/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/optical/ThrottledLaserSource.h" #include "model/PortInfo.h" #include "model/TransitionInfo.h" #include "model/EventInfo.h" #include "model/optical_graph/OpticalWaveguide.h" #include "model/optical_graph/OpticalWavelength.h" #include "model/optical_graph/OpticalLaser.h" #include "model/optical_graph/OpticalGraph.h" namespace DSENT { ThrottledLaserSource::ThrottledLaserSource(const String& instance_name_, const TechModel* tech_model_) : OpticalModel(instance_name_, tech_model_), m_wavelength_(NULL) { initParameters(); initProperties(); } ThrottledLaserSource::~ThrottledLaserSource() { if (m_wavelength_ != NULL) delete m_wavelength_; } void ThrottledLaserSource::initParameters() { addParameterName("OutStart"); addParameterName("OutEnd"); addParameterName("MaxDetectors"); addParameterName("MinDetectors"); return; } void ThrottledLaserSource::initProperties() { addPropertyName("OptUtil", 1.0); addPropertyName("LaserEventTime"); return; } void ThrottledLaserSource::constructModel() { // Get parameters WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd")); unsigned int max_detectors = getParameter("MaxDetectors").toUInt(); unsigned int min_detectors = getParameter("MinDetectors").toUInt(); // Create electrical input port for laser control createInputPort( "LaserEnable"); // Create Area result addAreaResult(new AtomicResult("Photonic")); // Create event result for each detector number possibility for (unsigned int i = min_detectors; i <= max_detectors; ++i) { createElectricalEventAtomicResult("Laser" + (String) i); getEventInfo("Laser" + (String) i)->setTransitionInfo("LaserEnable", TransitionInfo(0.0, 1.0, 0.0)); } // Create optical ports createOpticalOutputPort( "Out", laser_wavelengths); // Create the filter createLaser( "Laser", laser_wavelengths); OpticalLaser* laser = getLaser("Laser"); // Connect the laser to the output laser->addDownstreamNode(getWaveguide("Out")); } void ThrottledLaserSource::updateModel() { // Get properties double laser_efficiency = getTechModel()->get("Laser->CW->Efficiency").toDouble(); double laser_area = getTechModel()->get("Laser->CW->Area").toDouble(); double laser_diode_loss = getTechModel()->get("Laser->CW->LaserDiodeLoss"); // Get parameters WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd")); unsigned int number_wavelengths = laser_wavelengths.second - laser_wavelengths.first + 1; // Update losses OpticalLaser* laser = getLaser("Laser"); laser->setLoss(laser_diode_loss); laser->setEfficiency(laser_efficiency); // Update area getAreaResult("Photonic")->setValue(laser_area * number_wavelengths); } void ThrottledLaserSource::evaluateModel() { // Get parameters unsigned int max_detectors = getParameter("MaxDetectors"); WavelengthGroup laser_wavelengths = makeWavelengthGroup(getParameter("OutStart"), getParameter("OutEnd")); // Get properties double opt_util = getProperty("OptUtil"); // Create optical graph object OpticalGraph* optical_graph = new OpticalGraph("LaserTrace", this); // Ask optical graph object to perform power optimization bool success = optical_graph->performPowerOpt(getLaser("Laser"), laser_wavelengths, max_detectors, opt_util); if (!success) { Log::printLine(std::cerr, "[Warning] " + getInstanceName() + " -> Wavelengths contains data paths with no possible modulator configurations!"); } // Trace the wavelengths the laser is outputting to find the output // power needed by the laser if (m_wavelength_ != NULL) delete m_wavelength_; m_wavelength_ = optical_graph->traceWavelength(laser_wavelengths, getLaser("Laser")); delete optical_graph; } void ThrottledLaserSource::useModel() { // Get parameters unsigned int max_detectors = getParameter("MaxDetectors"); unsigned int min_detectors = getParameter("MinDetectors"); // Get properties double laser_event_time = getProperty("LaserEventTime"); // Get laser enable information const TransitionInfo& enable_info = getInputPort("LaserEnable")->getTransitionInfo(); for (unsigned int i = min_detectors; i <= max_detectors; ++i) { // Calculate the power needed by the wavelength double laser_power = m_wavelength_->getLaserPower(i); // Calculate the laser event power by calculating the amount // of time the laser is on getEventResult("Laser" + (String) i)->setValue(laser_power * laser_event_time * enable_info.getFrequencyMultiplier() * enable_info.getProbability1()); } } } // namespace DSENT