/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @file * Tsunami I/O including PIC, PIT, RTC, DMA */ #include #include #include #include #include "base/trace.hh" #include "dev/tsunami_io.hh" #include "dev/tsunami.hh" #include "mem/bus/bus.hh" #include "mem/bus/pio_interface.hh" #include "mem/bus/pio_interface_impl.hh" #include "sim/builder.hh" #include "dev/tsunami_cchip.hh" #include "dev/tsunamireg.h" #include "dev/rtcreg.h" #include "mem/functional/memory_control.hh" using namespace std; #define UNIX_YEAR_OFFSET 52 // Timer Event for Periodic interrupt of RTC TsunamiIO::RTCEvent::RTCEvent(Tsunami* t, Tick i) : Event(&mainEventQueue), tsunami(t), interval(i) { DPRINTF(MC146818, "RTC Event Initilizing\n"); schedule(curTick + interval); } void TsunamiIO::RTCEvent::process() { DPRINTF(MC146818, "RTC Timer Interrupt\n"); schedule(curTick + interval); //Actually interrupt the processor here tsunami->cchip->postRTC(); } const char * TsunamiIO::RTCEvent::description() { return "tsunami RTC interrupt"; } void TsunamiIO::RTCEvent::serialize(std::ostream &os) { Tick time = when(); SERIALIZE_SCALAR(time); } void TsunamiIO::RTCEvent::unserialize(Checkpoint *cp, const std::string §ion) { Tick time; UNSERIALIZE_SCALAR(time); reschedule(time); } void TsunamiIO::RTCEvent::scheduleIntr() { schedule(curTick + interval); } // Timer Event for PIT Timers TsunamiIO::ClockEvent::ClockEvent() : Event(&mainEventQueue) { /* This is the PIT Tick Rate. A constant for the 8254 timer. The * Tsunami platform has one of these cycle counters on the Cypress * South Bridge and it is used by linux for estimating the cycle * frequency of the machine it is running on. --Ali */ interval = (Tick)(Clock::Float::s / 1193180.0); DPRINTF(Tsunami, "Clock Event Initilizing\n"); mode = 0; current_count = 0; latched_count = 0; latch_on = false; read_byte = READ_LSB; } void TsunamiIO::ClockEvent::process() { DPRINTF(Tsunami, "Timer Interrupt\n"); if (mode == 0) status = 0x20; // set bit that linux is looking for else if (mode == 2) schedule(curTick + current_count*interval); } void TsunamiIO::ClockEvent::Program(int count) { DPRINTF(Tsunami, "Timer set to curTick + %d\n", count * interval); schedule(curTick + count * interval); status = 0; current_count = (uint16_t)count; } const char * TsunamiIO::ClockEvent::description() { return "tsunami 8254 Interval timer"; } void TsunamiIO::ClockEvent::ChangeMode(uint8_t md) { mode = md; } uint8_t TsunamiIO::ClockEvent::Status() { return status; } void TsunamiIO::ClockEvent::LatchCount() { // behave like a real latch if(!latch_on) { latch_on = true; read_byte = READ_LSB; latched_count = current_count; } } uint8_t TsunamiIO::ClockEvent::Read() { uint8_t result = 0; if(latch_on) { switch (read_byte) { case READ_LSB: read_byte = READ_MSB; result = (uint8_t)latched_count; break; case READ_MSB: read_byte = READ_LSB; latch_on = false; result = latched_count >> 8; break; } } else { switch (read_byte) { case READ_LSB: read_byte = READ_MSB; result = (uint8_t)current_count; break; case READ_MSB: read_byte = READ_LSB; result = current_count >> 8; break; } } return result; } void TsunamiIO::ClockEvent::serialize(std::ostream &os) { Tick time = scheduled() ? when() : 0; SERIALIZE_SCALAR(time); SERIALIZE_SCALAR(status); SERIALIZE_SCALAR(mode); SERIALIZE_SCALAR(interval); } void TsunamiIO::ClockEvent::unserialize(Checkpoint *cp, const std::string §ion) { Tick time; UNSERIALIZE_SCALAR(time); UNSERIALIZE_SCALAR(status); UNSERIALIZE_SCALAR(mode); UNSERIALIZE_SCALAR(interval); if (time) schedule(time); } TsunamiIO::TsunamiIO(const string &name, Tsunami *t, time_t init_time, Addr a, MemoryController *mmu, HierParams *hier, Bus *bus, Tick pio_latency, Tick ci) : PioDevice(name, t), addr(a), clockInterval(ci), tsunami(t), rtc(t, ci) { mmu->add_child(this, RangeSize(addr, size)); if (bus) { pioInterface = newPioInterface(name, hier, bus, this, &TsunamiIO::cacheAccess); pioInterface->addAddrRange(RangeSize(addr, size)); pioLatency = pio_latency * bus->clockRate; } // set the back pointer from tsunami to myself tsunami->io = this; timerData = 0; set_time(init_time == 0 ? time(NULL) : init_time); uip = 1; picr = 0; picInterrupting = false; } Tick TsunamiIO::frequency() const { return Clock::Frequency / clockInterval; } void TsunamiIO::set_time(time_t t) { gmtime_r(&t, &tm); DPRINTFN("Real-time clock set to %s", asctime(&tm)); } Fault TsunamiIO::read(MemReqPtr &req, uint8_t *data) { DPRINTF(Tsunami, "io read va=%#x size=%d IOPorrt=%#x\n", req->vaddr, req->size, req->vaddr & 0xfff); Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask)); switch(req->size) { case sizeof(uint8_t): switch(daddr) { // PIC1 mask read case TSDEV_PIC1_MASK: *(uint8_t*)data = ~mask1; return No_Fault; case TSDEV_PIC2_MASK: *(uint8_t*)data = ~mask2; return No_Fault; case TSDEV_PIC1_ISR: // !!! If this is modified 64bit case needs to be too // Pal code has to do a 64 bit physical read because there is // no load physical byte instruction *(uint8_t*)data = picr; return No_Fault; case TSDEV_PIC2_ISR: // PIC2 not implemnted... just return 0 *(uint8_t*)data = 0x00; return No_Fault; case TSDEV_TMR_CTL: *(uint8_t*)data = timer2.Status(); return No_Fault; case TSDEV_TMR0_DATA: *(uint8_t *)data = timer0.Read(); return No_Fault; case TSDEV_RTC_DATA: switch(RTCAddress) { case RTC_CNTRL_REGA: *(uint8_t*)data = uip << 7 | RTCA_32768HZ | RTCA_1024HZ; uip = !uip; return No_Fault; case RTC_CNTRL_REGB: // DM and 24/12 and UIE *(uint8_t*)data = RTCB_PRDC_IE | RTCB_BIN | RTCB_24HR; return No_Fault; case RTC_CNTRL_REGC: // If we want to support RTC user access in linux // This won't work, but for now it's fine *(uint8_t*)data = 0x00; return No_Fault; case RTC_CNTRL_REGD: panic("RTC Control Register D not implemented"); case RTC_SEC_ALRM: case RTC_MIN_ALRM: case RTC_HR_ALRM: // RTC alarm functionality is not currently implemented *(uint8_t *)data = 0x00; return No_Fault; case RTC_SEC: *(uint8_t *)data = tm.tm_sec; return No_Fault; case RTC_MIN: *(uint8_t *)data = tm.tm_min; return No_Fault; case RTC_HR: *(uint8_t *)data = tm.tm_hour; return No_Fault; case RTC_DOW: *(uint8_t *)data = tm.tm_wday + 1; return No_Fault; case RTC_DOM: *(uint8_t *)data = tm.tm_mday; return No_Fault; case RTC_MON: *(uint8_t *)data = tm.tm_mon + 1; return No_Fault; case RTC_YEAR: *(uint8_t *)data = tm.tm_year; return No_Fault; default: panic("Unknown RTC Address\n"); } default: panic("I/O Read - va%#x size %d\n", req->vaddr, req->size); } case sizeof(uint16_t): case sizeof(uint32_t): panic("I/O Read - invalid size - va %#x size %d\n", req->vaddr, req->size); case sizeof(uint64_t): switch(daddr) { case TSDEV_PIC1_ISR: // !!! If this is modified 8bit case needs to be too // Pal code has to do a 64 bit physical read because there is // no load physical byte instruction *(uint64_t*)data = (uint64_t)picr; return No_Fault; default: panic("I/O Read - invalid size - va %#x size %d\n", req->vaddr, req->size); } default: panic("I/O Read - invalid size - va %#x size %d\n", req->vaddr, req->size); } panic("I/O Read - va%#x size %d\n", req->vaddr, req->size); return No_Fault; } Fault TsunamiIO::write(MemReqPtr &req, const uint8_t *data) { #if TRACING_ON uint8_t dt = *(uint8_t*)data; uint64_t dt64 = dt; #endif DPRINTF(Tsunami, "io write - va=%#x size=%d IOPort=%#x Data=%#x\n", req->vaddr, req->size, req->vaddr & 0xfff, dt64); Addr daddr = (req->paddr - (addr & EV5::PAddrImplMask)); switch(req->size) { case sizeof(uint8_t): switch(daddr) { case TSDEV_PIC1_MASK: mask1 = ~(*(uint8_t*)data); if ((picr & mask1) && !picInterrupting) { picInterrupting = true; tsunami->cchip->postDRIR(55); DPRINTF(Tsunami, "posting pic interrupt to cchip\n"); } if ((!(picr & mask1)) && picInterrupting) { picInterrupting = false; tsunami->cchip->clearDRIR(55); DPRINTF(Tsunami, "clearing pic interrupt\n"); } return No_Fault; case TSDEV_PIC2_MASK: mask2 = *(uint8_t*)data; //PIC2 Not implemented to interrupt return No_Fault; case TSDEV_PIC1_ACK: // clear the interrupt on the PIC picr &= ~(1 << (*(uint8_t*)data & 0xF)); if (!(picr & mask1)) tsunami->cchip->clearDRIR(55); return No_Fault; case TSDEV_PIC2_ACK: return No_Fault; case TSDEV_DMA1_RESET: return No_Fault; case TSDEV_DMA2_RESET: return No_Fault; case TSDEV_DMA1_MODE: mode1 = *(uint8_t*)data; return No_Fault; case TSDEV_DMA2_MODE: mode2 = *(uint8_t*)data; return No_Fault; case TSDEV_DMA1_MASK: case TSDEV_DMA2_MASK: return No_Fault; case TSDEV_TMR_CTL: return No_Fault; case TSDEV_TMR2_CTL: switch((*(uint8_t*)data >> 4) & 0x3) { case 0x0: switch(*(uint8_t*)data >> 6) { case 0: timer0.LatchCount(); return No_Fault; case 2: timer2.LatchCount(); return No_Fault; default: panic("Read Back Command not implemented\n"); } break; case 0x3: break; default: panic("Only L/M write and Counter-Latch read supported\n"); } switch(*(uint8_t*)data >> 6) { case 0: timer0.ChangeMode((*(uint8_t*)data & 0xF) >> 1); break; case 2: timer2.ChangeMode((*(uint8_t*)data & 0xF) >> 1); break; default: panic("Read Back Command not implemented\n"); } return No_Fault; case TSDEV_TMR2_DATA: /* two writes before we actually start the Timer so I set a flag in the timerData */ if(timerData & 0x1000) { timerData &= 0x1000; timerData += *(uint8_t*)data << 8; timer2.Program(timerData); } else { timerData = *(uint8_t*)data; timerData |= 0x1000; } return No_Fault; case TSDEV_TMR0_DATA: /* two writes before we actually start the Timer so I set a flag in the timerData */ if(timerData & 0x1000) { timerData &= ~0x1000; timerData += *(uint8_t*)data << 8; timer0.Program(timerData); timerData = 0; } else { timerData = *(uint8_t*)data; timerData |= 0x1000; } return No_Fault; case TSDEV_RTC_ADDR: RTCAddress = *(uint8_t*)data; return No_Fault; case TSDEV_KBD: return No_Fault; case TSDEV_RTC_DATA: switch(RTCAddress) { case RTC_CNTRL_REGA: if (*data != (RTCA_32768HZ | RTCA_1024HZ)) panic("Unimplemented RTC register A value write!\n"); return No_Fault; case RTC_CNTRL_REGB: if ((*data & ~(RTCB_PRDC_IE | RTCB_SQWE)) != (RTCB_BIN | RTCB_24HR)) panic("Write to RTC reg B bits that are not implemented!\n"); if (*data & RTCB_PRDC_IE) { if (!rtc.scheduled()) rtc.scheduleIntr(); } else { if (rtc.scheduled()) rtc.deschedule(); } return No_Fault; case RTC_CNTRL_REGC: panic("Write to RTC reg C not implemented!\n"); return No_Fault; case RTC_CNTRL_REGD: panic("Write to RTC reg D not implemented!\n"); return No_Fault; case RTC_SEC: tm.tm_sec = *(uint8_t *)data; return No_Fault; case RTC_MIN: tm.tm_min = *(uint8_t *)data; return No_Fault; case RTC_HR: tm.tm_hour = *(uint8_t *)data; return No_Fault; case RTC_DOW: tm.tm_wday = *(uint8_t *)data; return No_Fault; case RTC_DOM: tm.tm_mday = *(uint8_t *)data; return No_Fault; case RTC_MON: tm.tm_mon = *(uint8_t *)data; return No_Fault; case RTC_YEAR: tm.tm_year = *(uint8_t *)data; return No_Fault; } default: panic("I/O Write - va%#x size %d\n", req->vaddr, req->size); } case sizeof(uint16_t): case sizeof(uint32_t): case sizeof(uint64_t): default: panic("I/O Write - invalid size - va %#x size %d\n", req->vaddr, req->size); } return No_Fault; } void TsunamiIO::postPIC(uint8_t bitvector) { //PIC2 Is not implemented, because nothing of interest there picr |= bitvector; if (picr & mask1) { tsunami->cchip->postDRIR(55); DPRINTF(Tsunami, "posting pic interrupt to cchip\n"); } } void TsunamiIO::clearPIC(uint8_t bitvector) { //PIC2 Is not implemented, because nothing of interest there picr &= ~bitvector; if (!(picr & mask1)) { tsunami->cchip->clearDRIR(55); DPRINTF(Tsunami, "clearing pic interrupt to cchip\n"); } } Tick TsunamiIO::cacheAccess(MemReqPtr &req) { return curTick + pioLatency; } void TsunamiIO::serialize(std::ostream &os) { SERIALIZE_SCALAR(timerData); SERIALIZE_SCALAR(uip); SERIALIZE_SCALAR(mask1); SERIALIZE_SCALAR(mask2); SERIALIZE_SCALAR(mode1); SERIALIZE_SCALAR(mode2); SERIALIZE_SCALAR(picr); SERIALIZE_SCALAR(picInterrupting); SERIALIZE_SCALAR(RTCAddress); // Serialize the timers nameOut(os, csprintf("%s.timer0", name())); timer0.serialize(os); nameOut(os, csprintf("%s.timer2", name())); timer2.serialize(os); nameOut(os, csprintf("%s.rtc", name())); rtc.serialize(os); } void TsunamiIO::unserialize(Checkpoint *cp, const std::string §ion) { UNSERIALIZE_SCALAR(timerData); UNSERIALIZE_SCALAR(uip); UNSERIALIZE_SCALAR(mask1); UNSERIALIZE_SCALAR(mask2); UNSERIALIZE_SCALAR(mode1); UNSERIALIZE_SCALAR(mode2); UNSERIALIZE_SCALAR(picr); UNSERIALIZE_SCALAR(picInterrupting); UNSERIALIZE_SCALAR(RTCAddress); // Unserialize the timers timer0.unserialize(cp, csprintf("%s.timer0", section)); timer2.unserialize(cp, csprintf("%s.timer2", section)); rtc.unserialize(cp, csprintf("%s.rtc", section)); } BEGIN_DECLARE_SIM_OBJECT_PARAMS(TsunamiIO) SimObjectParam tsunami; Param time; SimObjectParam mmu; Param addr; SimObjectParam io_bus; Param pio_latency; SimObjectParam hier; Param frequency; END_DECLARE_SIM_OBJECT_PARAMS(TsunamiIO) BEGIN_INIT_SIM_OBJECT_PARAMS(TsunamiIO) INIT_PARAM(tsunami, "Tsunami"), INIT_PARAM(time, "System time to use (0 for actual time"), INIT_PARAM(mmu, "Memory Controller"), INIT_PARAM(addr, "Device Address"), INIT_PARAM_DFLT(io_bus, "The IO Bus to attach to", NULL), INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1), INIT_PARAM_DFLT(hier, "Hierarchy global variables", &defaultHierParams), INIT_PARAM(frequency, "clock interrupt frequency") END_INIT_SIM_OBJECT_PARAMS(TsunamiIO) CREATE_SIM_OBJECT(TsunamiIO) { return new TsunamiIO(getInstanceName(), tsunami, time, addr, mmu, hier, io_bus, pio_latency, frequency); } REGISTER_SIM_OBJECT("TsunamiIO", TsunamiIO)