#include "model/std_cells/DFFQ.h" #include #include "model/PortInfo.h" #include "model/EventInfo.h" #include "model/TransitionInfo.h" #include "model/std_cells/StdCellLib.h" #include "model/std_cells/CellMacros.h" #include "model/timing_graph/ElectricalNet.h" #include "model/timing_graph/ElectricalDriver.h" #include "model/timing_graph/ElectricalLoad.h" #include "model/timing_graph/ElectricalDelay.h" namespace DSENT { using std::ceil; using std::max; using std::min; DFFQ::DFFQ(const String& instance_name_, const TechModel* tech_model_) : StdCell(instance_name_, tech_model_) { initProperties(); } DFFQ::~DFFQ() {} void DFFQ::initProperties() { return; } void DFFQ::constructModel() { // All constructModel should do is create Area/NDDPower/Energy Results as // well as instantiate any sub-instances using only the hard parameters createInputPort("D"); createInputPort("CK"); createOutputPort("Q"); createLoad("D_Cap"); createLoad("CK_Cap"); createDelay("D_Setup_delay"); createDelay("CK_to_Q_delay"); createDriver("Q_Ron", true); ElectricalLoad* d_cap = getLoad("D_Cap"); ElectricalLoad* ck_cap = getLoad("CK_Cap"); ElectricalDelay* d_setup_delay = getDelay("D_Setup_delay"); ElectricalDelay* ck_to_q_delay = getDelay("CK_to_Q_delay"); ElectricalDriver* q_ron = getDriver("Q_Ron"); getNet("D")->addDownstreamNode(d_cap); getNet("CK")->addDownstreamNode(ck_cap); d_cap->addDownstreamNode(d_setup_delay); ck_cap->addDownstreamNode(ck_to_q_delay); ck_to_q_delay->addDownstreamNode(q_ron); q_ron->addDownstreamNode(getNet("Q")); // Create Area result // Create NDD Power result createElectricalAtomicResults(); // Create CK Event Energy Result createElectricalEventAtomicResult("CK"); getEventInfo("CK")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); // Create DFF Event Energy Result createElectricalEventAtomicResult("DFFD"); getEventInfo("DFFD")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); createElectricalEventAtomicResult("DFFQ"); getEventInfo("DFFQ")->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); // Update Idle event for leakage // CK pin is assumed to be on all the time EventInfo* idle_event_info = getEventInfo("Idle"); idle_event_info->setTransitionInfo("CK", TransitionInfo(0.0, 1.0, 0.0)); idle_event_info->setTransitionInfo("D", TransitionInfo(0.5, 0.0, 0.5)); return; } void DFFQ::updateModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "DFFQ_X" + (String) drive_strength; // Get timing parameters getLoad("D_Cap")->setLoadCap(cache->get(cell_name + "->Cap->D")); getLoad("CK_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CK")); getDriver("Q_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Q")); getDelay("CK_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->CK_to_Q")); getDelay("D_Setup_delay")->setDelay(cache->get(cell_name + "->Delay->D_Setup")); // Set the cell area getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire")); return; } void DFFQ::evaluateModel() { return; } void DFFQ::useModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "DFFQ_X" + (String) drive_strength; // Propagate the transition info and get P_D, P_M, and P_Q propagateTransitionInfo(); double P_D = getInputPort("D")->getTransitionInfo().getProbability1(); double P_CK = getInputPort("CK")->getTransitionInfo().getProbability1(); double P_Q = getOutputPort("Q")->getTransitionInfo().getProbability1(); double CK_num_trans_01 = getInputPort("CK")->getTransitionInfo().getNumberTransitions01(); double D_num_trans_01 = getInputPort("D")->getTransitionInfo().getNumberTransitions01(); double M_num_trans_01 = m_trans_M_.getNumberTransitions01(); double Q_num_trans_01 = getOutputPort("Q")->getTransitionInfo().getNumberTransitions01(); // Calculate leakage double leakage = 0; leakage += cache->get(cell_name + "->Leakage->!D!CK!Q") * (1 - P_D) * (1 - P_CK) * (1 - P_Q); leakage += cache->get(cell_name + "->Leakage->!D!CKQ") * (1 - P_D) * (1 - P_CK) * P_Q; leakage += cache->get(cell_name + "->Leakage->!DCK!Q") * (1 - P_D) * P_CK * (1 - P_Q); leakage += cache->get(cell_name + "->Leakage->!DCKQ") * (1 - P_D) * P_CK * P_Q; leakage += cache->get(cell_name + "->Leakage->D!CK!Q") * P_D * (1 - P_CK) * (1 - P_Q); leakage += cache->get(cell_name + "->Leakage->D!CKQ") * P_D * (1 - P_CK) * P_Q; leakage += cache->get(cell_name + "->Leakage->DCK!Q") * P_D * P_CK * (1 - P_Q); leakage += cache->get(cell_name + "->Leakage->DCKQ") * P_D * P_CK * P_Q; getNddPowerResult("Leakage")->setValue(leakage); // Get VDD double vdd = getTechModel()->get("Vdd"); // Get capacitances double ck_b_cap = cache->get(cell_name + "->Cap->CK_b"); double ck_i_cap = cache->get(cell_name + "->Cap->CK_i"); double d_b_cap = cache->get(cell_name + "->Cap->D_b"); double m_b_cap = cache->get(cell_name + "->Cap->M_b"); double m_cap = cache->get(cell_name + "->Cap->M"); double m_i_cap = cache->get(cell_name + "->Cap->M_i"); double q_b_cap = cache->get(cell_name + "->Cap->Q_b"); double q_cap = cache->get(cell_name + "->Cap->Q"); double q_load_cap = getNet("Q")->getTotalDownstreamCap(); // Calculate CK Event energy double ck_event_energy = 0.0; ck_event_energy += (ck_b_cap + ck_i_cap) * CK_num_trans_01; ck_event_energy *= vdd * vdd; getEventResult("CK")->setValue(ck_event_energy); // Calculate DFFD Event energy double dffd_event_energy = 0.0; dffd_event_energy += (d_b_cap) * D_num_trans_01; dffd_event_energy += (m_b_cap + m_cap) * M_num_trans_01; dffd_event_energy *= vdd * vdd; getEventResult("DFFD")->setValue(dffd_event_energy); // Calculate DFFQ Event energy double dffq_event_energy = 0.0; dffq_event_energy += (m_i_cap + q_b_cap + q_cap + q_load_cap) * Q_num_trans_01; dffq_event_energy *= vdd * vdd; getEventResult("DFFQ")->setValue(dffq_event_energy); return; } void DFFQ::propagateTransitionInfo() { const TransitionInfo& trans_CK = getInputPort("CK")->getTransitionInfo(); const TransitionInfo& trans_D = getInputPort("D")->getTransitionInfo(); double CK_num_trans_01 = trans_CK.getNumberTransitions01(); double CK_num_trans_10 = CK_num_trans_01; double CK_num_trans_00 = trans_CK.getNumberTransitions00(); double D_freq_mult = trans_D.getFrequencyMultiplier(); // If thre is no activity on the clock or D, assume M node is randomly distributed among 0 and 1 if(LibUtil::Math::isEqual(CK_num_trans_10 + CK_num_trans_00, 0.0) || LibUtil::Math::isEqual(D_freq_mult, 0.0)) { m_trans_M_ = TransitionInfo(0.5, 0.0, 0.5); } // If the master latch is sampling just as fast or faster than input data signal // Then it can capture all transitions (though it should be normalized to clock) else if((CK_num_trans_10 + CK_num_trans_00) >= D_freq_mult) { m_trans_M_ = trans_D.scaleFrequencyMultiplier(CK_num_trans_10 + CK_num_trans_00); } // If the master latch is sampling slower than the input data signal, then input // will look like they transition more else { // Calculate scale ratio double scale_ratio = (CK_num_trans_10 + CK_num_trans_00) / D_freq_mult; // 00 and 11 transitions become fewer double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11()); double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio; double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio; // 01 and 10 transitions become more frequent double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff; // Create final transition info, remembering to apply scaling ratio to normalize to CK m_trans_M_ = TransitionInfo(D_scaled_num_trans_00 * scale_ratio, D_scaled_num_trans_10 * scale_ratio, D_scaled_num_trans_11 * scale_ratio); } // If the clock activity is 0 or if D activity is 0, then we assume that the output is randomly distributed among 0 and 1 if(LibUtil::Math::isEqual(CK_num_trans_01, 0.0) || LibUtil::Math::isEqual(D_freq_mult, 0.0)) { getOutputPort("Q")->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5)); } // If the DFF's CK is running at a higher frequency than D, Q is just D with a // scaled up frequency multiplier else if(CK_num_trans_01 >= D_freq_mult) { const TransitionInfo& trans_Q = trans_D.scaleFrequencyMultiplier(CK_num_trans_01); getOutputPort("Q")->setTransitionInfo(trans_Q); } // If the DFF is sampling slower than the input data signal, then inputs // will look like they transition more else { // Calculate scale ratio double scale_ratio = CK_num_trans_01 / D_freq_mult; // 00 and 11 transitions become fewer double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11()); double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio; double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio; // 01 and 10 transitions become more frequent double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff; const TransitionInfo trans_Q( D_scaled_num_trans_00 * scale_ratio, D_scaled_num_trans_10 * scale_ratio, D_scaled_num_trans_11 * scale_ratio); getOutputPort("Q")->setTransitionInfo(trans_Q); } return; } // Creates the standard cell, characterizes and abstracts away the details void DFFQ::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) { // Get parameters double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); Map* cache = cell_lib_->getStdCellCache(); // Standard cell cache string String cell_name = "DFFQ_X" + (String) drive_strength_; Log::printLine("=== " + cell_name + " ==="); // Now actually build the full standard cell model createInputPort("D"); createInputPort("CK"); createOutputPort("Q"); createNet("D_b"); createNet("M_b"); createNet("M"); createNet("M_i"); createNet("Q_b"); createNet("CK_b"); createNet("CK_i"); // Adds macros CellMacros::addInverter(this, "INV1", false, true, "D", "D_b"); CellMacros::addInverter(this, "INV2", false, true, "M_b", "M"); CellMacros::addInverter(this, "INV3", false, true, "M_i", "Q_b"); CellMacros::addInverter(this, "INV4", true, true, "Q_b", "Q"); CellMacros::addInverter(this, "INV5", false, true, "CK", "CK_b"); CellMacros::addInverter(this, "INV6", false, true, "CK_b", "CK_i"); CellMacros::addTristate(this, "INVZ1", false, true, false, false, "D_b", "CK_b", "CK_i", "M_b"); //trace timing through A->ZN path only CellMacros::addTristate(this, "INVZ2", false, false, false, false, "M", "CK_i", "CK_b", "M_b"); //don't trace timing through the feedback path CellMacros::addTristate(this, "INVZ3", false, false, true, true, "M", "CK_i", "CK_b", "M_i"); //trace timing from OE->ZN and OEN->ZN paths only CellMacros::addTristate(this, "INVZ4", false, false, false, false, "Q_b", "CK_b", "CK_i", "M_i"); //don't trace timing through the feedback path // Update macros CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.125); CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.5); CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.5); CellMacros::updateInverter(this, "INV4", drive_strength_ * 1.0); CellMacros::updateInverter(this, "INV5", drive_strength_ * 0.125); CellMacros::updateInverter(this, "INV6", drive_strength_ * 0.125); CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.5); CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.0625); CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.5); CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.0625); // Cache area result double area = 0.0; area += gate_pitch * getTotalHeight() * 1; area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV5_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV6_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble(); cache->set(cell_name + "->Area->Active", area); cache->set(cell_name + "->Area->Metal1Wire", area); Log::printLine(cell_name + "->Area->Active=" + (String) area); Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area); // -------------------------------------------------------------------- // Leakage Model Calculation // -------------------------------------------------------------------- // Cache leakage power results (for every single signal combination) double leakage_000 = 0; //!D, !CK, !Q double leakage_001 = 0; //!D, !CK, Q double leakage_010 = 0; //!D, CK, !Q double leakage_011 = 0; //!D, CK, Q double leakage_100 = 0; //D, !CK, !Q double leakage_101 = 0; //D, !CK, Q double leakage_110 = 0; //D, CK, !Q double leakage_111 = 0; //D, CK, Q //This is so painful... leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_000 += getGenProperties()->get("INV5_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV6_LeakagePower_1").toDouble(); leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_011_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble(); leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV5_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV6_LeakagePower_1").toDouble(); leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble(); leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble(); leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble(); leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_010 += getGenProperties()->get("INV5_LeakagePower_1").toDouble(); leakage_010 += getGenProperties()->get("INV6_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble(); leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble(); leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_011_0").toDouble(); leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_011 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_011 += getGenProperties()->get("INV5_LeakagePower_1").toDouble(); leakage_011 += getGenProperties()->get("INV6_LeakagePower_0").toDouble(); leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble(); leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_1").toDouble(); leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INV5_LeakagePower_0").toDouble(); leakage_100 += getGenProperties()->get("INV6_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble(); leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble(); leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble(); leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_101 += getGenProperties()->get("INV5_LeakagePower_0").toDouble(); leakage_101 += getGenProperties()->get("INV6_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_010_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble(); leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_110 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_110 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_110 += getGenProperties()->get("INV5_LeakagePower_1").toDouble(); leakage_110 += getGenProperties()->get("INV6_LeakagePower_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble(); leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_011_0").toDouble(); leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_111 += getGenProperties()->get("INV5_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV6_LeakagePower_0").toDouble(); leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble(); leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble(); leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_010_1").toDouble(); cache->set(cell_name + "->Leakage->!D!CK!Q", leakage_000); cache->set(cell_name + "->Leakage->!D!CKQ", leakage_001); cache->set(cell_name + "->Leakage->!DCK!Q", leakage_010); cache->set(cell_name + "->Leakage->!DCKQ", leakage_011); cache->set(cell_name + "->Leakage->D!CK!Q", leakage_100); cache->set(cell_name + "->Leakage->D!CKQ", leakage_101); cache->set(cell_name + "->Leakage->DCK!Q", leakage_110); cache->set(cell_name + "->Leakage->DCKQ", leakage_111); Log::printLine(cell_name + "->Leakage->!D!CK!Q=" + (String) leakage_000); Log::printLine(cell_name + "->Leakage->!D!CKQ=" + (String) leakage_001); Log::printLine(cell_name + "->Leakage->!DCK!Q=" + (String) leakage_010); Log::printLine(cell_name + "->Leakage->!DCKQ=" + (String) leakage_011); Log::printLine(cell_name + "->Leakage->D!CK!Q=" + (String) leakage_100); Log::printLine(cell_name + "->Leakage->D!CKQ=" + (String) leakage_101); Log::printLine(cell_name + "->Leakage->DCK!Q=" + (String) leakage_110); Log::printLine(cell_name + "->Leakage->DCKQ=" + (String) leakage_111); // -------------------------------------------------------------------- /* // Cache event energy results double event_ck_flip = 0.0; event_ck_flip += getGenProperties()->get("INV5_A_Flip").toDouble() + getGenProperties()->get("INV5_ZN_Flip").toDouble(); event_ck_flip += getGenProperties()->get("INV6_A_Flip").toDouble() + getGenProperties()->get("INV6_ZN_Flip").toDouble(); event_ck_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble(); event_ck_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble(); event_ck_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble(); event_ck_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble(); cache->set(cell_name + "->Event_CK_Flip", event_ck_flip); Log::printLine(cell_name + "->Event_CK_Flip=" + (String) event_ck_flip); // Update D flip results double event_d_flip = 0.0; event_d_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble(); event_d_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble(); cache->set(cell_name + "->Event_D_Flip", event_d_flip); Log::printLine(cell_name + "->Event_D_Flip=" + (String) event_d_flip); // Update M flip results double event_m_flip = 0.0; event_m_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble(); event_m_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble(); event_m_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble() + getGenProperties()->get("INVZ2_ZN_Flip").toDouble(); event_m_flip += getGenProperties()->get("INVZ3_A_Flip").toDouble(); cache->set(cell_name + "->Event_M_Flip", event_m_flip); Log::printLine(cell_name + "->Event_M_Flip=" + (String) event_m_flip); // Update Q flip results double event_q_flip = 0.0; event_q_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble(); event_q_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble(); event_q_flip += getGenProperties()->get("INVZ4_A_Flip").toDouble() + getGenProperties()->get("INVZ4_ZN_Flip").toDouble(); event_q_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble(); cache->set(cell_name + "->Event_Q_Flip", event_q_flip); Log::printLine(cell_name + "->Event_Q_Flip=" + (String) event_q_flip); */ // -------------------------------------------------------------------- // Get Node Capacitances // -------------------------------------------------------------------- double d_cap = getNet("D")->getTotalDownstreamCap(); double d_b_cap = getNet("D_b")->getTotalDownstreamCap(); double m_b_cap = getNet("M_b")->getTotalDownstreamCap(); double m_cap = getNet("M")->getTotalDownstreamCap(); double m_i_cap = getNet("M_i")->getTotalDownstreamCap(); double q_b_cap = getNet("Q_b")->getTotalDownstreamCap(); double q_cap = getNet("Q")->getTotalDownstreamCap(); double ck_cap = getNet("CK")->getTotalDownstreamCap(); double ck_b_cap = getNet("CK_b")->getTotalDownstreamCap(); double ck_i_cap = getNet("CK_i")->getTotalDownstreamCap(); cache->set(cell_name + "->Cap->D", d_cap); cache->set(cell_name + "->Cap->D_b", d_b_cap); cache->set(cell_name + "->Cap->M_b", m_b_cap); cache->set(cell_name + "->Cap->M", m_cap); cache->set(cell_name + "->Cap->M_i", m_i_cap); cache->set(cell_name + "->Cap->Q_b", q_b_cap); cache->set(cell_name + "->Cap->Q", q_cap); cache->set(cell_name + "->Cap->CK", ck_cap); cache->set(cell_name + "->Cap->CK_b", ck_b_cap); cache->set(cell_name + "->Cap->CK_i", ck_i_cap); Log::printLine(cell_name + "->Cap->D=" + (String) d_cap); Log::printLine(cell_name + "->Cap->D_b=" + (String) d_b_cap); Log::printLine(cell_name + "->Cap->M_b=" + (String) m_b_cap); Log::printLine(cell_name + "->Cap->M=" + (String) m_cap); Log::printLine(cell_name + "->Cap->M_i=" + (String) m_i_cap); Log::printLine(cell_name + "->Cap->Q_b=" + (String) q_b_cap); Log::printLine(cell_name + "->Cap->Q=" + (String) q_cap); Log::printLine(cell_name + "->Cap->CK=" + (String) ck_cap); Log::printLine(cell_name + "->Cap->CK_b=" + (String) ck_b_cap); Log::printLine(cell_name + "->Cap->CK_i=" + (String) ck_i_cap); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Build Internal Delay Model // -------------------------------------------------------------------- double q_ron = getDriver("INV4_RonZN")->getOutputRes(); double d_setup_delay = getDriver("INV1_RonZN")->calculateDelay() + getDriver("INVZ1_RonZN")->calculateDelay() + getDriver("INV2_RonZN")->calculateDelay(); double ck_to_q_delay = getDriver("INV5_RonZN")->calculateDelay() + getDriver("INV6_RonZN")->calculateDelay() + getDriver("INVZ3_RonZN")->calculateDelay() + getDriver("INV3_RonZN")->calculateDelay() + getDriver("INV4_RonZN")->calculateDelay(); cache->set(cell_name + "->DriveRes->Q", q_ron); cache->set(cell_name + "->Delay->D_Setup", d_setup_delay); cache->set(cell_name + "->Delay->CK_to_Q", ck_to_q_delay); Log::printLine(cell_name + "->DriveRes->Q=" + (String) q_ron); Log::printLine(cell_name + "->Delay->D_Setup=" + (String) d_setup_delay); Log::printLine(cell_name + "->Delay->CK_to_Q=" + (String) ck_to_q_delay); return; // -------------------------------------------------------------------- } } // namespace DSENT