/* * Copyright (c) 2012-2014, TU Delft * Copyright (c) 2012-2014, TU Eindhoven * Copyright (c) 2012-2014, TU Kaiserslautern * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Karthik Chandrasekar * Matthias Jung * Omar Naji * Subash Kannoth * Éder F. Zulian * Felipe S. Prado * */ #include "MemoryPowerModel.h" #include #include // For pow #include // fmtflags #include using namespace std; using namespace Data; MemoryPowerModel::MemoryPowerModel() { total_cycles = 0; energy.total_energy = 0; } // Calculate energy and average power consumption for the given command trace void MemoryPowerModel::power_calc(const MemorySpecification& memSpec, const CommandAnalysis& c, int term, const MemBankWiseParams& bwPowerParams) { const MemTimingSpec& t = memSpec.memTimingSpec; const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; const MemPowerSpec& mps = memSpec.memPowerSpec; const int64_t nbrofBanks = memSpec.memArchSpec.nbrOfBanks; energy.act_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.pre_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.read_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.write_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.ref_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.refb_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.act_stdby_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.pre_stdby_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.idle_energy_act_banks.assign(static_cast(nbrofBanks), 0.0); energy.idle_energy_pre_banks.assign(static_cast(nbrofBanks), 0.0); energy.f_act_pd_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.f_pre_pd_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.s_act_pd_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.s_pre_pd_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.ref_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.sref_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.sref_ref_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.sref_ref_act_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.sref_ref_pre_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.spup_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.spup_ref_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.spup_ref_act_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.spup_ref_pre_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.pup_act_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.pup_pre_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.total_energy_banks.assign(static_cast(nbrofBanks), 0.0); energy.act_energy = 0.0; energy.pre_energy = 0.0; energy.read_energy = 0.0; energy.write_energy = 0.0; energy.ref_energy = 0.0; energy.act_stdby_energy = 0.0; energy.pre_stdby_energy = 0.0; energy.idle_energy_act = 0.0; energy.idle_energy_pre = 0.0; energy.window_energy = 0.0; energy.f_act_pd_energy = 0.0; energy.f_pre_pd_energy = 0.0; energy.s_act_pd_energy = 0.0; energy.s_pre_pd_energy = 0.0; energy.sref_energy = 0.0; energy.sref_ref_energy = 0.0; energy.sref_ref_act_energy = 0.0; energy.sref_ref_pre_energy = 0.0; energy.spup_energy = 0.0; energy.spup_ref_energy = 0.0; energy.spup_ref_act_energy = 0.0; energy.spup_ref_pre_energy = 0.0; energy.pup_act_energy = 0.0; energy.pup_pre_energy = 0.0; power.IO_power = 0.0; power.WR_ODT_power = 0.0; power.TermRD_power = 0.0; power.TermWR_power = 0.0; energy.read_io_energy = 0.0; energy.write_term_energy = 0.0; energy.read_oterm_energy = 0.0; energy.write_oterm_energy = 0.0; energy.io_term_energy = 0.0; // How long a single burst takes, measured in command-clock cycles. int64_t burstCc = memArchSpec.burstLength / memArchSpec.dataRate; // IO and Termination Power measures are included, if required. if (term) { io_term_power(memSpec); // memArchSpec.width represents the number of data (dq) pins. // 1 DQS pin is associated with every data byte int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8; // 1 DQS and 1 DM pin is associated with every data byte int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8; // Size of one clock period for the data bus. double ddrPeriod = t.clkPeriod / static_cast(memArchSpec.dataRate); // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin energy.read_io_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength, ddrPeriod, power.IO_power, dqPlusDqsBits); // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM energy.write_term_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength, ddrPeriod, power.WR_ODT_power, dqPlusDqsPlusMaskBits); if (memArchSpec.nbrOfRanks > 1) { // Termination power consumed in the idle rank during reads on the active // rank by each DQ (data) and DQS (data strobe) pin. energy.read_oterm_energy = calcIoTermEnergy(sum(c.numberofreadsBanks) * memArchSpec.burstLength, ddrPeriod, power.TermRD_power, dqPlusDqsBits); // Termination power consumed in the idle rank during writes on the active // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin. energy.write_oterm_energy = calcIoTermEnergy(sum(c.numberofwritesBanks) * memArchSpec.burstLength, ddrPeriod, power.TermWR_power, dqPlusDqsPlusMaskBits); } // Sum of all IO and termination energy energy.io_term_energy = energy.read_io_energy + energy.write_term_energy + energy.read_oterm_energy + energy.write_oterm_energy; } window_cycles = c.actcycles + c.precycles + c.f_act_pdcycles + c.f_pre_pdcycles + c.s_act_pdcycles + c.s_pre_pdcycles + c.sref_cycles + c.sref_ref_act_cycles + c.sref_ref_pre_cycles + c.spup_ref_act_cycles + c.spup_ref_pre_cycles; EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod); energy.act_energy = vdd0Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd0 - mps.idd3n); energy.pre_energy = vdd0Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd0 - mps.idd2n); energy.read_energy = vdd0Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r - mps.idd3n); energy.write_energy = vdd0Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w - mps.idd3n); energy.ref_energy = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd5 - mps.idd3n); energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n); energy.act_stdby_energy = vdd0Domain.calcTivEnergy(c.actcycles, mps.idd3n); // Using the number of cycles that at least one bank is active here // But the current iddrho is less than idd3n double iddrho = (static_cast(bwPowerParams.bwPowerFactRho) / 100.0) * (mps.idd3n - mps.idd2n) + mps.idd2n; double esharedActStdby = vdd0Domain.calcTivEnergy(c.actcycles, iddrho); // Fixed componenent for PASR double iddsigma = (static_cast(bwPowerParams.bwPowerFactSigma) / 100.0) * mps.idd6; double esharedPASR = vdd0Domain.calcTivEnergy(c.sref_cycles, iddsigma); // ione is Active background current for a single bank. When a single bank is Active //,all the other remainig (B-1) banks will consume a current of iddrho (based on factor Rho) // So to derrive ione we add (B-1)*iddrho to the idd3n and distribute it to each banks. double ione = (mps.idd3n + (iddrho * (static_cast(nbrofBanks - 1)))) / (static_cast(nbrofBanks)); // If memory specification does not provide bank wise refresh current, // approximate it to single bank background current removed from // single bank active current double idd5Blocal = (mps.idd5B == 0.0) ? (mps.idd0 - ione) :(mps.idd5B); // if memory specification does not provide the REFB timing approximate it // to time of ACT + PRE int64_t tRefBlocal = (t.REFB == 0) ? (t.RAS + t.RP) : (t.REFB); //Distribution of energy componets to each banks for (unsigned i = 0; i < nbrofBanks; i++) { energy.act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofactsBanks[i] * t.RAS, mps.idd0 - ione); energy.pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofpresBanks[i] * (t.RP), mps.idd0 - ione); energy.read_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofreadsBanks[i] * burstCc, mps.idd4r - mps.idd3n); energy.write_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofwritesBanks[i] * burstCc, mps.idd4w - mps.idd3n); energy.ref_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefs * t.RFC, mps.idd5 - mps.idd3n) / static_cast(nbrofBanks); energy.refb_energy_banks[i] = vdd0Domain.calcTivEnergy(c.numberofrefbBanks[i] * tRefBlocal, idd5Blocal); energy.pre_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.precycles, mps.idd2n) / static_cast(nbrofBanks); energy.act_stdby_energy_banks[i] = vdd0Domain.calcTivEnergy(c.actcyclesBanks[i], (mps.idd3n - iddrho) / static_cast(nbrofBanks)) + esharedActStdby / static_cast(nbrofBanks); energy.idle_energy_act_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n) / static_cast(nbrofBanks); energy.idle_energy_pre_banks[i] = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n) / static_cast(nbrofBanks); energy.f_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1) / static_cast(nbrofBanks); energy.f_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1) / static_cast(nbrofBanks); energy.s_act_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0) / static_cast(nbrofBanks); energy.s_pre_pd_energy_banks[i] = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0) / static_cast(nbrofBanks); energy.sref_energy_banks[i] = engy_sref_banks(mps.idd6, mps.idd3n, mps.idd5, mps.vdd, static_cast(c.sref_cycles), static_cast(c.sref_ref_act_cycles), static_cast(c.sref_ref_pre_cycles), static_cast(c.spup_ref_act_cycles), static_cast(c.spup_ref_pre_cycles), t.clkPeriod,esharedPASR,bwPowerParams,i,nbrofBanks ); energy.sref_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0) / static_cast(nbrofBanks); energy.sref_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0) / static_cast(nbrofBanks); energy.sref_ref_energy_banks[i] = energy.sref_ref_act_energy_banks[i] + energy.sref_ref_pre_energy_banks[i] ;// energy.spup_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n) / static_cast(nbrofBanks); energy.spup_ref_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n) / static_cast(nbrofBanks);// energy.spup_ref_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n) / static_cast(nbrofBanks); energy.spup_ref_energy_banks[i] = ( energy.spup_ref_act_energy + energy.spup_ref_pre_energy ) / static_cast(nbrofBanks); energy.pup_act_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n) / static_cast(nbrofBanks); energy.pup_pre_energy_banks[i] = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n) / static_cast(nbrofBanks); } // Idle energy in the active standby clock cycles energy.idle_energy_act = vdd0Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n); // Idle energy in the precharge standby clock cycles energy.idle_energy_pre = vdd0Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n); // fast-exit active power-down cycles energy energy.f_act_pd_energy = vdd0Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p1); // fast-exit precharged power-down cycles energy energy.f_pre_pd_energy = vdd0Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p1); // slow-exit active power-down cycles energy energy.s_act_pd_energy = vdd0Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p0); // slow-exit precharged power-down cycles energy energy.s_pre_pd_energy = vdd0Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p0); // self-refresh cycles energy including a refresh per self-refresh entry energy.sref_energy = engy_sref(mps.idd6, mps.idd3n, mps.idd5, mps.vdd, static_cast(c.sref_cycles), static_cast(c.sref_ref_act_cycles), static_cast(c.sref_ref_pre_cycles), static_cast(c.spup_ref_act_cycles), static_cast(c.spup_ref_pre_cycles), t.clkPeriod); // background energy during active auto-refresh cycles in self-refresh energy.sref_ref_act_energy = vdd0Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p0); // background energy during precharged auto-refresh cycles in self-refresh energy.sref_ref_pre_energy = vdd0Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p0); // background energy during active auto-refresh cycles in self-refresh exit energy.spup_ref_act_energy = vdd0Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n); // background energy during precharged auto-refresh cycles in self-refresh exit energy.spup_ref_pre_energy = vdd0Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n); // self-refresh power-up cycles energy -- included energy.spup_energy = vdd0Domain.calcTivEnergy(c.spup_cycles, mps.idd2n); // active power-up cycles energy - same as active standby -- included energy.pup_act_energy = vdd0Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n); // precharged power-up cycles energy - same as precharged standby -- included energy.pup_pre_energy = vdd0Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n); // similar equations as before to support multiple voltage domains in LPDDR2 // and WIDEIO memories if (memArchSpec.twoVoltageDomains) { EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod); energy.act_energy += vdd2Domain.calcTivEnergy(sum(c.numberofactsBanks) * t.RAS , mps.idd02 - mps.idd3n2); energy.pre_energy += vdd2Domain.calcTivEnergy(sum(c.numberofpresBanks) * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2); energy.read_energy += vdd2Domain.calcTivEnergy(sum(c.numberofreadsBanks) * burstCc , mps.idd4r2 - mps.idd3n2); energy.write_energy += vdd2Domain.calcTivEnergy(sum(c.numberofwritesBanks) * burstCc , mps.idd4w2 - mps.idd3n2); energy.ref_energy += vdd2Domain.calcTivEnergy(c.numberofrefs * t.RFC , mps.idd52 - mps.idd3n2); energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(c.precycles, mps.idd2n2); energy.act_stdby_energy += vdd2Domain.calcTivEnergy(c.actcycles, mps.idd3n2); // Idle energy in the active standby clock cycles energy.idle_energy_act += vdd2Domain.calcTivEnergy(c.idlecycles_act, mps.idd3n2); // Idle energy in the precharge standby clock cycles energy.idle_energy_pre += vdd2Domain.calcTivEnergy(c.idlecycles_pre, mps.idd2n2); // fast-exit active power-down cycles energy energy.f_act_pd_energy += vdd2Domain.calcTivEnergy(c.f_act_pdcycles, mps.idd3p12); // fast-exit precharged power-down cycles energy energy.f_pre_pd_energy += vdd2Domain.calcTivEnergy(c.f_pre_pdcycles, mps.idd2p12); // slow-exit active power-down cycles energy energy.s_act_pd_energy += vdd2Domain.calcTivEnergy(c.s_act_pdcycles, mps.idd3p02); // slow-exit precharged power-down cycles energy energy.s_pre_pd_energy += vdd2Domain.calcTivEnergy(c.s_pre_pdcycles, mps.idd2p02); energy.sref_energy += engy_sref(mps.idd62, mps.idd3n2, mps.idd52, mps.vdd2, static_cast(c.sref_cycles), static_cast(c.sref_ref_act_cycles), static_cast(c.sref_ref_pre_cycles), static_cast(c.spup_ref_act_cycles), static_cast(c.spup_ref_pre_cycles), t.clkPeriod); // background energy during active auto-refresh cycles in self-refresh energy.sref_ref_act_energy += vdd2Domain.calcTivEnergy(c.sref_ref_act_cycles, mps.idd3p02); // background energy during precharged auto-refresh cycles in self-refresh energy.sref_ref_pre_energy += vdd2Domain.calcTivEnergy(c.sref_ref_pre_cycles, mps.idd2p02); // background energy during active auto-refresh cycles in self-refresh exit energy.spup_ref_act_energy += vdd2Domain.calcTivEnergy(c.spup_ref_act_cycles, mps.idd3n2); // background energy during precharged auto-refresh cycles in self-refresh exit energy.spup_ref_pre_energy += vdd2Domain.calcTivEnergy(c.spup_ref_pre_cycles, mps.idd2n2); // self-refresh power-up cycles energy -- included energy.spup_energy += vdd2Domain.calcTivEnergy(c.spup_cycles, mps.idd2n2); // active power-up cycles energy - same as active standby -- included energy.pup_act_energy += vdd2Domain.calcTivEnergy(c.pup_act_cycles, mps.idd3n2); // precharged power-up cycles energy - same as precharged standby -- included energy.pup_pre_energy += vdd2Domain.calcTivEnergy(c.pup_pre_cycles, mps.idd2n2); } // auto-refresh energy during self-refresh cycles energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy; // auto-refresh energy during self-refresh exit cycles energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy; // adding all energy components for the active rank and all background and idle // energy components for both ranks (in a dual-rank system) if (bwPowerParams.bwMode) { // Calculate total energy per bank. for (unsigned i = 0; i < nbrofBanks; i++) { energy.total_energy_banks[i] = energy.act_energy_banks[i] + energy.pre_energy_banks[i] + energy.read_energy_banks[i] + energy.ref_energy_banks[i] + energy.write_energy_banks[i] + energy.refb_energy_banks[i] + static_cast(memArchSpec.nbrOfRanks) * energy.act_stdby_energy_banks[i] + energy.pre_stdby_energy_banks[i] + energy.f_pre_pd_energy_banks[i] + energy.s_act_pd_energy_banks[i] + energy.s_pre_pd_energy_banks[i]+ energy.sref_ref_energy_banks[i] + energy.spup_ref_energy_banks[i]; } // Calculate total energy for all banks. energy.window_energy = sum(energy.total_energy_banks) + energy.io_term_energy; } else { energy.window_energy = energy.act_energy + energy.pre_energy + energy.read_energy + energy.write_energy + energy.ref_energy + energy.io_term_energy + sum(energy.refb_energy_banks) + static_cast(memArchSpec.nbrOfRanks) * (energy.act_stdby_energy + energy.pre_stdby_energy + energy.sref_energy + energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy + energy.sref_ref_energy + energy.spup_ref_energy); } power.window_average_power = energy.window_energy / (static_cast(window_cycles) * t.clkPeriod); total_cycles += window_cycles; energy.total_energy += energy.window_energy; // Calculate the average power consumption power.average_power = energy.total_energy / (static_cast(total_cycles) * t.clkPeriod); } // MemoryPowerModel::power_calc void MemoryPowerModel::power_print(const MemorySpecification& memSpec, int term, const CommandAnalysis& c, bool bankwiseMode) const { const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; const uint64_t nRanks = static_cast(memArchSpec.nbrOfRanks); const char eUnit[] = " pJ"; const int64_t nbrofBanks = memSpec.memArchSpec.nbrOfBanks; double nRanksDouble = static_cast(nRanks); ios_base::fmtflags flags = cout.flags(); streamsize precision = cout.precision(); cout.precision(0); if (bankwiseMode) { cout << endl << "* Bankwise Details:"; for (unsigned i = 0; i < nbrofBanks; i++) { cout << endl << "## @ Bank " << i << fixed << endl << " #ACT commands: " << c.numberofactsBanks[i] << endl << " #RD + #RDA commands: " << c.numberofreadsBanks[i] << endl << " #WR + #WRA commands: " << c.numberofwritesBanks[i] << endl << " #PRE (+ PREA) commands: " << c.numberofpresBanks[i]; } cout << endl; } cout << endl << "* Trace Details:" << fixed << endl << endl << "#ACT commands: " << sum(c.numberofactsBanks) << endl << "#RD + #RDA commands: " << sum(c.numberofreadsBanks) << endl << "#WR + #WRA commands: " << sum(c.numberofwritesBanks) /* #PRE commands (precharge all counts a number of #PRE commands equal to the number of active banks) */ << endl << "#PRE (+ PREA) commands: " << sum(c.numberofpresBanks) << endl << "#REF commands: " << c.numberofrefs << endl << "#REFB commands: " << sum(c.numberofrefbBanks) << endl << "#Active Cycles: " << c.actcycles << endl << " #Active Idle Cycles: " << c.idlecycles_act << endl << " #Active Power-Up Cycles: " << c.pup_act_cycles << endl << " #Auto-Refresh Active cycles during Self-Refresh Power-Up: " << c.spup_ref_act_cycles << endl << "#Precharged Cycles: " << c.precycles << endl << " #Precharged Idle Cycles: " << c.idlecycles_pre << endl << " #Precharged Power-Up Cycles: " << c.pup_pre_cycles << endl << " #Auto-Refresh Precharged cycles during Self-Refresh Power-Up: " << c.spup_ref_pre_cycles << endl << " #Self-Refresh Power-Up Cycles: " << c.spup_cycles << endl << "Total Idle Cycles (Active + Precharged): " << c.idlecycles_act + c.idlecycles_pre << endl << "#Power-Downs: " << c.f_act_pdns + c.s_act_pdns + c.f_pre_pdns + c.s_pre_pdns << endl << " #Active Fast-exit Power-Downs: " << c.f_act_pdns << endl << " #Active Slow-exit Power-Downs: " << c.s_act_pdns << endl << " #Precharged Fast-exit Power-Downs: " << c.f_pre_pdns << endl << " #Precharged Slow-exit Power-Downs: " << c.s_pre_pdns << endl << "#Power-Down Cycles: " << c.f_act_pdcycles + c.s_act_pdcycles + c.f_pre_pdcycles + c.s_pre_pdcycles << endl << " #Active Fast-exit Power-Down Cycles: " << c.f_act_pdcycles << endl << " #Active Slow-exit Power-Down Cycles: " << c.s_act_pdcycles << endl << " #Auto-Refresh Active cycles during Self-Refresh: " << c.sref_ref_act_cycles << endl << " #Precharged Fast-exit Power-Down Cycles: " << c.f_pre_pdcycles << endl << " #Precharged Slow-exit Power-Down Cycles: " << c.s_pre_pdcycles << endl << " #Auto-Refresh Precharged cycles during Self-Refresh: " << c.sref_ref_pre_cycles << endl << "#Auto-Refresh Cycles: " << c.numberofrefs * memTimingSpec.RFC << endl << "#Self-Refreshes: " << c.numberofsrefs << endl << "#Self-Refresh Cycles: " << c.sref_cycles << endl << "----------------------------------------" << endl << "Total Trace Length (clock cycles): " << total_cycles << endl << "----------------------------------------" << endl; if (bankwiseMode) { cout << endl << "* Bankwise Details:"; for (unsigned i = 0; i < nbrofBanks; i++) { cout << endl << "## @ Bank " << i << fixed << endl << " ACT Cmd Energy: " << energy.act_energy_banks[i] << eUnit << endl << " PRE Cmd Energy: " << energy.pre_energy_banks[i] << eUnit << endl << " RD Cmd Energy: " << energy.read_energy_banks[i] << eUnit << endl << " WR Cmd Energy: " << energy.write_energy_banks[i] << eUnit << endl << " Auto-Refresh Energy: " << energy.ref_energy_banks[i] << eUnit << endl << " Bankwise-Refresh Energy: " << energy.refb_energy_banks[i] << eUnit << endl << " ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy_banks[i] << eUnit << endl << " PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy_banks[i] << eUnit << endl << " Active Idle Energy: "<< nRanksDouble * energy.idle_energy_act_banks[i] << eUnit << endl << " Precharge Idle Energy: "<< nRanksDouble * energy.idle_energy_pre_banks[i] << eUnit << endl << " Fast-Exit Active Power-Down Energy: "<< nRanksDouble * energy.f_act_pd_energy_banks[i] << eUnit << endl << " Fast-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.f_pre_pd_energy_banks[i] << eUnit << endl << " Slow-Exit Active Power-Down Energy: "<< nRanksDouble * energy.s_act_pd_energy_banks[i] << eUnit << endl << " Slow-Exit Precharged Power-Down Energy: "<< nRanksDouble * energy.s_pre_pd_energy_banks[i] << eUnit << endl << " Self-Refresh Energy: "<< nRanksDouble * energy.sref_energy_banks[i] << eUnit << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: "<< nRanksDouble * energy.sref_ref_act_energy_banks[i] << eUnit << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy_banks[i] << eUnit << endl << " Self-Refresh Power-Up Energy: "<< nRanksDouble * energy.spup_energy_banks[i] << eUnit << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_act_energy_banks[i] << eUnit << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: "<< nRanksDouble * energy.spup_ref_pre_energy_banks[i] << eUnit << endl << " Active Power-Up Energy: "<< nRanksDouble * energy.pup_act_energy_banks[i] << eUnit << endl << " Precharged Power-Up Energy: "<< nRanksDouble * energy.pup_pre_energy_banks[i] << eUnit << endl << " Total Energy: "<< energy.total_energy_banks[i] << eUnit << endl; } cout << endl; } cout.precision(2); cout << endl << "* Trace Power and Energy Estimates:" << endl << endl << "ACT Cmd Energy: " << energy.act_energy << eUnit << endl << "PRE Cmd Energy: " << energy.pre_energy << eUnit << endl << "RD Cmd Energy: " << energy.read_energy << eUnit << endl << "WR Cmd Energy: " << energy.write_energy << eUnit; if (term) { cout << endl << "RD I/O Energy: " << energy.read_io_energy << eUnit << endl; // No Termination for LPDDR/2/3 and DDR memories if (memSpec.memArchSpec.termination) { cout << "WR Termination Energy: " << energy.write_term_energy << eUnit << endl; } if (nRanks > 1 && memSpec.memArchSpec.termination) { cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy << eUnit << endl << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy << eUnit << endl; } } cout << "ACT Stdby Energy: " << nRanksDouble * energy.act_stdby_energy << eUnit << endl << " Active Idle Energy: " << nRanksDouble * energy.idle_energy_act << eUnit << endl << " Active Power-Up Energy: " << nRanksDouble * energy.pup_act_energy << eUnit << endl << " Active Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_act_energy << eUnit << endl << "PRE Stdby Energy: " << nRanksDouble * energy.pre_stdby_energy << eUnit << endl << " Precharge Idle Energy: " << nRanksDouble * energy.idle_energy_pre << eUnit << endl << " Precharged Power-Up Energy: " << nRanksDouble * energy.pup_pre_energy << eUnit << endl << " Precharge Stdby Energy during Auto-Refresh cycles in Self-Refresh Power-Up: " << nRanksDouble * energy.spup_ref_pre_energy << eUnit << endl << " Self-Refresh Power-Up Energy: " << nRanksDouble * energy.spup_energy << eUnit << endl << "Total Idle Energy (Active + Precharged): " << nRanksDouble * (energy.idle_energy_act + energy.idle_energy_pre) << eUnit << endl << "Total Power-Down Energy: " << nRanksDouble * (energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << eUnit << endl << " Fast-Exit Active Power-Down Energy: " << nRanksDouble * energy.f_act_pd_energy << eUnit << endl << " Slow-Exit Active Power-Down Energy: " << nRanksDouble * energy.s_act_pd_energy << eUnit << endl << " Slow-Exit Active Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_act_energy << eUnit << endl << " Fast-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.f_pre_pd_energy << eUnit << endl << " Slow-Exit Precharged Power-Down Energy: " << nRanksDouble * energy.s_pre_pd_energy << eUnit << endl << " Slow-Exit Precharged Power-Down Energy during Auto-Refresh cycles in Self-Refresh: " << nRanksDouble * energy.sref_ref_pre_energy << eUnit << endl << "Auto-Refresh Energy: " << energy.ref_energy << eUnit << endl << "Bankwise-Refresh Energy: " << sum(energy.refb_energy_banks) << eUnit << endl << "Self-Refresh Energy: " << nRanksDouble * energy.sref_energy << eUnit << endl << "----------------------------------------" << endl << "Total Trace Energy: " << energy.total_energy << eUnit << endl << "Average Power: " << power.average_power << " mW" << endl << "----------------------------------------" << endl; cout.flags(flags); cout.precision(precision); } // MemoryPowerModel::power_print // Self-refresh active energy estimation (not including background energy) double MemoryPowerModel::engy_sref(double idd6, double idd3n, double idd5, double vdd, double sref_cycles, double sref_ref_act_cycles, double sref_ref_pre_cycles, double spup_ref_act_cycles, double spup_ref_pre_cycles, double clk) { double sref_energy; sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles))) * vdd * clk; return sref_energy; } // Self-refresh active energy estimation per banks double MemoryPowerModel::engy_sref_banks(double idd6, double idd3n, double idd5, double vdd, double sref_cycles, double sref_ref_act_cycles, double sref_ref_pre_cycles, double spup_ref_act_cycles, double spup_ref_pre_cycles, double clk, double esharedPASR, const MemBankWiseParams& bwPowerParams, unsigned bnkIdx, int64_t nbrofBanks) { // Bankwise Self-refresh energy double sref_energy_banks; // Dynamic componenents for PASR energy varying based on PASR mode double iddsigmaDynBanks; double pasr_energy_dyn; // This component is distributed among all banks double sref_energy_shared; //Is PASR Active if (bwPowerParams.flgPASR){ sref_energy_shared = (((idd5 - idd3n) * (sref_ref_act_cycles + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)) * vdd * clk) / static_cast(nbrofBanks); //if the bank is active under current PASR mode if (bwPowerParams.isBankActiveInPasr(bnkIdx)){ // Distribute the sref energy to the active banks iddsigmaDynBanks = (static_cast(100 - bwPowerParams.bwPowerFactSigma) / (100.0 * static_cast(nbrofBanks))) * idd6; pasr_energy_dyn = vdd * iddsigmaDynBanks * sref_cycles; // Add the static components sref_energy_banks = sref_energy_shared + pasr_energy_dyn + (esharedPASR /static_cast(nbrofBanks)); }else{ sref_energy_banks = (esharedPASR /static_cast(nbrofBanks)); } } //When PASR is not active total all the banks are in Self-Refresh. Thus total Self-Refresh energy is distributed across all banks else{ sref_energy_banks = (((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles))) * vdd * clk) / static_cast(nbrofBanks); } return sref_energy_banks; } // IO and Termination power calculation based on Micron Power Calculators // Absolute power measures are obtained from Micron Power Calculator (mentioned in mW) void MemoryPowerModel::io_term_power(const MemorySpecification& memSpec) { const MemTimingSpec& memTimingSpec = memSpec.memTimingSpec; const MemArchitectureSpec& memArchSpec = memSpec.memArchSpec; const MemPowerSpec& memPowerSpec = memSpec.memPowerSpec; power.IO_power = memPowerSpec.ioPower; // in mW power.WR_ODT_power = memPowerSpec.wrOdtPower; // in mW if (memArchSpec.nbrOfRanks > 1) { power.TermRD_power = memPowerSpec.termRdPower; // in mW power.TermWR_power = memPowerSpec.termWrPower; // in mW } if (memPowerSpec.capacitance != 0.0) { // If capacity is given, then IO Power depends on DRAM clock frequency. power.IO_power = memPowerSpec.capacitance * 0.5 * pow(memPowerSpec.vdd2, 2.0) * memTimingSpec.clkMhz * 1000000; } } // MemoryPowerModel::io_term_power double MemoryPowerModel::calcIoTermEnergy(int64_t cycles, double period, double power, int64_t numBits) const { return static_cast(cycles) * period * power * static_cast(numBits); } // time (t) * current (I) * voltage (V) energy calculation double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const { return static_cast(cycles) * clkPeriod * current * voltage; }