/* pybind11/numpy.h: Basic NumPy support, vectorize() wrapper Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "pybind11.h" #include "complex.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_MSC_VER) # pragma warning(push) # pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #endif /* This will be true on all flat address space platforms and allows us to reduce the whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size and dimension types (e.g. shape, strides, indexing), instead of inflicting this upon the library user. */ static_assert(sizeof(ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t"); NAMESPACE_BEGIN(PYBIND11_NAMESPACE) class array; // Forward declaration NAMESPACE_BEGIN(detail) template struct npy_format_descriptor; struct PyArrayDescr_Proxy { PyObject_HEAD PyObject *typeobj; char kind; char type; char byteorder; char flags; int type_num; int elsize; int alignment; char *subarray; PyObject *fields; PyObject *names; }; struct PyArray_Proxy { PyObject_HEAD char *data; int nd; ssize_t *dimensions; ssize_t *strides; PyObject *base; PyObject *descr; int flags; }; struct PyVoidScalarObject_Proxy { PyObject_VAR_HEAD char *obval; PyArrayDescr_Proxy *descr; int flags; PyObject *base; }; struct numpy_type_info { PyObject* dtype_ptr; std::string format_str; }; struct numpy_internals { std::unordered_map registered_dtypes; numpy_type_info *get_type_info(const std::type_info& tinfo, bool throw_if_missing = true) { auto it = registered_dtypes.find(std::type_index(tinfo)); if (it != registered_dtypes.end()) return &(it->second); if (throw_if_missing) pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name()); return nullptr; } template numpy_type_info *get_type_info(bool throw_if_missing = true) { return get_type_info(typeid(typename std::remove_cv::type), throw_if_missing); } }; inline PYBIND11_NOINLINE void load_numpy_internals(numpy_internals* &ptr) { ptr = &get_or_create_shared_data("_numpy_internals"); } inline numpy_internals& get_numpy_internals() { static numpy_internals* ptr = nullptr; if (!ptr) load_numpy_internals(ptr); return *ptr; } struct npy_api { enum constants { NPY_ARRAY_C_CONTIGUOUS_ = 0x0001, NPY_ARRAY_F_CONTIGUOUS_ = 0x0002, NPY_ARRAY_OWNDATA_ = 0x0004, NPY_ARRAY_FORCECAST_ = 0x0010, NPY_ARRAY_ENSUREARRAY_ = 0x0040, NPY_ARRAY_ALIGNED_ = 0x0100, NPY_ARRAY_WRITEABLE_ = 0x0400, NPY_BOOL_ = 0, NPY_BYTE_, NPY_UBYTE_, NPY_SHORT_, NPY_USHORT_, NPY_INT_, NPY_UINT_, NPY_LONG_, NPY_ULONG_, NPY_LONGLONG_, NPY_ULONGLONG_, NPY_FLOAT_, NPY_DOUBLE_, NPY_LONGDOUBLE_, NPY_CFLOAT_, NPY_CDOUBLE_, NPY_CLONGDOUBLE_, NPY_OBJECT_ = 17, NPY_STRING_, NPY_UNICODE_, NPY_VOID_ }; typedef struct { Py_intptr_t *ptr; int len; } PyArray_Dims; static npy_api& get() { static npy_api api = lookup(); return api; } bool PyArray_Check_(PyObject *obj) const { return (bool) PyObject_TypeCheck(obj, PyArray_Type_); } bool PyArrayDescr_Check_(PyObject *obj) const { return (bool) PyObject_TypeCheck(obj, PyArrayDescr_Type_); } unsigned int (*PyArray_GetNDArrayCFeatureVersion_)(); PyObject *(*PyArray_DescrFromType_)(int); PyObject *(*PyArray_NewFromDescr_) (PyTypeObject *, PyObject *, int, Py_intptr_t *, Py_intptr_t *, void *, int, PyObject *); PyObject *(*PyArray_DescrNewFromType_)(int); int (*PyArray_CopyInto_)(PyObject *, PyObject *); PyObject *(*PyArray_NewCopy_)(PyObject *, int); PyTypeObject *PyArray_Type_; PyTypeObject *PyVoidArrType_Type_; PyTypeObject *PyArrayDescr_Type_; PyObject *(*PyArray_DescrFromScalar_)(PyObject *); PyObject *(*PyArray_FromAny_) (PyObject *, PyObject *, int, int, int, PyObject *); int (*PyArray_DescrConverter_) (PyObject *, PyObject **); bool (*PyArray_EquivTypes_) (PyObject *, PyObject *); int (*PyArray_GetArrayParamsFromObject_)(PyObject *, PyObject *, char, PyObject **, int *, Py_ssize_t *, PyObject **, PyObject *); PyObject *(*PyArray_Squeeze_)(PyObject *); int (*PyArray_SetBaseObject_)(PyObject *, PyObject *); PyObject* (*PyArray_Resize_)(PyObject*, PyArray_Dims*, int, int); private: enum functions { API_PyArray_GetNDArrayCFeatureVersion = 211, API_PyArray_Type = 2, API_PyArrayDescr_Type = 3, API_PyVoidArrType_Type = 39, API_PyArray_DescrFromType = 45, API_PyArray_DescrFromScalar = 57, API_PyArray_FromAny = 69, API_PyArray_Resize = 80, API_PyArray_CopyInto = 82, API_PyArray_NewCopy = 85, API_PyArray_NewFromDescr = 94, API_PyArray_DescrNewFromType = 9, API_PyArray_DescrConverter = 174, API_PyArray_EquivTypes = 182, API_PyArray_GetArrayParamsFromObject = 278, API_PyArray_Squeeze = 136, API_PyArray_SetBaseObject = 282 }; static npy_api lookup() { module m = module::import("numpy.core.multiarray"); auto c = m.attr("_ARRAY_API"); #if PY_MAJOR_VERSION >= 3 void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), NULL); #else void **api_ptr = (void **) PyCObject_AsVoidPtr(c.ptr()); #endif npy_api api; #define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func]; DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion); if (api.PyArray_GetNDArrayCFeatureVersion_() < 0x7) pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0"); DECL_NPY_API(PyArray_Type); DECL_NPY_API(PyVoidArrType_Type); DECL_NPY_API(PyArrayDescr_Type); DECL_NPY_API(PyArray_DescrFromType); DECL_NPY_API(PyArray_DescrFromScalar); DECL_NPY_API(PyArray_FromAny); DECL_NPY_API(PyArray_Resize); DECL_NPY_API(PyArray_CopyInto); DECL_NPY_API(PyArray_NewCopy); DECL_NPY_API(PyArray_NewFromDescr); DECL_NPY_API(PyArray_DescrNewFromType); DECL_NPY_API(PyArray_DescrConverter); DECL_NPY_API(PyArray_EquivTypes); DECL_NPY_API(PyArray_GetArrayParamsFromObject); DECL_NPY_API(PyArray_Squeeze); DECL_NPY_API(PyArray_SetBaseObject); #undef DECL_NPY_API return api; } }; inline PyArray_Proxy* array_proxy(void* ptr) { return reinterpret_cast(ptr); } inline const PyArray_Proxy* array_proxy(const void* ptr) { return reinterpret_cast(ptr); } inline PyArrayDescr_Proxy* array_descriptor_proxy(PyObject* ptr) { return reinterpret_cast(ptr); } inline const PyArrayDescr_Proxy* array_descriptor_proxy(const PyObject* ptr) { return reinterpret_cast(ptr); } inline bool check_flags(const void* ptr, int flag) { return (flag == (array_proxy(ptr)->flags & flag)); } template struct is_std_array : std::false_type { }; template struct is_std_array> : std::true_type { }; template struct is_complex : std::false_type { }; template struct is_complex> : std::true_type { }; template struct array_info_scalar { typedef T type; static constexpr bool is_array = false; static constexpr bool is_empty = false; static PYBIND11_DESCR extents() { return _(""); } static void append_extents(list& /* shape */) { } }; // Computes underlying type and a comma-separated list of extents for array // types (any mix of std::array and built-in arrays). An array of char is // treated as scalar because it gets special handling. template struct array_info : array_info_scalar { }; template struct array_info> { using type = typename array_info::type; static constexpr bool is_array = true; static constexpr bool is_empty = (N == 0) || array_info::is_empty; static constexpr size_t extent = N; // appends the extents to shape static void append_extents(list& shape) { shape.append(N); array_info::append_extents(shape); } template::is_array, int> = 0> static PYBIND11_DESCR extents() { return _(); } template::is_array, int> = 0> static PYBIND11_DESCR extents() { return concat(_(), array_info::extents()); } }; // For numpy we have special handling for arrays of characters, so we don't include // the size in the array extents. template struct array_info : array_info_scalar { }; template struct array_info> : array_info_scalar> { }; template struct array_info : array_info> { }; template using remove_all_extents_t = typename array_info::type; template using is_pod_struct = all_of< std::is_standard_layout, // since we're accessing directly in memory we need a standard layout type #if !defined(__GNUG__) || defined(_LIBCPP_VERSION) || defined(_GLIBCXX_USE_CXX11_ABI) // _GLIBCXX_USE_CXX11_ABI indicates that we're using libstdc++ from GCC 5 or newer, independent // of the actual compiler (Clang can also use libstdc++, but it always defines __GNUC__ == 4). std::is_trivially_copyable, #else // GCC 4 doesn't implement is_trivially_copyable, so approximate it std::is_trivially_destructible, satisfies_any_of, #endif satisfies_none_of >; template ssize_t byte_offset_unsafe(const Strides &) { return 0; } template ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) { return i * strides[Dim] + byte_offset_unsafe(strides, index...); } /** * Proxy class providing unsafe, unchecked const access to array data. This is constructed through * the `unchecked()` method of `array` or the `unchecked()` method of `array_t`. `Dims` * will be -1 for dimensions determined at runtime. */ template class unchecked_reference { protected: static constexpr bool Dynamic = Dims < 0; const unsigned char *data_; // Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to // make large performance gains on big, nested loops, but requires compile-time dimensions conditional_t> shape_, strides_; const ssize_t dims_; friend class pybind11::array; // Constructor for compile-time dimensions: template unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t) : data_{reinterpret_cast(data)}, dims_{Dims} { for (size_t i = 0; i < (size_t) dims_; i++) { shape_[i] = shape[i]; strides_[i] = strides[i]; } } // Constructor for runtime dimensions: template unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t dims) : data_{reinterpret_cast(data)}, shape_{shape}, strides_{strides}, dims_{dims} {} public: /** * Unchecked const reference access to data at the given indices. For a compile-time known * number of dimensions, this requires the correct number of arguments; for run-time * dimensionality, this is not checked (and so is up to the caller to use safely). */ template const T &operator()(Ix... index) const { static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic, "Invalid number of indices for unchecked array reference"); return *reinterpret_cast(data_ + byte_offset_unsafe(strides_, ssize_t(index)...)); } /** * Unchecked const reference access to data; this operator only participates if the reference * is to a 1-dimensional array. When present, this is exactly equivalent to `obj(index)`. */ template > const T &operator[](ssize_t index) const { return operator()(index); } /// Pointer access to the data at the given indices. template const T *data(Ix... ix) const { return &operator()(ssize_t(ix)...); } /// Returns the item size, i.e. sizeof(T) constexpr static ssize_t itemsize() { return sizeof(T); } /// Returns the shape (i.e. size) of dimension `dim` ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; } /// Returns the number of dimensions of the array ssize_t ndim() const { return dims_; } /// Returns the total number of elements in the referenced array, i.e. the product of the shapes template enable_if_t size() const { return std::accumulate(shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies()); } template enable_if_t size() const { return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies()); } /// Returns the total number of bytes used by the referenced data. Note that the actual span in /// memory may be larger if the referenced array has non-contiguous strides (e.g. for a slice). ssize_t nbytes() const { return size() * itemsize(); } }; template class unchecked_mutable_reference : public unchecked_reference { friend class pybind11::array; using ConstBase = unchecked_reference; using ConstBase::ConstBase; using ConstBase::Dynamic; public: /// Mutable, unchecked access to data at the given indices. template T& operator()(Ix... index) { static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic, "Invalid number of indices for unchecked array reference"); return const_cast(ConstBase::operator()(index...)); } /** * Mutable, unchecked access data at the given index; this operator only participates if the * reference is to a 1-dimensional array (or has runtime dimensions). When present, this is * exactly equivalent to `obj(index)`. */ template > T &operator[](ssize_t index) { return operator()(index); } /// Mutable pointer access to the data at the given indices. template T *mutable_data(Ix... ix) { return &operator()(ssize_t(ix)...); } }; template struct type_caster> { static_assert(Dim == 0 && Dim > 0 /* always fail */, "unchecked array proxy object is not castable"); }; template struct type_caster> : type_caster> {}; NAMESPACE_END(detail) class dtype : public object { public: PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_); explicit dtype(const buffer_info &info) { dtype descr(_dtype_from_pep3118()(PYBIND11_STR_TYPE(info.format))); // If info.itemsize == 0, use the value calculated from the format string m_ptr = descr.strip_padding(info.itemsize ? info.itemsize : descr.itemsize()).release().ptr(); } explicit dtype(const std::string &format) { m_ptr = from_args(pybind11::str(format)).release().ptr(); } dtype(const char *format) : dtype(std::string(format)) { } dtype(list names, list formats, list offsets, ssize_t itemsize) { dict args; args["names"] = names; args["formats"] = formats; args["offsets"] = offsets; args["itemsize"] = pybind11::int_(itemsize); m_ptr = from_args(args).release().ptr(); } /// This is essentially the same as calling numpy.dtype(args) in Python. static dtype from_args(object args) { PyObject *ptr = nullptr; if (!detail::npy_api::get().PyArray_DescrConverter_(args.release().ptr(), &ptr) || !ptr) throw error_already_set(); return reinterpret_steal(ptr); } /// Return dtype associated with a C++ type. template static dtype of() { return detail::npy_format_descriptor::type>::dtype(); } /// Size of the data type in bytes. ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; } /// Returns true for structured data types. bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; } /// Single-character type code. char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; } private: static object _dtype_from_pep3118() { static PyObject *obj = module::import("numpy.core._internal") .attr("_dtype_from_pep3118").cast().release().ptr(); return reinterpret_borrow(obj); } dtype strip_padding(ssize_t itemsize) { // Recursively strip all void fields with empty names that are generated for // padding fields (as of NumPy v1.11). if (!has_fields()) return *this; struct field_descr { PYBIND11_STR_TYPE name; object format; pybind11::int_ offset; }; std::vector field_descriptors; for (auto field : attr("fields").attr("items")()) { auto spec = field.cast(); auto name = spec[0].cast(); auto format = spec[1].cast()[0].cast(); auto offset = spec[1].cast()[1].cast(); if (!len(name) && format.kind() == 'V') continue; field_descriptors.push_back({(PYBIND11_STR_TYPE) name, format.strip_padding(format.itemsize()), offset}); } std::sort(field_descriptors.begin(), field_descriptors.end(), [](const field_descr& a, const field_descr& b) { return a.offset.cast() < b.offset.cast(); }); list names, formats, offsets; for (auto& descr : field_descriptors) { names.append(descr.name); formats.append(descr.format); offsets.append(descr.offset); } return dtype(names, formats, offsets, itemsize); } }; class array : public buffer { public: PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array) enum { c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_, f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_, forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_ }; array() : array({{0}}, static_cast(nullptr)) {} using ShapeContainer = detail::any_container; using StridesContainer = detail::any_container; // Constructs an array taking shape/strides from arbitrary container types array(const pybind11::dtype &dt, ShapeContainer shape, StridesContainer strides, const void *ptr = nullptr, handle base = handle()) { if (strides->empty()) *strides = c_strides(*shape, dt.itemsize()); auto ndim = shape->size(); if (ndim != strides->size()) pybind11_fail("NumPy: shape ndim doesn't match strides ndim"); auto descr = dt; int flags = 0; if (base && ptr) { if (isinstance(base)) /* Copy flags from base (except ownership bit) */ flags = reinterpret_borrow(base).flags() & ~detail::npy_api::NPY_ARRAY_OWNDATA_; else /* Writable by default, easy to downgrade later on if needed */ flags = detail::npy_api::NPY_ARRAY_WRITEABLE_; } auto &api = detail::npy_api::get(); auto tmp = reinterpret_steal(api.PyArray_NewFromDescr_( api.PyArray_Type_, descr.release().ptr(), (int) ndim, shape->data(), strides->data(), const_cast(ptr), flags, nullptr)); if (!tmp) throw error_already_set(); if (ptr) { if (base) { api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr()); } else { tmp = reinterpret_steal(api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */)); } } m_ptr = tmp.release().ptr(); } array(const pybind11::dtype &dt, ShapeContainer shape, const void *ptr = nullptr, handle base = handle()) : array(dt, std::move(shape), {}, ptr, base) { } template ::value && !std::is_same::value>> array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle()) : array(dt, {{count}}, ptr, base) { } template array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle()) : array(pybind11::dtype::of(), std::move(shape), std::move(strides), ptr, base) { } template array(ShapeContainer shape, const T *ptr, handle base = handle()) : array(std::move(shape), {}, ptr, base) { } template explicit array(ssize_t count, const T *ptr, handle base = handle()) : array({count}, {}, ptr, base) { } explicit array(const buffer_info &info) : array(pybind11::dtype(info), info.shape, info.strides, info.ptr) { } /// Array descriptor (dtype) pybind11::dtype dtype() const { return reinterpret_borrow(detail::array_proxy(m_ptr)->descr); } /// Total number of elements ssize_t size() const { return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies()); } /// Byte size of a single element ssize_t itemsize() const { return detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize; } /// Total number of bytes ssize_t nbytes() const { return size() * itemsize(); } /// Number of dimensions ssize_t ndim() const { return detail::array_proxy(m_ptr)->nd; } /// Base object object base() const { return reinterpret_borrow(detail::array_proxy(m_ptr)->base); } /// Dimensions of the array const ssize_t* shape() const { return detail::array_proxy(m_ptr)->dimensions; } /// Dimension along a given axis ssize_t shape(ssize_t dim) const { if (dim >= ndim()) fail_dim_check(dim, "invalid axis"); return shape()[dim]; } /// Strides of the array const ssize_t* strides() const { return detail::array_proxy(m_ptr)->strides; } /// Stride along a given axis ssize_t strides(ssize_t dim) const { if (dim >= ndim()) fail_dim_check(dim, "invalid axis"); return strides()[dim]; } /// Return the NumPy array flags int flags() const { return detail::array_proxy(m_ptr)->flags; } /// If set, the array is writeable (otherwise the buffer is read-only) bool writeable() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_); } /// If set, the array owns the data (will be freed when the array is deleted) bool owndata() const { return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_); } /// Pointer to the contained data. If index is not provided, points to the /// beginning of the buffer. May throw if the index would lead to out of bounds access. template const void* data(Ix... index) const { return static_cast(detail::array_proxy(m_ptr)->data + offset_at(index...)); } /// Mutable pointer to the contained data. If index is not provided, points to the /// beginning of the buffer. May throw if the index would lead to out of bounds access. /// May throw if the array is not writeable. template void* mutable_data(Ix... index) { check_writeable(); return static_cast(detail::array_proxy(m_ptr)->data + offset_at(index...)); } /// Byte offset from beginning of the array to a given index (full or partial). /// May throw if the index would lead to out of bounds access. template ssize_t offset_at(Ix... index) const { if ((ssize_t) sizeof...(index) > ndim()) fail_dim_check(sizeof...(index), "too many indices for an array"); return byte_offset(ssize_t(index)...); } ssize_t offset_at() const { return 0; } /// Item count from beginning of the array to a given index (full or partial). /// May throw if the index would lead to out of bounds access. template ssize_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); } /** * Returns a proxy object that provides access to the array's data without bounds or * dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with * care: the array must not be destroyed or reshaped for the duration of the returned object, * and the caller must take care not to access invalid dimensions or dimension indices. */ template detail::unchecked_mutable_reference mutable_unchecked() & { if (Dims >= 0 && ndim() != Dims) throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) + "; expected " + std::to_string(Dims)); return detail::unchecked_mutable_reference(mutable_data(), shape(), strides(), ndim()); } /** * Returns a proxy object that provides const access to the array's data without bounds or * dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the * underlying array have the `writable` flag. Use with care: the array must not be destroyed or * reshaped for the duration of the returned object, and the caller must take care not to access * invalid dimensions or dimension indices. */ template detail::unchecked_reference unchecked() const & { if (Dims >= 0 && ndim() != Dims) throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) + "; expected " + std::to_string(Dims)); return detail::unchecked_reference(data(), shape(), strides(), ndim()); } /// Return a new view with all of the dimensions of length 1 removed array squeeze() { auto& api = detail::npy_api::get(); return reinterpret_steal(api.PyArray_Squeeze_(m_ptr)); } /// Resize array to given shape /// If refcheck is true and more that one reference exist to this array /// then resize will succeed only if it makes a reshape, i.e. original size doesn't change void resize(ShapeContainer new_shape, bool refcheck = true) { detail::npy_api::PyArray_Dims d = { new_shape->data(), int(new_shape->size()) }; // try to resize, set ordering param to -1 cause it's not used anyway object new_array = reinterpret_steal( detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1) ); if (!new_array) throw error_already_set(); if (isinstance(new_array)) { *this = std::move(new_array); } } /// Ensure that the argument is a NumPy array /// In case of an error, nullptr is returned and the Python error is cleared. static array ensure(handle h, int ExtraFlags = 0) { auto result = reinterpret_steal(raw_array(h.ptr(), ExtraFlags)); if (!result) PyErr_Clear(); return result; } protected: template friend struct detail::npy_format_descriptor; void fail_dim_check(ssize_t dim, const std::string& msg) const { throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim()) + ")"); } template ssize_t byte_offset(Ix... index) const { check_dimensions(index...); return detail::byte_offset_unsafe(strides(), ssize_t(index)...); } void check_writeable() const { if (!writeable()) throw std::domain_error("array is not writeable"); } // Default, C-style strides static std::vector c_strides(const std::vector &shape, ssize_t itemsize) { auto ndim = shape.size(); std::vector strides(ndim, itemsize); for (size_t i = ndim - 1; i > 0; --i) strides[i - 1] = strides[i] * shape[i]; return strides; } // F-style strides; default when constructing an array_t with `ExtraFlags & f_style` static std::vector f_strides(const std::vector &shape, ssize_t itemsize) { auto ndim = shape.size(); std::vector strides(ndim, itemsize); for (size_t i = 1; i < ndim; ++i) strides[i] = strides[i - 1] * shape[i - 1]; return strides; } template void check_dimensions(Ix... index) const { check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...); } void check_dimensions_impl(ssize_t, const ssize_t*) const { } template void check_dimensions_impl(ssize_t axis, const ssize_t* shape, ssize_t i, Ix... index) const { if (i >= *shape) { throw index_error(std::string("index ") + std::to_string(i) + " is out of bounds for axis " + std::to_string(axis) + " with size " + std::to_string(*shape)); } check_dimensions_impl(axis + 1, shape + 1, index...); } /// Create array from any object -- always returns a new reference static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) { if (ptr == nullptr) { PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array from a nullptr"); return nullptr; } return detail::npy_api::get().PyArray_FromAny_( ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr); } }; template class array_t : public array { private: struct private_ctor {}; // Delegating constructor needed when both moving and accessing in the same constructor array_t(private_ctor, ShapeContainer &&shape, StridesContainer &&strides, const T *ptr, handle base) : array(std::move(shape), std::move(strides), ptr, base) {} public: static_assert(!detail::array_info::is_array, "Array types cannot be used with array_t"); using value_type = T; array_t() : array(0, static_cast(nullptr)) {} array_t(handle h, borrowed_t) : array(h, borrowed_t{}) { } array_t(handle h, stolen_t) : array(h, stolen_t{}) { } PYBIND11_DEPRECATED("Use array_t::ensure() instead") array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) { if (!m_ptr) PyErr_Clear(); if (!is_borrowed) Py_XDECREF(h.ptr()); } array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) { if (!m_ptr) throw error_already_set(); } explicit array_t(const buffer_info& info) : array(info) { } array_t(ShapeContainer shape, StridesContainer strides, const T *ptr = nullptr, handle base = handle()) : array(std::move(shape), std::move(strides), ptr, base) { } explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle()) : array_t(private_ctor{}, std::move(shape), ExtraFlags & f_style ? f_strides(*shape, itemsize()) : c_strides(*shape, itemsize()), ptr, base) { } explicit array_t(size_t count, const T *ptr = nullptr, handle base = handle()) : array({count}, {}, ptr, base) { } constexpr ssize_t itemsize() const { return sizeof(T); } template ssize_t index_at(Ix... index) const { return offset_at(index...) / itemsize(); } template const T* data(Ix... index) const { return static_cast(array::data(index...)); } template T* mutable_data(Ix... index) { return static_cast(array::mutable_data(index...)); } // Reference to element at a given index template const T& at(Ix... index) const { if (sizeof...(index) != ndim()) fail_dim_check(sizeof...(index), "index dimension mismatch"); return *(static_cast(array::data()) + byte_offset(ssize_t(index)...) / itemsize()); } // Mutable reference to element at a given index template T& mutable_at(Ix... index) { if (sizeof...(index) != ndim()) fail_dim_check(sizeof...(index), "index dimension mismatch"); return *(static_cast(array::mutable_data()) + byte_offset(ssize_t(index)...) / itemsize()); } /** * Returns a proxy object that provides access to the array's data without bounds or * dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with * care: the array must not be destroyed or reshaped for the duration of the returned object, * and the caller must take care not to access invalid dimensions or dimension indices. */ template detail::unchecked_mutable_reference mutable_unchecked() & { return array::mutable_unchecked(); } /** * Returns a proxy object that provides const access to the array's data without bounds or * dimensionality checking. Unlike `unchecked()`, this does not require that the underlying * array have the `writable` flag. Use with care: the array must not be destroyed or reshaped * for the duration of the returned object, and the caller must take care not to access invalid * dimensions or dimension indices. */ template detail::unchecked_reference unchecked() const & { return array::unchecked(); } /// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert /// it). In case of an error, nullptr is returned and the Python error is cleared. static array_t ensure(handle h) { auto result = reinterpret_steal(raw_array_t(h.ptr())); if (!result) PyErr_Clear(); return result; } static bool check_(handle h) { const auto &api = detail::npy_api::get(); return api.PyArray_Check_(h.ptr()) && api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr, dtype::of().ptr()); } protected: /// Create array from any object -- always returns a new reference static PyObject *raw_array_t(PyObject *ptr) { if (ptr == nullptr) { PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr"); return nullptr; } return detail::npy_api::get().PyArray_FromAny_( ptr, dtype::of().release().ptr(), 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr); } }; template struct format_descriptor::value>> { static std::string format() { return detail::npy_format_descriptor::type>::format(); } }; template struct format_descriptor { static std::string format() { return std::to_string(N) + "s"; } }; template struct format_descriptor> { static std::string format() { return std::to_string(N) + "s"; } }; template struct format_descriptor::value>> { static std::string format() { return format_descriptor< typename std::remove_cv::type>::type>::format(); } }; template struct format_descriptor::is_array>> { static std::string format() { using detail::_; PYBIND11_DESCR extents = _("(") + detail::array_info::extents() + _(")"); return extents.text() + format_descriptor>::format(); } }; NAMESPACE_BEGIN(detail) template struct pyobject_caster> { using type = array_t; bool load(handle src, bool convert) { if (!convert && !type::check_(src)) return false; value = type::ensure(src); return static_cast(value); } static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { return src.inc_ref(); } PYBIND11_TYPE_CASTER(type, handle_type_name::name()); }; template struct compare_buffer_info::value>> { static bool compare(const buffer_info& b) { return npy_api::get().PyArray_EquivTypes_(dtype::of().ptr(), dtype(b).ptr()); } }; template struct npy_format_descriptor::value>> { private: // NB: the order here must match the one in common.h constexpr static const int values[15] = { npy_api::NPY_BOOL_, npy_api::NPY_BYTE_, npy_api::NPY_UBYTE_, npy_api::NPY_SHORT_, npy_api::NPY_USHORT_, npy_api::NPY_INT_, npy_api::NPY_UINT_, npy_api::NPY_LONGLONG_, npy_api::NPY_ULONGLONG_, npy_api::NPY_FLOAT_, npy_api::NPY_DOUBLE_, npy_api::NPY_LONGDOUBLE_, npy_api::NPY_CFLOAT_, npy_api::NPY_CDOUBLE_, npy_api::NPY_CLONGDOUBLE_ }; public: static constexpr int value = values[detail::is_fmt_numeric::index]; static pybind11::dtype dtype() { if (auto ptr = npy_api::get().PyArray_DescrFromType_(value)) return reinterpret_borrow(ptr); pybind11_fail("Unsupported buffer format!"); } template ::value, int> = 0> static PYBIND11_DESCR name() { return _::value>(_("bool"), _::value>("int", "uint") + _()); } template ::value, int> = 0> static PYBIND11_DESCR name() { return _::value || std::is_same::value>( _("float") + _(), _("longdouble")); } template ::value, int> = 0> static PYBIND11_DESCR name() { return _::value || std::is_same::value>( _("complex") + _(), _("longcomplex")); } }; #define PYBIND11_DECL_CHAR_FMT \ static PYBIND11_DESCR name() { return _("S") + _(); } \ static pybind11::dtype dtype() { return pybind11::dtype(std::string("S") + std::to_string(N)); } template struct npy_format_descriptor { PYBIND11_DECL_CHAR_FMT }; template struct npy_format_descriptor> { PYBIND11_DECL_CHAR_FMT }; #undef PYBIND11_DECL_CHAR_FMT template struct npy_format_descriptor::is_array>> { private: using base_descr = npy_format_descriptor::type>; public: static_assert(!array_info::is_empty, "Zero-sized arrays are not supported"); static PYBIND11_DESCR name() { return _("(") + array_info::extents() + _(")") + base_descr::name(); } static pybind11::dtype dtype() { list shape; array_info::append_extents(shape); return pybind11::dtype::from_args(pybind11::make_tuple(base_descr::dtype(), shape)); } }; template struct npy_format_descriptor::value>> { private: using base_descr = npy_format_descriptor::type>; public: static PYBIND11_DESCR name() { return base_descr::name(); } static pybind11::dtype dtype() { return base_descr::dtype(); } }; struct field_descriptor { const char *name; ssize_t offset; ssize_t size; std::string format; dtype descr; }; inline PYBIND11_NOINLINE void register_structured_dtype( const std::initializer_list& fields, const std::type_info& tinfo, ssize_t itemsize, bool (*direct_converter)(PyObject *, void *&)) { auto& numpy_internals = get_numpy_internals(); if (numpy_internals.get_type_info(tinfo, false)) pybind11_fail("NumPy: dtype is already registered"); list names, formats, offsets; for (auto field : fields) { if (!field.descr) pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ " + tinfo.name()); names.append(PYBIND11_STR_TYPE(field.name)); formats.append(field.descr); offsets.append(pybind11::int_(field.offset)); } auto dtype_ptr = pybind11::dtype(names, formats, offsets, itemsize).release().ptr(); // There is an existing bug in NumPy (as of v1.11): trailing bytes are // not encoded explicitly into the format string. This will supposedly // get fixed in v1.12; for further details, see these: // - https://github.com/numpy/numpy/issues/7797 // - https://github.com/numpy/numpy/pull/7798 // Because of this, we won't use numpy's logic to generate buffer format // strings and will just do it ourselves. std::vector ordered_fields(fields); std::sort(ordered_fields.begin(), ordered_fields.end(), [](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; }); ssize_t offset = 0; std::ostringstream oss; // mark the structure as unaligned with '^', because numpy and C++ don't // always agree about alignment (particularly for complex), and we're // explicitly listing all our padding. This depends on none of the fields // overriding the endianness. Putting the ^ in front of individual fields // isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049 oss << "^T{"; for (auto& field : ordered_fields) { if (field.offset > offset) oss << (field.offset - offset) << 'x'; oss << field.format << ':' << field.name << ':'; offset = field.offset + field.size; } if (itemsize > offset) oss << (itemsize - offset) << 'x'; oss << '}'; auto format_str = oss.str(); // Sanity check: verify that NumPy properly parses our buffer format string auto& api = npy_api::get(); auto arr = array(buffer_info(nullptr, itemsize, format_str, 1)); if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) pybind11_fail("NumPy: invalid buffer descriptor!"); auto tindex = std::type_index(tinfo); numpy_internals.registered_dtypes[tindex] = { dtype_ptr, format_str }; get_internals().direct_conversions[tindex].push_back(direct_converter); } template struct npy_format_descriptor { static_assert(is_pod_struct::value, "Attempt to use a non-POD or unimplemented POD type as a numpy dtype"); static PYBIND11_DESCR name() { return make_caster::name(); } static pybind11::dtype dtype() { return reinterpret_borrow(dtype_ptr()); } static std::string format() { static auto format_str = get_numpy_internals().get_type_info(true)->format_str; return format_str; } static void register_dtype(const std::initializer_list& fields) { register_structured_dtype(fields, typeid(typename std::remove_cv::type), sizeof(T), &direct_converter); } private: static PyObject* dtype_ptr() { static PyObject* ptr = get_numpy_internals().get_type_info(true)->dtype_ptr; return ptr; } static bool direct_converter(PyObject *obj, void*& value) { auto& api = npy_api::get(); if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) return false; if (auto descr = reinterpret_steal(api.PyArray_DescrFromScalar_(obj))) { if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) { value = ((PyVoidScalarObject_Proxy *) obj)->obval; return true; } } return false; } }; #ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code) # define PYBIND11_NUMPY_DTYPE(Type, ...) ((void)0) # define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void)0) #else #define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \ ::pybind11::detail::field_descriptor { \ Name, offsetof(T, Field), sizeof(decltype(std::declval().Field)), \ ::pybind11::format_descriptor().Field)>::format(), \ ::pybind11::detail::npy_format_descriptor().Field)>::dtype() \ } // Extract name, offset and format descriptor for a struct field #define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field) // The main idea of this macro is borrowed from https://github.com/swansontec/map-macro // (C) William Swanson, Paul Fultz #define PYBIND11_EVAL0(...) __VA_ARGS__ #define PYBIND11_EVAL1(...) PYBIND11_EVAL0 (PYBIND11_EVAL0 (PYBIND11_EVAL0 (__VA_ARGS__))) #define PYBIND11_EVAL2(...) PYBIND11_EVAL1 (PYBIND11_EVAL1 (PYBIND11_EVAL1 (__VA_ARGS__))) #define PYBIND11_EVAL3(...) PYBIND11_EVAL2 (PYBIND11_EVAL2 (PYBIND11_EVAL2 (__VA_ARGS__))) #define PYBIND11_EVAL4(...) PYBIND11_EVAL3 (PYBIND11_EVAL3 (PYBIND11_EVAL3 (__VA_ARGS__))) #define PYBIND11_EVAL(...) PYBIND11_EVAL4 (PYBIND11_EVAL4 (PYBIND11_EVAL4 (__VA_ARGS__))) #define PYBIND11_MAP_END(...) #define PYBIND11_MAP_OUT #define PYBIND11_MAP_COMMA , #define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END #define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT #define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0 (test, next, 0) #define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1 (PYBIND11_MAP_GET_END test, next) #ifdef _MSC_VER // MSVC is not as eager to expand macros, hence this workaround #define PYBIND11_MAP_LIST_NEXT1(test, next) \ PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)) #else #define PYBIND11_MAP_LIST_NEXT1(test, next) \ PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0) #endif #define PYBIND11_MAP_LIST_NEXT(test, next) \ PYBIND11_MAP_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next) #define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \ f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST1) (f, t, peek, __VA_ARGS__) #define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \ f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST0) (f, t, peek, __VA_ARGS__) // PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ... #define PYBIND11_MAP_LIST(f, t, ...) \ PYBIND11_EVAL (PYBIND11_MAP_LIST1 (f, t, __VA_ARGS__, (), 0)) #define PYBIND11_NUMPY_DTYPE(Type, ...) \ ::pybind11::detail::npy_format_descriptor::register_dtype \ ({PYBIND11_MAP_LIST (PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)}) #ifdef _MSC_VER #define PYBIND11_MAP2_LIST_NEXT1(test, next) \ PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)) #else #define PYBIND11_MAP2_LIST_NEXT1(test, next) \ PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0) #endif #define PYBIND11_MAP2_LIST_NEXT(test, next) \ PYBIND11_MAP2_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next) #define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \ f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST1) (f, t, peek, __VA_ARGS__) #define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \ f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST0) (f, t, peek, __VA_ARGS__) // PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ... #define PYBIND11_MAP2_LIST(f, t, ...) \ PYBIND11_EVAL (PYBIND11_MAP2_LIST1 (f, t, __VA_ARGS__, (), 0)) #define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \ ::pybind11::detail::npy_format_descriptor::register_dtype \ ({PYBIND11_MAP2_LIST (PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)}) #endif // __CLION_IDE__ template using array_iterator = typename std::add_pointer::type; template array_iterator array_begin(const buffer_info& buffer) { return array_iterator(reinterpret_cast(buffer.ptr)); } template array_iterator array_end(const buffer_info& buffer) { return array_iterator(reinterpret_cast(buffer.ptr) + buffer.size); } class common_iterator { public: using container_type = std::vector; using value_type = container_type::value_type; using size_type = container_type::size_type; common_iterator() : p_ptr(0), m_strides() {} common_iterator(void* ptr, const container_type& strides, const container_type& shape) : p_ptr(reinterpret_cast(ptr)), m_strides(strides.size()) { m_strides.back() = static_cast(strides.back()); for (size_type i = m_strides.size() - 1; i != 0; --i) { size_type j = i - 1; value_type s = static_cast(shape[i]); m_strides[j] = strides[j] + m_strides[i] - strides[i] * s; } } void increment(size_type dim) { p_ptr += m_strides[dim]; } void* data() const { return p_ptr; } private: char* p_ptr; container_type m_strides; }; template class multi_array_iterator { public: using container_type = std::vector; multi_array_iterator(const std::array &buffers, const container_type &shape) : m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() { // Manual copy to avoid conversion warning if using std::copy for (size_t i = 0; i < shape.size(); ++i) m_shape[i] = shape[i]; container_type strides(shape.size()); for (size_t i = 0; i < N; ++i) init_common_iterator(buffers[i], shape, m_common_iterator[i], strides); } multi_array_iterator& operator++() { for (size_t j = m_index.size(); j != 0; --j) { size_t i = j - 1; if (++m_index[i] != m_shape[i]) { increment_common_iterator(i); break; } else { m_index[i] = 0; } } return *this; } template T* data() const { return reinterpret_cast(m_common_iterator[K].data()); } private: using common_iter = common_iterator; void init_common_iterator(const buffer_info &buffer, const container_type &shape, common_iter &iterator, container_type &strides) { auto buffer_shape_iter = buffer.shape.rbegin(); auto buffer_strides_iter = buffer.strides.rbegin(); auto shape_iter = shape.rbegin(); auto strides_iter = strides.rbegin(); while (buffer_shape_iter != buffer.shape.rend()) { if (*shape_iter == *buffer_shape_iter) *strides_iter = *buffer_strides_iter; else *strides_iter = 0; ++buffer_shape_iter; ++buffer_strides_iter; ++shape_iter; ++strides_iter; } std::fill(strides_iter, strides.rend(), 0); iterator = common_iter(buffer.ptr, strides, shape); } void increment_common_iterator(size_t dim) { for (auto &iter : m_common_iterator) iter.increment(dim); } container_type m_shape; container_type m_index; std::array m_common_iterator; }; enum class broadcast_trivial { non_trivial, c_trivial, f_trivial }; // Populates the shape and number of dimensions for the set of buffers. Returns a broadcast_trivial // enum value indicating whether the broadcast is "trivial"--that is, has each buffer being either a // singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous (`f_trivial`) storage // buffer; returns `non_trivial` otherwise. template broadcast_trivial broadcast(const std::array &buffers, ssize_t &ndim, std::vector &shape) { ndim = std::accumulate(buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) { return std::max(res, buf.ndim); }); shape.clear(); shape.resize((size_t) ndim, 1); // Figure out the output size, and make sure all input arrays conform (i.e. are either size 1 or // the full size). for (size_t i = 0; i < N; ++i) { auto res_iter = shape.rbegin(); auto end = buffers[i].shape.rend(); for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end; ++shape_iter, ++res_iter) { const auto &dim_size_in = *shape_iter; auto &dim_size_out = *res_iter; // Each input dimension can either be 1 or `n`, but `n` values must match across buffers if (dim_size_out == 1) dim_size_out = dim_size_in; else if (dim_size_in != 1 && dim_size_in != dim_size_out) pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!"); } } bool trivial_broadcast_c = true; bool trivial_broadcast_f = true; for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) { if (buffers[i].size == 1) continue; // Require the same number of dimensions: if (buffers[i].ndim != ndim) return broadcast_trivial::non_trivial; // Require all dimensions be full-size: if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin())) return broadcast_trivial::non_trivial; // Check for C contiguity (but only if previous inputs were also C contiguous) if (trivial_broadcast_c) { ssize_t expect_stride = buffers[i].itemsize; auto end = buffers[i].shape.crend(); for (auto shape_iter = buffers[i].shape.crbegin(), stride_iter = buffers[i].strides.crbegin(); trivial_broadcast_c && shape_iter != end; ++shape_iter, ++stride_iter) { if (expect_stride == *stride_iter) expect_stride *= *shape_iter; else trivial_broadcast_c = false; } } // Check for Fortran contiguity (if previous inputs were also F contiguous) if (trivial_broadcast_f) { ssize_t expect_stride = buffers[i].itemsize; auto end = buffers[i].shape.cend(); for (auto shape_iter = buffers[i].shape.cbegin(), stride_iter = buffers[i].strides.cbegin(); trivial_broadcast_f && shape_iter != end; ++shape_iter, ++stride_iter) { if (expect_stride == *stride_iter) expect_stride *= *shape_iter; else trivial_broadcast_f = false; } } } return trivial_broadcast_c ? broadcast_trivial::c_trivial : trivial_broadcast_f ? broadcast_trivial::f_trivial : broadcast_trivial::non_trivial; } template struct vectorize_arg { static_assert(!std::is_rvalue_reference::value, "Functions with rvalue reference arguments cannot be vectorized"); // The wrapped function gets called with this type: using call_type = remove_reference_t; // Is this a vectorized argument? static constexpr bool vectorize = satisfies_any_of::value && satisfies_none_of::value && (!std::is_reference::value || (std::is_lvalue_reference::value && std::is_const::value)); // Accept this type: an array for vectorized types, otherwise the type as-is: using type = conditional_t, array::forcecast>, T>; }; template struct vectorize_helper { private: static constexpr size_t N = sizeof...(Args); static constexpr size_t NVectorized = constexpr_sum(vectorize_arg::vectorize...); static_assert(NVectorized >= 1, "pybind11::vectorize(...) requires a function with at least one vectorizable argument"); public: template explicit vectorize_helper(T &&f) : f(std::forward(f)) { } object operator()(typename vectorize_arg::type... args) { return run(args..., make_index_sequence(), select_indices::vectorize...>(), make_index_sequence()); } private: remove_reference_t f; template using param_n_t = typename pack_element::call_type...>::type; // Runs a vectorized function given arguments tuple and three index sequences: // - Index is the full set of 0 ... (N-1) argument indices; // - VIndex is the subset of argument indices with vectorized parameters, letting us access // vectorized arguments (anything not in this sequence is passed through) // - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that // we can store vectorized buffer_infos in an array (argument VIndex has its buffer at // index BIndex in the array). template object run( typename vectorize_arg::type &...args, index_sequence i_seq, index_sequence vi_seq, index_sequence bi_seq) { // Pointers to values the function was called with; the vectorized ones set here will start // out as array_t pointers, but they will be changed them to T pointers before we make // call the wrapped function. Non-vectorized pointers are left as-is. std::array params{{ &args... }}; // The array of `buffer_info`s of vectorized arguments: std::array buffers{{ reinterpret_cast(params[VIndex])->request()... }}; /* Determine dimensions parameters of output array */ ssize_t nd = 0; std::vector shape(0); auto trivial = broadcast(buffers, nd, shape); size_t ndim = (size_t) nd; size_t size = std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies()); // If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e. // not wrapped in an array). if (size == 1 && ndim == 0) { PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr); return cast(f(*reinterpret_cast *>(params[Index])...)); } array_t result; if (trivial == broadcast_trivial::f_trivial) result = array_t(shape); else result = array_t(shape); if (size == 0) return result; /* Call the function */ if (trivial == broadcast_trivial::non_trivial) apply_broadcast(buffers, params, result, i_seq, vi_seq, bi_seq); else apply_trivial(buffers, params, result.mutable_data(), size, i_seq, vi_seq, bi_seq); return result; } template void apply_trivial(std::array &buffers, std::array ¶ms, Return *out, size_t size, index_sequence, index_sequence, index_sequence) { // Initialize an array of mutable byte references and sizes with references set to the // appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size // (except for singletons, which get an increment of 0). std::array, NVectorized> vecparams{{ std::pair( reinterpret_cast(params[VIndex] = buffers[BIndex].ptr), buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t) )... }}; for (size_t i = 0; i < size; ++i) { out[i] = f(*reinterpret_cast *>(params[Index])...); for (auto &x : vecparams) x.first += x.second; } } template void apply_broadcast(std::array &buffers, std::array ¶ms, array_t &output_array, index_sequence, index_sequence, index_sequence) { buffer_info output = output_array.request(); multi_array_iterator input_iter(buffers, output.shape); for (array_iterator iter = array_begin(output), end = array_end(output); iter != end; ++iter, ++input_iter) { PYBIND11_EXPAND_SIDE_EFFECTS(( params[VIndex] = input_iter.template data() )); *iter = f(*reinterpret_cast *>(std::get(params))...); } } }; template vectorize_helper vectorize_extractor(const Func &f, Return (*) (Args ...)) { return detail::vectorize_helper(f); } template struct handle_type_name> { static PYBIND11_DESCR name() { return _("numpy.ndarray[") + npy_format_descriptor::name() + _("]"); } }; NAMESPACE_END(detail) // Vanilla pointer vectorizer: template detail::vectorize_helper vectorize(Return (*f) (Args ...)) { return detail::vectorize_helper(f); } // lambda vectorizer: template ::value, int> = 0> auto vectorize(Func &&f) -> decltype( detail::vectorize_extractor(std::forward(f), (detail::function_signature_t *) nullptr)) { return detail::vectorize_extractor(std::forward(f), (detail::function_signature_t *) nullptr); } // Vectorize a class method (non-const): template ())), Return, Class *, Args...>> Helper vectorize(Return (Class::*f)(Args...)) { return Helper(std::mem_fn(f)); } // Vectorize a class method (non-const): template ())), Return, const Class *, Args...>> Helper vectorize(Return (Class::*f)(Args...) const) { return Helper(std::mem_fn(f)); } NAMESPACE_END(PYBIND11_NAMESPACE) #if defined(_MSC_VER) #pragma warning(pop) #endif