/* * Copyright (c) 2012-2014, TU Delft * Copyright (c) 2012-2014, TU Eindhoven * Copyright (c) 2012-2014, TU Kaiserslautern * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Karthik Chandrasekar, * Matthias Jung, * Omar Naji, * Sven Goossens, * Éder F. Zulian * Subash Kannoth * Felipe S. Prado * */ #include #include #include #include "CommandAnalysis.h" #include "CmdScheduler.h" using namespace Data; using namespace std; bool commandSorter(const MemCommand& i, const MemCommand& j) { if (i.getTimeInt64() == j.getTimeInt64()) { return i.getType() == MemCommand::PRE && j.getType() != MemCommand::PRE; } else { return i.getTimeInt64() < j.getTimeInt64(); } } CommandAnalysis::CommandAnalysis(const Data::MemorySpecification& memSpec) : memSpec(memSpec) { auto &nBanks = memSpec.memArchSpec.nbrOfBanks; // Initializing all counters and variables numberofactsBanks.assign(static_cast(nBanks), 0); numberofpresBanks.assign(static_cast(nBanks), 0); numberofreadsBanks.assign(static_cast(nBanks), 0); numberofwritesBanks.assign(static_cast(nBanks), 0); actcyclesBanks.assign(static_cast(nBanks), 0); numberofrefbBanks.assign(static_cast(nBanks), 0); first_act_cycle_banks.resize(static_cast(nBanks), 0); clearStats(0); zero = 0; bank_state.resize(static_cast(nBanks), BANK_PRECHARGED); last_bank_state.resize(static_cast(nBanks), BANK_PRECHARGED); mem_state = MS_NOT_IN_PD; cmd_list.clear(); cached_cmd.clear(); activation_cycle.resize(static_cast(nBanks), 0); num_banks = nBanks; } // function to clear counters void CommandAnalysis::clearStats(const int64_t timestamp) { std::fill(numberofactsBanks.begin(), numberofactsBanks.end(), 0); std::fill(numberofpresBanks.begin(), numberofpresBanks.end(), 0); std::fill(numberofreadsBanks.begin(), numberofreadsBanks.end(), 0); std::fill(numberofwritesBanks.begin(), numberofwritesBanks.end(), 0); std::fill(actcyclesBanks.begin(), actcyclesBanks.end(), 0); numberofrefs = 0; f_act_pdns = 0; s_act_pdns = 0; f_pre_pdns = 0; s_pre_pdns = 0; numberofsrefs = 0; actcycles = 0; precycles = 0; f_act_pdcycles = 0; s_act_pdcycles = 0; f_pre_pdcycles = 0; s_pre_pdcycles = 0; pup_act_cycles = 0; pup_pre_cycles = 0; sref_cycles = 0; spup_cycles = 0; sref_ref_act_cycles = 0; sref_ref_pre_cycles = 0; spup_ref_act_cycles = 0; spup_ref_pre_cycles = 0; idlecycles_act = 0; idlecycles_pre = 0; // reset count references to timestamp so that they are moved // to start of next stats generation std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp); first_act_cycle = timestamp; pdn_cycle = timestamp; sref_cycle_window = timestamp; end_act_op = timestamp; end_read_op = timestamp; end_write_op = timestamp; latest_read_cycle = -1; latest_write_cycle = -1; if (timestamp == 0) { latest_pre_cycle = -1; latest_act_cycle = -1; sref_cycle = 0; last_pre_cycle = 0; sref_ref_act_cycles_window = 0; sref_ref_pre_cycles_window = 0; } else { last_pre_cycle = max(timestamp,last_pre_cycle); latest_pre_cycle = max(timestamp, latest_pre_cycle); if (latest_act_cycle < timestamp) latest_act_cycle = -1; } } // function to clear all arrays void CommandAnalysis::clear() { cached_cmd.clear(); cmd_list.clear(); last_bank_state.clear(); bank_state.clear(); } // Reads through the trace file, identifies the timestamp, command and bank // If the issued command includes an auto-precharge, adds an explicit // precharge to a cached command list and computes the precharge offset from the // issued command timestamp, when the auto-precharge would kick in void CommandAnalysis::getCommands(std::vector& list, bool lastupdate, int64_t timestamp) { if (!next_window_cmd_list.empty()) { list.insert(list.begin(), next_window_cmd_list.begin(), next_window_cmd_list.end()); next_window_cmd_list.clear(); } for (size_t i = 0; i < list.size(); ++i) { MemCommand& cmd = list[i]; MemCommand::cmds cmdType = cmd.getType(); if (cmdType == MemCommand::ACT) { activation_cycle[cmd.getBank()] = cmd.getTimeInt64(); } else if (cmdType == MemCommand::RDA || cmdType == MemCommand::WRA) { // Remove auto-precharge flag from command cmd.setType(cmd.typeWithoutAutoPrechargeFlag()); // Add the auto precharge to the list of cached_cmds int64_t preTime = max(cmd.getTimeInt64() + cmd.getPrechargeOffset(memSpec, cmdType), activation_cycle[cmd.getBank()] + memSpec.memTimingSpec.RAS); list.push_back(MemCommand(MemCommand::PRE, cmd.getBank(), preTime)); } if (!lastupdate && timestamp > 0) { if(cmd.getTimeInt64() > timestamp) { MemCommand nextWindowCmd = list[i]; next_window_cmd_list.push_back(nextWindowCmd); list.erase(find(list.begin(), list.end(), cmd)); } } } sort(list.begin(), list.end(), commandSorter); if (lastupdate && list.empty() == false) { // Add cycles at the end of the list int64_t t = timeToCompletion(list.back().getType()) + list.back().getTimeInt64() - 1; list.push_back(MemCommand(MemCommand::NOP, 0, t)); } evaluateCommands(list); } // CommandAnalysis::getCommands // Used to analyse a given list of commands and identify command timings // and memory state transitions void CommandAnalysis::evaluateCommands(vector& cmd_list) { // for each command identify timestamp, type and bank for (auto cmd : cmd_list) { // For command type int type = cmd.getType(); // For command bank unsigned bank = cmd.getBank(); // Command Issue timestamp in clock cycles (cc) int64_t timestamp = cmd.getTimeInt64(); if (type == MemCommand::ACT) { handleAct(bank, timestamp); } else if (type == MemCommand::RD) { handleRd(bank, timestamp); } else if (type == MemCommand::WR) { handleWr(bank, timestamp); } else if (type == MemCommand::REF) { handleRef(bank, timestamp); } else if (type == MemCommand::REFB) { handleRefB(bank, timestamp); } else if (type == MemCommand::PRE) { handlePre(bank, timestamp); } else if (type == MemCommand::PREA) { handlePreA(bank, timestamp); } else if (type == MemCommand::PDN_F_ACT) { handlePdnFAct(bank, timestamp); } else if (type == MemCommand::PDN_S_ACT) { handlePdnSAct(bank, timestamp); } else if (type == MemCommand::PDN_F_PRE) { handlePdnFPre(bank, timestamp); } else if (type == MemCommand::PDN_S_PRE) { handlePdnSPre(bank, timestamp); } else if (type == MemCommand::PUP_ACT) { handlePupAct(timestamp); } else if (type == MemCommand::PUP_PRE) { handlePupPre(timestamp); } else if (type == MemCommand::SREN) { handleSREn(bank, timestamp); } else if (type == MemCommand::SREX) { handleSREx(bank, timestamp); } else if (type == MemCommand::END || type == MemCommand::NOP) { handleNopEnd(timestamp); } else { printWarning("Unknown command given, exiting.", type, timestamp, bank); exit(-1); } } } // CommandAnalysis::evaluateCommands // To update idle period information whenever active cycles may be idle void CommandAnalysis::idle_act_update(int64_t latest_read_cycle, int64_t latest_write_cycle, int64_t latest_act_cycle, int64_t timestamp) { if (latest_read_cycle >= 0) { end_read_op = latest_read_cycle + timeToCompletion(MemCommand::RD) - 1; } if (latest_write_cycle >= 0) { end_write_op = latest_write_cycle + timeToCompletion(MemCommand::WR) - 1; } if (latest_act_cycle >= 0) { end_act_op = latest_act_cycle + timeToCompletion(MemCommand::ACT) - 1; } idlecycles_act += max(zero, timestamp - max(max(end_read_op, end_write_op), end_act_op)); } // CommandAnalysis::idle_act_update // To update idle period information whenever precharged cycles may be idle void CommandAnalysis::idle_pre_update(int64_t timestamp, int64_t latest_pre_cycle) { if (latest_pre_cycle > 0) { idlecycles_pre += max(zero, timestamp - latest_pre_cycle - memSpec.memTimingSpec.RP); } else if (latest_pre_cycle == 0) { idlecycles_pre += max(zero, timestamp - latest_pre_cycle); } }