/* * Copyright (c) 2012-2014, TU Delft * Copyright (c) 2012-2014, TU Eindhoven * Copyright (c) 2012-2014, TU Kaiserslautern * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji * */ #include "MemoryPowerModel.h" #include // For pow #include using namespace std; using namespace Data; // Calculate energy and average power consumption for the given command trace void MemoryPowerModel::power_calc(MemorySpecification memSpec, const CommandAnalysis& counters, int term) { MemTimingSpec& t = memSpec.memTimingSpec; MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; MemPowerSpec& mps = memSpec.memPowerSpec; energy.act_energy = 0.0; energy.pre_energy = 0.0; energy.read_energy = 0.0; energy.write_energy = 0.0; energy.ref_energy = 0.0; energy.act_stdby_energy = 0.0; energy.pre_stdby_energy = 0.0; energy.idle_energy_act = 0.0; energy.idle_energy_pre = 0.0; energy.total_energy = 0.0; energy.f_act_pd_energy = 0.0; energy.f_pre_pd_energy = 0.0; energy.s_act_pd_energy = 0.0; energy.s_pre_pd_energy = 0.0; energy.sref_energy = 0.0; energy.sref_ref_energy = 0.0; energy.sref_ref_act_energy = 0.0; energy.sref_ref_pre_energy = 0.0; energy.spup_energy = 0.0; energy.spup_ref_energy = 0.0; energy.spup_ref_act_energy = 0.0; energy.spup_ref_pre_energy = 0.0; energy.pup_act_energy = 0.0; energy.pup_pre_energy = 0.0; power.IO_power = 0.0; power.WR_ODT_power = 0.0; power.TermRD_power = 0.0; power.TermWR_power = 0.0; energy.read_io_energy = 0.0; energy.write_term_energy = 0.0; energy.read_oterm_energy = 0.0; energy.write_oterm_energy = 0.0; energy.io_term_energy = 0.0; // How long a single burst takes, measured in command-clock cycles. int64_t burstCc = memArchSpec.burstLength / memArchSpec.dataRate; // IO and Termination Power measures are included, if required. if (term) { io_term_power(memSpec); // memArchSpec.width represents the number of data (dq) pins. // 1 DQS pin is associated with every data byte int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8; // 1 DQS and 1 DM pin is associated with every data byte int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8; // Size of one clock period for the data bus. double ddrPeriod = t.clkPeriod / memArchSpec.dataRate; // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin energy.read_io_energy = calcIoTermEnergy(counters.numberofreads * memArchSpec.burstLength, ddrPeriod, power.IO_power, dqPlusDqsBits); // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM energy.write_term_energy = calcIoTermEnergy(counters.numberofwrites * memArchSpec.burstLength, ddrPeriod, power.WR_ODT_power, dqPlusDqsPlusMaskBits); if (memArchSpec.nbrOfRanks > 1) { // Termination power consumed in the idle rank during reads on the active // rank by each DQ (data) and DQS (data strobe) pin. energy.read_oterm_energy = calcIoTermEnergy(counters.numberofreads * memArchSpec.burstLength, ddrPeriod, power.TermRD_power, dqPlusDqsBits); // Termination power consumed in the idle rank during writes on the active // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin. energy.write_oterm_energy = calcIoTermEnergy(counters.numberofwrites * memArchSpec.burstLength, ddrPeriod, power.TermWR_power, dqPlusDqsPlusMaskBits); } // Sum of all IO and termination energy energy.io_term_energy = energy.read_io_energy + energy.write_term_energy + energy.read_oterm_energy + energy.write_oterm_energy; } total_cycles = counters.actcycles + counters.precycles + counters.f_act_pdcycles + counters.f_pre_pdcycles + counters.s_act_pdcycles + counters.s_pre_pdcycles + counters.sref_cycles + counters.sref_ref_act_cycles + counters.sref_ref_pre_cycles + counters.spup_ref_act_cycles + counters.spup_ref_pre_cycles; EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod); energy.act_energy = vdd0Domain.calcTivEnergy(counters.numberofacts * t.RAS , mps.idd0 - mps.idd3n); energy.pre_energy = vdd0Domain.calcTivEnergy(counters.numberofpres * (t.RC - t.RAS) , mps.idd0 - mps.idd2n); energy.read_energy = vdd0Domain.calcTivEnergy(counters.numberofreads * burstCc , mps.idd4r - mps.idd3n); energy.write_energy = vdd0Domain.calcTivEnergy(counters.numberofwrites * burstCc , mps.idd4w - mps.idd3n); energy.ref_energy = vdd0Domain.calcTivEnergy(counters.numberofrefs * t.RFC , mps.idd5 - mps.idd3n); energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(counters.precycles, mps.idd2n); energy.act_stdby_energy = vdd0Domain.calcTivEnergy(counters.actcycles, mps.idd3n); // Idle energy in the active standby clock cycles energy.idle_energy_act = vdd0Domain.calcTivEnergy(counters.idlecycles_act, mps.idd3n); // Idle energy in the precharge standby clock cycles energy.idle_energy_pre = vdd0Domain.calcTivEnergy(counters.idlecycles_pre, mps.idd2n); // fast-exit active power-down cycles energy energy.f_act_pd_energy = vdd0Domain.calcTivEnergy(counters.f_act_pdcycles, mps.idd3p1); // fast-exit precharged power-down cycles energy energy.f_pre_pd_energy = vdd0Domain.calcTivEnergy(counters.f_pre_pdcycles, mps.idd2p1); // slow-exit active power-down cycles energy energy.s_act_pd_energy = vdd0Domain.calcTivEnergy(counters.s_act_pdcycles, mps.idd3p0); // slow-exit precharged power-down cycles energy energy.s_pre_pd_energy = vdd0Domain.calcTivEnergy(counters.s_pre_pdcycles, mps.idd2p0); // self-refresh cycles energy including a refresh per self-refresh entry energy.sref_energy = engy_sref(mps.idd6, mps.idd3n, mps.idd5, mps.vdd, static_cast(counters.sref_cycles), static_cast(counters.sref_ref_act_cycles), static_cast(counters.sref_ref_pre_cycles), static_cast(counters.spup_ref_act_cycles), static_cast(counters.spup_ref_pre_cycles), t.clkPeriod); // background energy during active auto-refresh cycles in self-refresh energy.sref_ref_act_energy = vdd0Domain.calcTivEnergy(counters.sref_ref_act_cycles, mps.idd3p0); // background energy during precharged auto-refresh cycles in self-refresh energy.sref_ref_pre_energy = vdd0Domain.calcTivEnergy(counters.sref_ref_pre_cycles, mps.idd2p0); // background energy during active auto-refresh cycles in self-refresh exit energy.spup_ref_act_energy = vdd0Domain.calcTivEnergy(counters.spup_ref_act_cycles, mps.idd3n); // background energy during precharged auto-refresh cycles in self-refresh exit energy.spup_ref_pre_energy = vdd0Domain.calcTivEnergy(counters.spup_ref_pre_cycles, mps.idd2n); // self-refresh power-up cycles energy -- included energy.spup_energy = vdd0Domain.calcTivEnergy(counters.spup_cycles, mps.idd2n); // active power-up cycles energy - same as active standby -- included energy.pup_act_energy = vdd0Domain.calcTivEnergy(counters.pup_act_cycles, mps.idd3n); // precharged power-up cycles energy - same as precharged standby -- included energy.pup_pre_energy = vdd0Domain.calcTivEnergy(counters.pup_pre_cycles, mps.idd2n); // similar equations as before to support multiple voltage domains in LPDDR2 // and WIDEIO memories if (memArchSpec.twoVoltageDomains) { EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod); energy.act_energy += vdd2Domain.calcTivEnergy(counters.numberofacts * t.RAS , mps.idd02 - mps.idd3n2); energy.pre_energy += vdd2Domain.calcTivEnergy(counters.numberofpres * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2); energy.read_energy += vdd2Domain.calcTivEnergy(counters.numberofreads * burstCc , mps.idd4r2 - mps.idd3n2); energy.write_energy += vdd2Domain.calcTivEnergy(counters.numberofwrites * burstCc , mps.idd4w2 - mps.idd3n2); energy.ref_energy += vdd2Domain.calcTivEnergy(counters.numberofrefs * t.RFC , mps.idd52 - mps.idd3n2); energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(counters.precycles, mps.idd2n2); energy.act_stdby_energy += vdd2Domain.calcTivEnergy(counters.actcycles, mps.idd3n2); // Idle energy in the active standby clock cycles energy.idle_energy_act += vdd2Domain.calcTivEnergy(counters.idlecycles_act, mps.idd3n2); // Idle energy in the precharge standby clock cycles energy.idle_energy_pre += vdd2Domain.calcTivEnergy(counters.idlecycles_pre, mps.idd2n2); // fast-exit active power-down cycles energy energy.f_act_pd_energy += vdd2Domain.calcTivEnergy(counters.f_act_pdcycles, mps.idd3p12); // fast-exit precharged power-down cycles energy energy.f_pre_pd_energy += vdd2Domain.calcTivEnergy(counters.f_pre_pdcycles, mps.idd2p12); // slow-exit active power-down cycles energy energy.s_act_pd_energy += vdd2Domain.calcTivEnergy(counters.s_act_pdcycles, mps.idd3p02); // slow-exit precharged power-down cycles energy energy.s_pre_pd_energy += vdd2Domain.calcTivEnergy(counters.s_pre_pdcycles, mps.idd2p02); energy.sref_energy += engy_sref(mps.idd62, mps.idd3n2, mps.idd52, mps.vdd2, static_cast(counters.sref_cycles), static_cast(counters.sref_ref_act_cycles), static_cast(counters.sref_ref_pre_cycles), static_cast(counters.spup_ref_act_cycles), static_cast(counters.spup_ref_pre_cycles), t.clkPeriod); // background energy during active auto-refresh cycles in self-refresh energy.sref_ref_act_energy += vdd2Domain.calcTivEnergy(counters.sref_ref_act_cycles, mps.idd3p02); // background energy during precharged auto-refresh cycles in self-refresh energy.sref_ref_pre_energy += vdd2Domain.calcTivEnergy(counters.sref_ref_pre_cycles, mps.idd2p02); // background energy during active auto-refresh cycles in self-refresh exit energy.spup_ref_act_energy += vdd2Domain.calcTivEnergy(counters.spup_ref_act_cycles, mps.idd3n2); // background energy during precharged auto-refresh cycles in self-refresh exit energy.spup_ref_pre_energy += vdd2Domain.calcTivEnergy(counters.spup_ref_pre_cycles, mps.idd2n2); // self-refresh power-up cycles energy -- included energy.spup_energy += vdd2Domain.calcTivEnergy(counters.spup_cycles, mps.idd2n2); // active power-up cycles energy - same as active standby -- included energy.pup_act_energy += vdd2Domain.calcTivEnergy(counters.pup_act_cycles, mps.idd3n2); // precharged power-up cycles energy - same as precharged standby -- included energy.pup_pre_energy += vdd2Domain.calcTivEnergy(counters.pup_pre_cycles, mps.idd2n2); } // auto-refresh energy during self-refresh cycles energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy; // auto-refresh energy during self-refresh exit cycles energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy; // adding all energy components for the active rank and all background and idle // energy components for both ranks (in a dual-rank system) energy.total_energy = energy.act_energy + energy.pre_energy + energy.read_energy + energy.write_energy + energy.ref_energy + energy.io_term_energy + memArchSpec.nbrOfRanks * (energy.act_stdby_energy + energy.pre_stdby_energy + energy.sref_energy + energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy + energy.sref_ref_energy + energy.spup_ref_energy); // Calculate the average power consumption power.average_power = energy.total_energy / (static_cast(total_cycles) * t.clkPeriod); } // MemoryPowerModel::power_calc void MemoryPowerModel::power_print(MemorySpecification memSpec, int term, const CommandAnalysis& counters) const { MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; cout.precision(0); cout << "* Trace Details:" << endl; cout << "Number of Activates: " << fixed << counters.numberofacts << endl; cout << "Number of Reads: " << counters.numberofreads << endl; cout << "Number of Writes: " << counters.numberofwrites << endl; cout << "Number of Precharges: " << counters.numberofpres << endl; cout << "Number of Refreshes: " << counters.numberofrefs << endl; cout << "Number of Active Cycles: " << counters.actcycles << endl; cout << " Number of Active Idle Cycles: " << counters.idlecycles_act << endl; cout << " Number of Active Power-Up Cycles: " << counters.pup_act_cycles << endl; cout << " Number of Auto-Refresh Active cycles during Self-Refresh " << "Power-Up: " << counters.spup_ref_act_cycles << endl; cout << "Number of Precharged Cycles: " << counters.precycles << endl; cout << " Number of Precharged Idle Cycles: " << counters.idlecycles_pre << endl; cout << " Number of Precharged Power-Up Cycles: " << counters.pup_pre_cycles << endl; cout << " Number of Auto-Refresh Precharged cycles during Self-Refresh" << " Power-Up: " << counters.spup_ref_pre_cycles << endl; cout << " Number of Self-Refresh Power-Up Cycles: " << counters.spup_cycles << endl; cout << "Total Idle Cycles (Active + Precharged): " << counters.idlecycles_act + counters.idlecycles_pre << endl; cout << "Number of Power-Downs: " << counters.f_act_pdns + counters.s_act_pdns + counters.f_pre_pdns + counters.s_pre_pdns << endl; cout << " Number of Active Fast-exit Power-Downs: " << counters.f_act_pdns << endl; cout << " Number of Active Slow-exit Power-Downs: " << counters.s_act_pdns << endl; cout << " Number of Precharged Fast-exit Power-Downs: " << counters.f_pre_pdns << endl; cout << " Number of Precharged Slow-exit Power-Downs: " << counters.s_pre_pdns << endl; cout << "Number of Power-Down Cycles: " << counters.f_act_pdcycles + counters.s_act_pdcycles + counters.f_pre_pdcycles + counters.s_pre_pdcycles << endl; cout << " Number of Active Fast-exit Power-Down Cycles: " << counters.f_act_pdcycles << endl; cout << " Number of Active Slow-exit Power-Down Cycles: " << counters.s_act_pdcycles << endl; cout << " Number of Auto-Refresh Active cycles during Self-Refresh: " << counters.sref_ref_act_cycles << endl; cout << " Number of Precharged Fast-exit Power-Down Cycles: " << counters.f_pre_pdcycles << endl; cout << " Number of Precharged Slow-exit Power-Down Cycles: " << counters.s_pre_pdcycles << endl; cout << " Number of Auto-Refresh Precharged cycles during Self-Refresh: " << counters.sref_ref_pre_cycles << endl; cout << "Number of Auto-Refresh Cycles: " << counters.numberofrefs * memTimingSpec.RFC << endl; cout << "Number of Self-Refreshes: " << counters.numberofsrefs << endl; cout << "Number of Self-Refresh Cycles: " << counters.sref_cycles << endl; cout << "----------------------------------------" << endl; cout << "Total Trace Length (clock cycles): " << total_cycles << endl; cout << "----------------------------------------" << endl; cout.precision(2); cout << "\n* Trace Power and Energy Estimates:" << endl; cout << "ACT Cmd Energy: " << energy.act_energy << " pJ" << endl; cout << "PRE Cmd Energy: " << energy.pre_energy << " pJ" << endl; cout << "RD Cmd Energy: " << energy.read_energy << " pJ" << endl; cout << "WR Cmd Energy: " << energy.write_energy << " pJ" << endl; if (term) { cout << "RD I/O Energy: " << energy.read_io_energy << " pJ" << endl; // No Termination for LPDDR/2/3 and DDR memories if (memSpec.memArchSpec.termination) { cout << "WR Termination Energy: " << energy.write_term_energy << " pJ" << endl; } if ((memArchSpec.nbrOfRanks > 1) && memSpec.memArchSpec.termination) { cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << " pJ" << endl; cout << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << " pJ" << endl; } } cout << "ACT Stdby Energy: " << memArchSpec.nbrOfRanks * energy.act_stdby_energy << " pJ" << endl; cout << " Active Idle Energy: " << memArchSpec.nbrOfRanks * energy.idle_energy_act << " pJ" << endl; cout << " Active Power-Up Energy: " << memArchSpec.nbrOfRanks * energy.pup_act_energy << " pJ" << endl; cout << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh" << " Power-Up: " << memArchSpec.nbrOfRanks * energy.spup_ref_act_energy << " pJ" << endl; cout << "PRE Stdby Energy: " << memArchSpec.nbrOfRanks * energy.pre_stdby_energy << " pJ" << endl; cout << " Precharge Idle Energy: " << memArchSpec.nbrOfRanks * energy.idle_energy_pre << " pJ" << endl; cout << " Precharged Power-Up Energy: " << memArchSpec.nbrOfRanks * energy.pup_pre_energy << " pJ" << endl; cout << " Precharge Stdby Energy during Auto-Refresh cycles " << "in Self-Refresh Power-Up: " << memArchSpec.nbrOfRanks * energy.spup_ref_pre_energy << " pJ" << endl; cout << " Self-Refresh Power-Up Energy: " << memArchSpec.nbrOfRanks * energy.spup_energy << " pJ" << endl; cout << "Total Idle Energy (Active + Precharged): " << memArchSpec.nbrOfRanks * (energy.idle_energy_act + energy.idle_energy_pre) << " pJ" << endl; cout << "Total Power-Down Energy: " << memArchSpec.nbrOfRanks * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << " pJ" << endl; cout << " Fast-Exit Active Power-Down Energy: " << memArchSpec.nbrOfRanks * energy.f_act_pd_energy << " pJ" << endl; cout << " Slow-Exit Active Power-Down Energy: " << memArchSpec.nbrOfRanks * energy.s_act_pd_energy << " pJ" << endl; cout << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles " << "in Self-Refresh: " << memArchSpec.nbrOfRanks * energy.sref_ref_act_energy << " pJ" << endl; cout << " Fast-Exit Precharged Power-Down Energy: " << memArchSpec.nbrOfRanks * energy.f_pre_pd_energy << " pJ" << endl; cout << " Slow-Exit Precharged Power-Down Energy: " << memArchSpec.nbrOfRanks * energy.s_pre_pd_energy << " pJ" << endl; cout << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh " << "cycles in Self-Refresh: " << memArchSpec.nbrOfRanks * energy.sref_ref_pre_energy << " pJ" << endl; cout << "Auto-Refresh Energy: " << energy.ref_energy << " pJ" << endl; cout << "Self-Refresh Energy: " << memArchSpec.nbrOfRanks * energy.sref_energy << " pJ" << endl; cout << "----------------------------------------" << endl; cout << "Total Trace Energy: " << energy.total_energy << " pJ" << endl; cout << "Average Power: " << power.average_power << " mW" << endl; cout << "----------------------------------------" << endl; } // MemoryPowerModel::power_print // Self-refresh active energy estimation (not including background energy) double MemoryPowerModel::engy_sref(double idd6, double idd3n, double idd5, double vdd, double sref_cycles, double sref_ref_act_cycles, double sref_ref_pre_cycles, double spup_ref_act_cycles, double spup_ref_pre_cycles, double clk) { double sref_energy; sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles))) * vdd * clk; return sref_energy; } // IO and Termination power calculation based on Micron Power Calculators // Absolute power measures are obtained from Micron Power Calculator (mentioned in mW) void MemoryPowerModel::io_term_power(MemorySpecification memSpec) { MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; MemPowerSpec& memPowerSpec = memSpec.memPowerSpec; power.IO_power = memPowerSpec.ioPower; // in mW power.WR_ODT_power = memPowerSpec.wrOdtPower; // in mW if (memArchSpec.nbrOfRanks > 1) { power.TermRD_power = memPowerSpec.termRdPower; // in mW power.TermWR_power = memPowerSpec.termWrPower; // in mW } if (memPowerSpec.capacitance != 0.0) { // If capacity is given, then IO Power depends on DRAM clock frequency. power.IO_power = memPowerSpec.capacitance * 0.5 * pow(memPowerSpec.vdd2, 2.0) * memTimingSpec.clkMhz * 1000000; } } // MemoryPowerModel::io_term_power double MemoryPowerModel::calcIoTermEnergy(int64_t cycles, double period, double power, int64_t numBits) const { return static_cast(cycles) * period * power * static_cast(numBits); } // time (t) * current (I) * voltage (V) energy calculation double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const { return static_cast(cycles) * clkPeriod * current * voltage; }