTail = load_idx; decrLdIdx(load_idx); } if (isLoadBlocked) { if (squashed_num < blockedLoadSeqNum) { isLoadBlocked = false; loadBlockedHandled = false; blockedLoadSeqNum = 0; } } int store_idx = storeTail; decrStIdx(store_idx); while (stores != 0 && storeQueue[store_idx].inst->seqNum > squashed_num) { // Instructions marked as can WB are already committed. if (storeQueue[store_idx].canWB) { break; } DPRINTF(LSQUnit,"Store Instruction PC %#x squashed, " "idx:%i [sn:%lli]\n", storeQueue[store_idx].inst->readPC(), store_idx, storeQueue[store_idx].inst->seqNum); // I don't think this can happen. It should have been cleared // by the stalling load. if (isStalled() && storeQueue[store_idx].inst->seqNum == stallingStoreIsn) { panic("Is stalled should have been cleared by stalling load!\n"); stalled = false; stallingStoreIsn = 0; } // Clear the smart pointer to make sure it is decremented. storeQueue[store_idx].inst->setSquashed(); storeQueue[store_idx].inst = NULL; storeQueue[store_idx].canWB = 0; if (storeQueue[store_idx].req) { // There should not be a completion event if the store has // not yet committed. assert(!storeQueue[store_idx].req->completionEvent); } storeQueue[store_idx].req = NULL; --stores; // Inefficient! storeTail = store_idx; decrStIdx(store_idx); ++lsqSquashedStores; } } template void LSQUnit::completeStore(int store_idx) { assert(storeQueue[store_idx].inst); storeQueue[store_idx].completed = true; --storesToWB; // A bit conservative because a store completion may not free up entries, // but hopefully avoids two store completions in one cycle from making // the CPU tick twice. cpu->activityThisCycle(); if (store_idx == storeHead) { do { incrStIdx(storeHead); --stores; } while (storeQueue[storeHead].completed && storeHead != storeTail); iewStage->updateLSQNextCycle = true; } DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head " "idx:%i\n", storeQueue[store_idx].inst->seqNum, store_idx, storeHead); if (isStalled() && storeQueue[store_idx].inst->seqNum == stallingStoreIsn) { DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] " "load idx:%i\n", stallingStoreIsn, stallingLoadIdx); stalled = false; stallingStoreIsn = 0; iewStage->replayMemInst(loadQueue[stallingLoadIdx]); } storeQueue[store_idx].inst->setCompleted(); // Tell the checker we've completed this instruction. Some stores // may get reported twice to the checker, but the checker can // handle that case. if (cpu->checker) { cpu->checker->tick(storeQueue[store_idx].inst); } } template inline void LSQUnit::incrStIdx(int &store_idx) { if (++store_idx >= SQEntries) store_idx = 0; } template inline void LSQUnit::decrStIdx(int &store_idx) { if (--store_idx < 0) store_idx += SQEntries; } template inline void LSQUnit::incrLdIdx(int &load_idx) { if (++load_idx >= LQEntries) load_idx = 0; } template inline void LSQUnit::decrLdIdx(int &load_idx) { if (--load_idx < 0) load_idx += LQEntries; } template void LSQUnit::dumpInsts() { cprintf("Load store queue: Dumping instructions.\n"); cprintf("Load queue size: %i\n", loads); cprintf("Load queue: "); int load_idx = loadHead; while (load_idx != loadTail && loadQueue[load_idx]) { cprintf("%#x ", loadQueue[load_idx]->readPC()); incrLdIdx(load_idx); } cprintf("Store queue size: %i\n", stores); cprintf("Store queue: "); int store_idx = storeHead; while (store_idx != storeTail && storeQueue[store_idx].inst) { cprintf("%#x ", storeQueue[store_idx].inst->readPC()); incrStIdx(store_idx); } cprintf("\n"); }