#include "model/std_cells/NAND2.h" #include #include "model/PortInfo.h" #include "model/TransitionInfo.h" #include "model/EventInfo.h" #include "model/std_cells/StdCellLib.h" #include "model/std_cells/CellMacros.h" #include "model/timing_graph/ElectricalNet.h" #include "model/timing_graph/ElectricalDriver.h" #include "model/timing_graph/ElectricalLoad.h" #include "model/timing_graph/ElectricalDelay.h" namespace DSENT { using std::ceil; using std::max; NAND2::NAND2(const String& instance_name_, const TechModel* tech_model_) : StdCell(instance_name_, tech_model_) { initProperties(); } NAND2::~NAND2() {} void NAND2::initProperties() { return; } void NAND2::constructModel() { // All constructModel should do is create Area/NDDPower/Energy Results as // well as instantiate any sub-instances using only the hard parameters createInputPort("A"); createInputPort("B"); createOutputPort("Y"); createLoad("A_Cap"); createLoad("B_Cap"); createDelay("A_to_Y_delay"); createDelay("B_to_Y_delay"); createDriver("Y_Ron", true); ElectricalLoad* a_cap = getLoad("A_Cap"); ElectricalLoad* b_cap = getLoad("A_Cap"); ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay"); ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay"); ElectricalDriver* y_ron = getDriver("Y_Ron"); getNet("A")->addDownstreamNode(a_cap); getNet("B")->addDownstreamNode(b_cap); a_cap->addDownstreamNode(a_to_y_delay); b_cap->addDownstreamNode(b_to_y_delay); a_to_y_delay->addDownstreamNode(y_ron); b_to_y_delay->addDownstreamNode(y_ron); y_ron->addDownstreamNode(getNet("Y")); // Create Area result // Create NDD Power result createElectricalAtomicResults(); // Create NAND Event Energy Result createElectricalEventAtomicResult("NAND2"); getEventInfo("Idle")->setStaticTransitionInfos(); return; } void NAND2::updateModel() { // All updateModel should do is calculate numbers for the Area/NDDPower/Energy // Results as anything else that needs to be done using either soft or hard parameters // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "NAND2_X" + (String) drive_strength; // Get timing parameters getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A")); getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B")); getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y")); getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y")); getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y")); // Set the cell area getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Active")); return; } void NAND2::useModel() { // Get parameters double drive_strength = getDrivingStrength(); Map* cache = getTechModel()->getStdCellLib()->getStdCellCache(); // Standard cell cache string String cell_name = "NAND2_X" + (String) drive_strength; // Propagate the transition info and get the 0->1 transtion count propagateTransitionInfo(); double P_A = getInputPort("A")->getTransitionInfo().getProbability1(); double P_B = getInputPort("B")->getTransitionInfo().getProbability1(); double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01(); // Calculate leakage double leakage = 0; leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B); leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B; leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B); leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B; getNddPowerResult("Leakage")->setValue(leakage); // Get capacitances double y_cap = cache->get(cell_name + "->Cap->Y"); double y_load_cap = getNet("Y")->getTotalDownstreamCap(); // Get VDD double vdd = getTechModel()->get("Vdd"); // Calculate NAND2Event energy double energy_per_trans_01 = (y_cap + y_load_cap) * vdd * vdd; getEventResult("NAND2")->setValue(energy_per_trans_01 * Y_num_trans_01); return; } void NAND2::propagateTransitionInfo() { // Get input signal transition info const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo(); const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo(); double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()); const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult); const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult); double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult; double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult; double A_prob_10 = A_prob_01; double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult; double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult; double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult; double B_prob_10 = B_prob_01; double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult; // Set output transition info double Y_prob_00 = A_prob_11 * B_prob_11; double Y_prob_01 = A_prob_11 * B_prob_10 + A_prob_10 * (B_prob_11 + B_prob_10); double Y_prob_11 = A_prob_00 + A_prob_01 * (B_prob_00 + B_prob_10) + A_prob_10 * (B_prob_00 + B_prob_01) + A_prob_11 * B_prob_00; // Check that probabilities add up to 1.0 with some finite tolerance ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0), "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!"); // Turn probability of transitions per cycle into number of transitions per time unit TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult); getOutputPort("Y")->setTransitionInfo(trans_Y); return; } void NAND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) { // Standard cell cache string String cell_name = "NAND2_X" + (String) drive_strength_; Log::printLine("=== " + cell_name + " ==="); // Get parameters double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); Map* cache = cell_lib_->getStdCellCache(); // Now actually build the full standard cell model // Create the two input ports createInputPort("A"); createInputPort("B"); createOutputPort("Y"); // Adds macros CellMacros::addNand2(this, "NAND", true, true, true, "A", "B", "Y"); CellMacros::updateNand2(this, "NAND", drive_strength_); // Cache area result double area = gate_pitch * getTotalHeight() * (1 + getGenProperties()->get("NAND_GatePitches").toDouble()); cache->set(cell_name + "->Area->Active", area); Log::printLine(cell_name + "->Area->Active=" + (String) area); // -------------------------------------------------------------------- // Leakage Model Calculation // -------------------------------------------------------------------- double leakage_00 = getGenProperties()->get("NAND_LeakagePower_00").toDouble(); double leakage_01 = getGenProperties()->get("NAND_LeakagePower_01").toDouble(); double leakage_10 = getGenProperties()->get("NAND_LeakagePower_10").toDouble(); double leakage_11 = getGenProperties()->get("NAND_LeakagePower_11").toDouble(); cache->set(cell_name + "->Leakage->!A!B", leakage_00); cache->set(cell_name + "->Leakage->!AB", leakage_01); cache->set(cell_name + "->Leakage->A!B", leakage_10); cache->set(cell_name + "->Leakage->AB", leakage_11); Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00); Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01); Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10); Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11); // -------------------------------------------------------------------- // Cache event energy results /* double event_a_flip = getGenProperties()->get("NAND_A1_Flip").toDouble(); double event_b_flip = getGenProperties()->get("NAND_A2_Flip").toDouble(); double event_y_flip = getGenProperties()->get("NAND_ZN_Flip").toDouble(); cache->set(cell_name + "->Event_A_Flip", event_a_flip); cache->set(cell_name + "->Event_B_Flip", event_b_flip); cache->set(cell_name + "->Event_Y_Flip", event_y_flip); Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip); Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip); Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip); */ // -------------------------------------------------------------------- // Get Node Capacitances // -------------------------------------------------------------------- double a_cap = getNet("A")->getTotalDownstreamCap(); double b_cap = getNet("B")->getTotalDownstreamCap(); double y_cap = getNet("Y")->getTotalDownstreamCap(); cache->set(cell_name + "->Cap->A", a_cap); cache->set(cell_name + "->Cap->B", b_cap); cache->set(cell_name + "->Cap->Y", y_cap); Log::printLine(cell_name + "->Cap->A=" + (String) a_cap); Log::printLine(cell_name + "->Cap->B=" + (String) b_cap); Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap); // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Build Internal Delay Model // -------------------------------------------------------------------- double y_ron = getDriver("NAND_RonZN")->getOutputRes(); double a_to_y_delay = getDriver("NAND_RonZN")->calculateDelay(); double b_to_y_delay = getDriver("NAND_RonZN")->calculateDelay(); cache->set(cell_name + "->DriveRes->Y", y_ron); cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay); cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay); Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron); Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay); Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay); // -------------------------------------------------------------------- return; } } // namespace DSENT