/***************************************************************************** * McPAT * SOFTWARE LICENSE AGREEMENT * Copyright 2012 Hewlett-Packard Development Company, L.P. * All Rights Reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” * ***************************************************************************/ #define GLOBALVAR #include #include #include #include "area.h" #include "array.h" #include "decoder.h" #include "globalvar.h" #include "parameter.h" using namespace std; ArrayST::ArrayST(const InputParameter *configure_interface, string _name, enum Device_ty device_ty_, bool opt_local_, enum Core_type core_ty_, bool _is_default) :l_ip(*configure_interface), name(_name), device_ty(device_ty_), opt_local(opt_local_), core_ty(core_ty_), is_default(_is_default) { if (l_ip.cache_sz<64) l_ip.cache_sz=64; l_ip.error_checking();//not only do the error checking but also fill some missing parameters optimize_array(); } void ArrayST::compute_base_power() { //l_ip.out_w =l_ip.line_sz*8; local_result=cacti_interface(&l_ip); } void ArrayST::optimize_array() { list candidate_solutions(0); list::iterator candidate_iter, min_dynamic_energy_iter; uca_org_t * temp_res = 0; local_result.valid=false; double throughput=l_ip.throughput, latency=l_ip.latency; double area_efficiency_threshold = 20.0; bool throughput_overflow=true, latency_overflow=true; compute_base_power(); if ((local_result.cycle_time - throughput) <= 1e-10 ) throughput_overflow=false; if ((local_result.access_time - latency)<= 1e-10) latency_overflow=false; if (opt_for_clk && opt_local) { if (throughput_overflow || latency_overflow) { l_ip.ed=0; l_ip.delay_wt = 100;//Fixed number, make sure timing can be satisfied. l_ip.cycle_time_wt = 1000; l_ip.area_wt = 10;//Fixed number, This is used to exhaustive search for individual components. l_ip.dynamic_power_wt = 10;//Fixed number, This is used to exhaustive search for individual components. l_ip.leakage_power_wt = 10; l_ip.delay_dev = 1000000;//Fixed number, make sure timing can be satisfied. l_ip.cycle_time_dev = 100; l_ip.area_dev = 1000000;//Fixed number, This is used to exhaustive search for individual components. l_ip.dynamic_power_dev = 1000000;//Fixed number, This is used to exhaustive search for individual components. l_ip.leakage_power_dev = 1000000; throughput_overflow=true; //Reset overflow flag before start optimization iterations latency_overflow=true; temp_res = &local_result; //Clean up the result for optimized for ED^2P temp_res->cleanup(); } while ((throughput_overflow || latency_overflow)&&l_ip.cycle_time_dev > 10)// && l_ip.delay_dev > 10 { compute_base_power(); l_ip.cycle_time_dev-=10;//This is the time_dev to be used for next iteration // from best area to worst area -->worst timing to best timing if ((((local_result.cycle_time - throughput) <= 1e-10 ) && (local_result.access_time - latency)<= 1e-10)|| (local_result.data_array2->area_efficiency < area_efficiency_threshold && l_ip.assoc == 0)) { //if no satisfiable solution is found,the most aggressive one is left candidate_solutions.push_back(local_result); //output_data_csv(candidate_solutions.back()); if (((local_result.cycle_time - throughput) <= 1e-10) && ((local_result.access_time - latency)<= 1e-10)) //ensure stop opt not because of cam { throughput_overflow=false; latency_overflow=false; } } else { //TODO: whether checking the partial satisfied results too, or just change the mark??? if ((local_result.cycle_time - throughput) <= 1e-10) throughput_overflow=false; if ((local_result.access_time - latency)<= 1e-10) latency_overflow=false; if (l_ip.cycle_time_dev > 10) { //if not >10 local_result is the last result, it cannot be cleaned up temp_res = &local_result; //Only solutions not saved in the list need to be cleaned up temp_res->cleanup(); } } // l_ip.cycle_time_dev-=10; // l_ip.delay_dev-=10; } if (l_ip.assoc > 0) { //For array structures except CAM and FA, Give warning but still provide a result with best timing found if (throughput_overflow==true) cout<< "Warning: " << name<<" array structure cannot satisfy throughput constraint." << endl; if (latency_overflow==true) cout<< "Warning: " << name<<" array structure cannot satisfy latency constraint." << endl; } // else // { // /*According to "Content-Addressable Memory (CAM) Circuits and // Architectures": A Tutorial and Survey // by Kostas Pagiamtzis et al. // CAM structures can be heavily pipelined and use look-ahead techniques, // therefore timing can be relaxed. But McPAT does not model the advanced // techniques. If continue optimizing, the area efficiency will be too low // */ // //For CAM and FA, stop opt if area efficiency is too low // if (throughput_overflow==true) // cout<< "Warning: " <<" McPAT stopped optimization on throughput for "<< name // <<" array structure because its area efficiency is below "< (candidate_iter)->power.readOp.dynamic) { min_dynamic_energy = (candidate_iter)->power.readOp.dynamic; min_dynamic_energy_iter = candidate_iter; local_result = *(min_dynamic_energy_iter); //TODO: since results are reordered results and l_ip may miss match. Therefore, the final output spread sheets may show the miss match. } else { candidate_iter->cleanup() ; } } } candidate_solutions.clear(); } double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty); double macro_layout_overhead = g_tp.macro_layout_overhead; double chip_PR_overhead = g_tp.chip_layout_overhead; double total_overhead = macro_layout_overhead*chip_PR_overhead; local_result.area *= total_overhead; //maintain constant power density double pppm_t[4] = {total_overhead,1,1,total_overhead}; double sckRation = g_tp.sckt_co_eff; local_result.power.readOp.dynamic *= sckRation; local_result.power.writeOp.dynamic *= sckRation; local_result.power.searchOp.dynamic *= sckRation; local_result.power.readOp.leakage *= l_ip.nbanks; local_result.power.readOp.longer_channel_leakage = local_result.power.readOp.leakage*long_channel_device_reduction; local_result.power = local_result.power* pppm_t; local_result.data_array2->power.readOp.dynamic *= sckRation; local_result.data_array2->power.writeOp.dynamic *= sckRation; local_result.data_array2->power.searchOp.dynamic *= sckRation; local_result.data_array2->power.readOp.leakage *= l_ip.nbanks; local_result.data_array2->power.readOp.longer_channel_leakage = local_result.data_array2->power.readOp.leakage*long_channel_device_reduction; local_result.data_array2->power = local_result.data_array2->power* pppm_t; if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) { local_result.tag_array2->power.readOp.dynamic *= sckRation; local_result.tag_array2->power.writeOp.dynamic *= sckRation; local_result.tag_array2->power.searchOp.dynamic *= sckRation; local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks; local_result.tag_array2->power.readOp.longer_channel_leakage = local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction; local_result.tag_array2->power = local_result.tag_array2->power* pppm_t; } } void ArrayST::leakage_feedback(double temperature) { // Update the temperature. l_ip is already set and error-checked in the creator function. l_ip.temp = (unsigned int)round(temperature/10.0)*10; // This corresponds to cacti_interface() in the initialization process. Leakage power is updated here. reconfigure(&l_ip,&local_result); // Scale the power values. This is part of ArrayST::optimize_array(). double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty); double macro_layout_overhead = g_tp.macro_layout_overhead; double chip_PR_overhead = g_tp.chip_layout_overhead; double total_overhead = macro_layout_overhead*chip_PR_overhead; double pppm_t[4] = {total_overhead,1,1,total_overhead}; double sckRation = g_tp.sckt_co_eff; local_result.power.readOp.dynamic *= sckRation; local_result.power.writeOp.dynamic *= sckRation; local_result.power.searchOp.dynamic *= sckRation; local_result.power.readOp.leakage *= l_ip.nbanks; local_result.power.readOp.longer_channel_leakage = local_result.power.readOp.leakage*long_channel_device_reduction; local_result.power = local_result.power* pppm_t; local_result.data_array2->power.readOp.dynamic *= sckRation; local_result.data_array2->power.writeOp.dynamic *= sckRation; local_result.data_array2->power.searchOp.dynamic *= sckRation; local_result.data_array2->power.readOp.leakage *= l_ip.nbanks; local_result.data_array2->power.readOp.longer_channel_leakage = local_result.data_array2->power.readOp.leakage*long_channel_device_reduction; local_result.data_array2->power = local_result.data_array2->power* pppm_t; if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) { local_result.tag_array2->power.readOp.dynamic *= sckRation; local_result.tag_array2->power.writeOp.dynamic *= sckRation; local_result.tag_array2->power.searchOp.dynamic *= sckRation; local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks; local_result.tag_array2->power.readOp.longer_channel_leakage = local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction; local_result.tag_array2->power = local_result.tag_array2->power* pppm_t; } } ArrayST:: ~ArrayST() { local_result.cleanup(); }