/* Copyright (c) 2012 Massachusetts Institute of Technology * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "model/std_cells/LATQ.h" #include #include "model/PortInfo.h" #include "model/TransitionInfo.h" #include "model/EventInfo.h" #include "model/std_cells/StdCellLib.h" #include "model/std_cells/CellMacros.h" #include "model/timing_graph/ElectricalNet.h" #include "model/timing_graph/ElectricalDriver.h" #include "model/timing_graph/ElectricalLoad.h" #include "model/timing_graph/ElectricalDelay.h" namespace DSENT { using std::ceil; using std::max; using std::min; LATQ::LATQ(const String& instance_name_, const TechModel* tech_model_) : StdCell(instance_name_, tech_model_) { initProperties(); } LATQ::~LATQ() {} void LATQ::initProperties() { return; } void LATQ::constructModel() { // All constructModel should do is create Area/NDDPower/Energy Results as // well as instantiate any sub-instances using only the hard parameters createInputPort("D"); createInputPort("G"); createOutputPort("Q"); createLoad("D_Cap"); createLoad("G_Cap"); createDelay("D_to_Q_delay"); createDelay("G_to_Q_delay"); createDriver("Q_Ron", true); ElectricalLoad* d_cap = getLoad("D_Cap"); ElectricalLoad* g_cap = getLoad("G_Cap"); ElectricalDelay* d_to_q_delay = getDelay("D_to_Q_delay"); ElectricalDelay* g_to_q_delay = getDelay("G_to_Q_delay"); ElectricalDriver* q_ron = getDriver("Q_Ron"); getNet("D")->addDownstreamNode(d_cap); getNet("G")->addDownstreamNode(g_cap); d_cap->addDownstreamNode(d_to_q_delay); g_cap->addDownstreamNode(g_to_q_delay); g_to_q_delay->addDownstreamNode(q_ron); q_ron->addDownstreamNode(getNet("Q")); // Create Area result // Create NDD Power result createElectricalAtomicResults(); // Create G Event Energy Result createElectricalEventAtomicResult("G"); // Create DFF Event Energy Result createElectricalEventAtomicResult("LATD"); createElectricalEventAtomicResult("LATQ"); // Create Idle event for leakage // G pin is assumed to be on all the time //createElectricalEventAtomicResult("Idle"); getEventInfo("Idle")->setStaticTransitionInfos(); return; } void LATQ::updateModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "LATQ_X" + (String) drive_strength; // Get timing parameters getLoad("D_Cap")->setLoadCap(cache->get(cell_name + "->Cap->D")); getLoad("G_Cap")->setLoadCap(cache->get(cell_name + "->Cap->G")); getDriver("Q_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Q")); getDelay("G_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->G_to_Q")); getDelay("D_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->D_to_Q")); // Set the cell area getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire")); return; } void LATQ::evaluateModel() { return; } void LATQ::useModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "LATQ_X" + (String) drive_strength; // Propagate the transition info and get P_D, P_M, and P_Q propagateTransitionInfo(); double P_D = getInputPort("D")->getTransitionInfo().getProbability1(); double P_G = getInputPort("G")->getTransitionInfo().getProbability1(); double P_Q = getOutputPort("Q")->getTransitionInfo().getProbability1(); double G_num_trans_01 = getInputPort("G")->getTransitionInfo().getNumberTransitions01(); double D_num_trans_01 = getInputPort("D")->getTransitionInfo().getNumberTransitions01(); double Q_num_trans_01 = getOutputPort("Q")->getTransitionInfo().getNumberTransitions01(); // Calculate leakage double leakage = 0; leakage += cache->get(cell_name + "->Leakage->!D!G!Q") * (1 - P_D) * (1 - P_G) * (1 - P_Q); leakage += cache->get(cell_name + "->Leakage->!D!GQ") * (1 - P_D) * (1 - P_G) * P_Q; leakage += cache->get(cell_name + "->Leakage->!DG!Q") * (1 - P_D) * P_G * (1 - P_Q); leakage += cache->get(cell_name + "->Leakage->D!G!Q") * P_D * (1 - P_G) * (1 - P_Q); leakage += cache->get(cell_name + "->Leakage->D!GQ") * P_D * (1 - P_G) * P_Q; leakage += cache->get(cell_name + "->Leakage->DGQ") * P_D * P_G * P_Q; getNddPowerResult("Leakage")->setValue(leakage); // Get VDD double vdd = getTechModel()->get("Vdd"); // Get capacitances double g_b_cap = cache->get(cell_name + "->Cap->G_b"); double d_b_cap = cache->get(cell_name + "->Cap->D_b"); double q_i_cap = cache->get(cell_name + "->Cap->Q_i"); double q_b_cap = cache->get(cell_name + "->Cap->Q_b"); double q_cap = cache->get(cell_name + "->Cap->Q"); double q_load_cap = getNet("Q")->getTotalDownstreamCap(); // Calculate G Event energy double g_event_energy = 0.0; g_event_energy += (g_b_cap) * G_num_trans_01; g_event_energy *= vdd * vdd; getEventResult("G")->setValue(g_event_energy); // Calculate LATD Event energy double latd_event_energy = 0.0; latd_event_energy += (d_b_cap) * D_num_trans_01; latd_event_energy *= vdd * vdd; getEventResult("LATD")->setValue(latd_event_energy); // Calculate LATQ Event energy double latq_event_energy = 0.0; latq_event_energy += (q_i_cap + q_b_cap + q_cap + q_load_cap) * Q_num_trans_01; latq_event_energy *= vdd * vdd; getEventResult("LATQ")->setValue(latq_event_energy); return; } void LATQ::propagateTransitionInfo() { const TransitionInfo& trans_G = getInputPort("G")->getTransitionInfo(); const TransitionInfo& trans_D = getInputPort("D")->getTransitionInfo(); double G_num_trans_01 = trans_G.getNumberTransitions01(); double G_num_trans_10 = G_num_trans_01; double G_num_trans_00 = trans_G.getNumberTransitions00(); double D_freq_mult = trans_D.getFrequencyMultiplier(); // If the latch is sampling just as fast or faster than input data signal // Then it can capture all transitions (though it should be normalized to clock) if((G_num_trans_10 + G_num_trans_00) >= D_freq_mult) { const TransitionInfo& trans_Q = trans_D.scaleFrequencyMultiplier(G_num_trans_10 + G_num_trans_00); getOutputPort("Q")->setTransitionInfo(trans_Q); } // If the latch is sampling slower than the input data signal, then input // will look like they transition more else { // Calculate scale ratio double scale_ratio = (G_num_trans_10 + G_num_trans_00) / D_freq_mult; // 00 and 11 transitions become fewer double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11()); double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio; double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio; // 01 and 10 transitions become more frequent double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff; // Create final transition info, remembering to apply scaling ratio to normalize to G const TransitionInfo trans_Q( D_scaled_num_trans_00 * scale_ratio, D_scaled_num_trans_10 * scale_ratio, D_scaled_num_trans_11 * scale_ratio); getOutputPort("Q")->setTransitionInfo(trans_Q); } return; } // Creates the standard cell, characterizes and abstracts away the details void LATQ::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) { // Get parameters double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); Map* cache = cell_lib_->getStdCellCache(); // Standard cell cache string String cell_name = "LATQ_X" + (String) drive_strength_; Log::printLine("=== " + cell_name + " ==="); // Now actually build the full standard cell model createInputPort("D"); createInputPort("G"); createOutputPort("Q"); createNet("D_b"); createNet("Q_i"); createNet("Q_b"); createNet("G_b"); // Adds macros CellMacros::addInverter(this, "INV1", false, true, "D", "D_b"); CellMacros::addInverter(this, "INV2", false, true, "Q_i", "Q_b"); CellMacros::addInverter(this, "INV3", false, true, "Q_b", "Q"); CellMacros::addInverter(this, "INV4", false, true, "G", "G_b"); CellMacros::addTristate(this, "INVZ1", false, true, false, false, "D_b", "G", "G_b", "Q_i"); //trace timing through A->ZN path only CellMacros::addTristate(this, "INVZ2", false, false, false, false, "Q_b", "G_b", "G", "Q_i"); //don't trace timing through the feedback path // Update macros CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.125); CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.5); CellMacros::updateInverter(this, "INV3", drive_strength_ * 1.0); CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.125); CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.5); CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.0625); // Cache area result double area = 0.0; area += gate_pitch * getTotalHeight() * 1; area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); cache->set(cell_name + "->Area->Active", area); cache->set(cell_name + "->Area->Metal1Wire", area); //Cover-block m1 area Log::printLine(cell_name + "->Area->Active=" + (String) area); Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area); // -------------------------------------------------------------------- // Leakage Model Calculation // -------------------------------------------------------------------- // Cache leakage power results (for every single signal combination) double leakage_000 = 0; //!D, !G, !Q double leakage_001 = 0; //!D, !G, Q double leakage_010 = 0; //!D, G, !Q double leakage_100 = 0; //D, !G, !Q double leakage_101 = 0; //D, !G, Q double leakage_111 = 0; //D, G, Q //This is so painful... leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble(); leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); leakage_010 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble(); leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); leakage_100 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_101 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_101 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble(); leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); leakage_111 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble(); cache->set(cell_name + "->Leakage->!D!G!Q", leakage_000); cache->set(cell_name + "->Leakage->!D!GQ", leakage_001); cache->set(cell_name + "->Leakage->!DG!Q", leakage_010); cache->set(cell_name + "->Leakage->D!G!Q", leakage_100); cache->set(cell_name + "->Leakage->D!GQ", leakage_101); cache->set(cell_name + "->Leakage->DGQ", leakage_111); Log::printLine(cell_name + "->Leakage->!D!G!Q=" + (String) leakage_000); Log::printLine(cell_name + "->Leakage->!D!GQ=" + (String) leakage_001); Log::printLine(cell_name + "->Leakage->!DG!Q=" + (String) leakage_010); Log::printLine(cell_name + "->Leakage->D!G!Q=" + (String) leakage_100); Log::printLine(cell_name + "->Leakage->D!GQ=" + (String) leakage_101); Log::printLine(cell_name + "->Leakage->DGQ=" + (String) leakage_111); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Get Node Capacitances // -------------------------------------------------------------------- double d_cap = getNet("D")->getTotalDownstreamCap(); double d_b_cap = getNet("D_b")->getTotalDownstreamCap(); double q_i_cap = getNet("Q_i")->getTotalDownstreamCap(); double q_b_cap = getNet("Q_b")->getTotalDownstreamCap(); double q_cap = getNet("Q")->getTotalDownstreamCap(); double g_cap = getNet("G")->getTotalDownstreamCap(); double g_b_cap = getNet("G_b")->getTotalDownstreamCap(); cache->set(cell_name + "->Cap->D", d_cap); cache->set(cell_name + "->Cap->D_b", d_b_cap); cache->set(cell_name + "->Cap->Q_i", q_i_cap); cache->set(cell_name + "->Cap->Q_b", q_b_cap); cache->set(cell_name + "->Cap->Q", q_cap); cache->set(cell_name + "->Cap->G", g_cap); cache->set(cell_name + "->Cap->G_b", g_b_cap); Log::printLine(cell_name + "->Cap->D=" + (String) d_cap); Log::printLine(cell_name + "->Cap->D_b=" + (String) d_b_cap); Log::printLine(cell_name + "->Cap->Q_i=" + (String) q_i_cap); Log::printLine(cell_name + "->Cap->Q_b=" + (String) q_b_cap); Log::printLine(cell_name + "->Cap->Q=" + (String) q_cap); Log::printLine(cell_name + "->Cap->G=" + (String) g_cap); Log::printLine(cell_name + "->Cap->G_b=" + (String) g_b_cap); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Build Internal Delay Model // -------------------------------------------------------------------- double q_ron = getDriver("INV3_RonZN")->getOutputRes(); double d_to_q_delay = getDriver("INV1_RonZN")->calculateDelay() + getDriver("INVZ1_RonZN")->calculateDelay() + getDriver("INV2_RonZN")->calculateDelay() + getDriver("INV3_RonZN")->calculateDelay(); double g_to_q_delay = getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ1_RonZN")->calculateDelay() + getDriver("INV2_RonZN")->calculateDelay() + getDriver("INV3_RonZN")->calculateDelay(); cache->set(cell_name + "->DriveRes->Q", q_ron); cache->set(cell_name + "->Delay->D_to_Q", d_to_q_delay); cache->set(cell_name + "->Delay->G_to_Q", g_to_q_delay); Log::printLine(cell_name + "->DriveRes->Q=" + (String) q_ron); Log::printLine(cell_name + "->Delay->D_to_Q=" + (String) d_to_q_delay); Log::printLine(cell_name + "->Delay->G_to_Q=" + (String) g_to_q_delay); return; // -------------------------------------------------------------------- } } // namespace DSENT