/* tests/test_class.cpp -- test py::class_ definitions and basic functionality Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #include "pybind11_tests.h" #include "constructor_stats.h" #include "local_bindings.h" TEST_SUBMODULE(class_, m) { // test_instance struct NoConstructor { static NoConstructor *new_instance() { auto *ptr = new NoConstructor(); print_created(ptr, "via new_instance"); return ptr; } ~NoConstructor() { print_destroyed(this); } }; py::class_<NoConstructor>(m, "NoConstructor") .def_static("new_instance", &NoConstructor::new_instance, "Return an instance"); // test_inheritance class Pet { public: Pet(const std::string &name, const std::string &species) : m_name(name), m_species(species) {} std::string name() const { return m_name; } std::string species() const { return m_species; } private: std::string m_name; std::string m_species; }; class Dog : public Pet { public: Dog(const std::string &name) : Pet(name, "dog") {} std::string bark() const { return "Woof!"; } }; class Rabbit : public Pet { public: Rabbit(const std::string &name) : Pet(name, "parrot") {} }; class Hamster : public Pet { public: Hamster(const std::string &name) : Pet(name, "rodent") {} }; class Chimera : public Pet { Chimera() : Pet("Kimmy", "chimera") {} }; py::class_<Pet> pet_class(m, "Pet"); pet_class .def(py::init<std::string, std::string>()) .def("name", &Pet::name) .def("species", &Pet::species); /* One way of declaring a subclass relationship: reference parent's class_ object */ py::class_<Dog>(m, "Dog", pet_class) .def(py::init<std::string>()); /* Another way of declaring a subclass relationship: reference parent's C++ type */ py::class_<Rabbit, Pet>(m, "Rabbit") .def(py::init<std::string>()); /* And another: list parent in class template arguments */ py::class_<Hamster, Pet>(m, "Hamster") .def(py::init<std::string>()); /* Constructors are not inherited by default */ py::class_<Chimera, Pet>(m, "Chimera"); m.def("pet_name_species", [](const Pet &pet) { return pet.name() + " is a " + pet.species(); }); m.def("dog_bark", [](const Dog &dog) { return dog.bark(); }); // test_automatic_upcasting struct BaseClass { virtual ~BaseClass() {} }; struct DerivedClass1 : BaseClass { }; struct DerivedClass2 : BaseClass { }; py::class_<BaseClass>(m, "BaseClass").def(py::init<>()); py::class_<DerivedClass1>(m, "DerivedClass1").def(py::init<>()); py::class_<DerivedClass2>(m, "DerivedClass2").def(py::init<>()); m.def("return_class_1", []() -> BaseClass* { return new DerivedClass1(); }); m.def("return_class_2", []() -> BaseClass* { return new DerivedClass2(); }); m.def("return_class_n", [](int n) -> BaseClass* { if (n == 1) return new DerivedClass1(); if (n == 2) return new DerivedClass2(); return new BaseClass(); }); m.def("return_none", []() -> BaseClass* { return nullptr; }); // test_isinstance m.def("check_instances", [](py::list l) { return py::make_tuple( py::isinstance<py::tuple>(l[0]), py::isinstance<py::dict>(l[1]), py::isinstance<Pet>(l[2]), py::isinstance<Pet>(l[3]), py::isinstance<Dog>(l[4]), py::isinstance<Rabbit>(l[5]), py::isinstance<UnregisteredType>(l[6]) ); }); // test_mismatched_holder struct MismatchBase1 { }; struct MismatchDerived1 : MismatchBase1 { }; struct MismatchBase2 { }; struct MismatchDerived2 : MismatchBase2 { }; m.def("mismatched_holder_1", []() { auto mod = py::module::import("__main__"); py::class_<MismatchBase1, std::shared_ptr<MismatchBase1>>(mod, "MismatchBase1"); py::class_<MismatchDerived1, MismatchBase1>(mod, "MismatchDerived1"); }); m.def("mismatched_holder_2", []() { auto mod = py::module::import("__main__"); py::class_<MismatchBase2>(mod, "MismatchBase2"); py::class_<MismatchDerived2, std::shared_ptr<MismatchDerived2>, MismatchBase2>(mod, "MismatchDerived2"); }); // test_override_static // #511: problem with inheritance + overwritten def_static struct MyBase { static std::unique_ptr<MyBase> make() { return std::unique_ptr<MyBase>(new MyBase()); } }; struct MyDerived : MyBase { static std::unique_ptr<MyDerived> make() { return std::unique_ptr<MyDerived>(new MyDerived()); } }; py::class_<MyBase>(m, "MyBase") .def_static("make", &MyBase::make); py::class_<MyDerived, MyBase>(m, "MyDerived") .def_static("make", &MyDerived::make) .def_static("make2", &MyDerived::make); // test_implicit_conversion_life_support struct ConvertibleFromUserType { int i; ConvertibleFromUserType(UserType u) : i(u.value()) { } }; py::class_<ConvertibleFromUserType>(m, "AcceptsUserType") .def(py::init<UserType>()); py::implicitly_convertible<UserType, ConvertibleFromUserType>(); m.def("implicitly_convert_argument", [](const ConvertibleFromUserType &r) { return r.i; }); m.def("implicitly_convert_variable", [](py::object o) { // `o` is `UserType` and `r` is a reference to a temporary created by implicit // conversion. This is valid when called inside a bound function because the temp // object is attached to the same life support system as the arguments. const auto &r = o.cast<const ConvertibleFromUserType &>(); return r.i; }); m.add_object("implicitly_convert_variable_fail", [&] { auto f = [](PyObject *, PyObject *args) -> PyObject * { auto o = py::reinterpret_borrow<py::tuple>(args)[0]; try { // It should fail here because there is no life support. o.cast<const ConvertibleFromUserType &>(); } catch (const py::cast_error &e) { return py::str(e.what()).release().ptr(); } return py::str().release().ptr(); }; auto def = new PyMethodDef{"f", f, METH_VARARGS, nullptr}; return py::reinterpret_steal<py::object>(PyCFunction_NewEx(def, nullptr, m.ptr())); }()); // test_operator_new_delete struct HasOpNewDel { std::uint64_t i; static void *operator new(size_t s) { py::print("A new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("A placement-new", s); return ptr; } static void operator delete(void *p) { py::print("A delete"); return ::operator delete(p); } }; struct HasOpNewDelSize { std::uint32_t i; static void *operator new(size_t s) { py::print("B new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("B placement-new", s); return ptr; } static void operator delete(void *p, size_t s) { py::print("B delete", s); return ::operator delete(p); } }; struct AliasedHasOpNewDelSize { std::uint64_t i; static void *operator new(size_t s) { py::print("C new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("C placement-new", s); return ptr; } static void operator delete(void *p, size_t s) { py::print("C delete", s); return ::operator delete(p); } virtual ~AliasedHasOpNewDelSize() = default; }; struct PyAliasedHasOpNewDelSize : AliasedHasOpNewDelSize { PyAliasedHasOpNewDelSize() = default; PyAliasedHasOpNewDelSize(int) { } std::uint64_t j; }; struct HasOpNewDelBoth { std::uint32_t i[8]; static void *operator new(size_t s) { py::print("D new", s); return ::operator new(s); } static void *operator new(size_t s, void *ptr) { py::print("D placement-new", s); return ptr; } static void operator delete(void *p) { py::print("D delete"); return ::operator delete(p); } static void operator delete(void *p, size_t s) { py::print("D wrong delete", s); return ::operator delete(p); } }; py::class_<HasOpNewDel>(m, "HasOpNewDel").def(py::init<>()); py::class_<HasOpNewDelSize>(m, "HasOpNewDelSize").def(py::init<>()); py::class_<HasOpNewDelBoth>(m, "HasOpNewDelBoth").def(py::init<>()); py::class_<AliasedHasOpNewDelSize, PyAliasedHasOpNewDelSize> aliased(m, "AliasedHasOpNewDelSize"); aliased.def(py::init<>()); aliased.attr("size_noalias") = py::int_(sizeof(AliasedHasOpNewDelSize)); aliased.attr("size_alias") = py::int_(sizeof(PyAliasedHasOpNewDelSize)); // This test is actually part of test_local_bindings (test_duplicate_local), but we need a // definition in a different compilation unit within the same module: bind_local<LocalExternal, 17>(m, "LocalExternal", py::module_local()); // test_bind_protected_functions class ProtectedA { protected: int foo() const { return value; } private: int value = 42; }; class PublicistA : public ProtectedA { public: using ProtectedA::foo; }; py::class_<ProtectedA>(m, "ProtectedA") .def(py::init<>()) #if !defined(_MSC_VER) || _MSC_VER >= 1910 .def("foo", &PublicistA::foo); #else .def("foo", static_cast<int (ProtectedA::*)() const>(&PublicistA::foo)); #endif class ProtectedB { public: virtual ~ProtectedB() = default; protected: virtual int foo() const { return value; } private: int value = 42; }; class TrampolineB : public ProtectedB { public: int foo() const override { PYBIND11_OVERLOAD(int, ProtectedB, foo, ); } }; class PublicistB : public ProtectedB { public: using ProtectedB::foo; }; py::class_<ProtectedB, TrampolineB>(m, "ProtectedB") .def(py::init<>()) #if !defined(_MSC_VER) || _MSC_VER >= 1910 .def("foo", &PublicistB::foo); #else .def("foo", static_cast<int (ProtectedB::*)() const>(&PublicistB::foo)); #endif // test_brace_initialization struct BraceInitialization { int field1; std::string field2; }; py::class_<BraceInitialization>(m, "BraceInitialization") .def(py::init<int, const std::string &>()) .def_readwrite("field1", &BraceInitialization::field1) .def_readwrite("field2", &BraceInitialization::field2); // test_reentrant_implicit_conversion_failure // #1035: issue with runaway reentrant implicit conversion struct BogusImplicitConversion { BogusImplicitConversion(const BogusImplicitConversion &) { } }; py::class_<BogusImplicitConversion>(m, "BogusImplicitConversion") .def(py::init<const BogusImplicitConversion &>()); py::implicitly_convertible<int, BogusImplicitConversion>(); } template <int N> class BreaksBase { public: virtual ~BreaksBase() = default; }; template <int N> class BreaksTramp : public BreaksBase<N> {}; // These should all compile just fine: typedef py::class_<BreaksBase<1>, std::unique_ptr<BreaksBase<1>>, BreaksTramp<1>> DoesntBreak1; typedef py::class_<BreaksBase<2>, BreaksTramp<2>, std::unique_ptr<BreaksBase<2>>> DoesntBreak2; typedef py::class_<BreaksBase<3>, std::unique_ptr<BreaksBase<3>>> DoesntBreak3; typedef py::class_<BreaksBase<4>, BreaksTramp<4>> DoesntBreak4; typedef py::class_<BreaksBase<5>> DoesntBreak5; typedef py::class_<BreaksBase<6>, std::shared_ptr<BreaksBase<6>>, BreaksTramp<6>> DoesntBreak6; typedef py::class_<BreaksBase<7>, BreaksTramp<7>, std::shared_ptr<BreaksBase<7>>> DoesntBreak7; typedef py::class_<BreaksBase<8>, std::shared_ptr<BreaksBase<8>>> DoesntBreak8; #define CHECK_BASE(N) static_assert(std::is_same<typename DoesntBreak##N::type, BreaksBase<N>>::value, \ "DoesntBreak" #N " has wrong type!") CHECK_BASE(1); CHECK_BASE(2); CHECK_BASE(3); CHECK_BASE(4); CHECK_BASE(5); CHECK_BASE(6); CHECK_BASE(7); CHECK_BASE(8); #define CHECK_ALIAS(N) static_assert(DoesntBreak##N::has_alias && std::is_same<typename DoesntBreak##N::type_alias, BreaksTramp<N>>::value, \ "DoesntBreak" #N " has wrong type_alias!") #define CHECK_NOALIAS(N) static_assert(!DoesntBreak##N::has_alias && std::is_void<typename DoesntBreak##N::type_alias>::value, \ "DoesntBreak" #N " has type alias, but shouldn't!") CHECK_ALIAS(1); CHECK_ALIAS(2); CHECK_NOALIAS(3); CHECK_ALIAS(4); CHECK_NOALIAS(5); CHECK_ALIAS(6); CHECK_ALIAS(7); CHECK_NOALIAS(8); #define CHECK_HOLDER(N, TYPE) static_assert(std::is_same<typename DoesntBreak##N::holder_type, std::TYPE##_ptr<BreaksBase<N>>>::value, \ "DoesntBreak" #N " has wrong holder_type!") CHECK_HOLDER(1, unique); CHECK_HOLDER(2, unique); CHECK_HOLDER(3, unique); CHECK_HOLDER(4, unique); CHECK_HOLDER(5, unique); CHECK_HOLDER(6, shared); CHECK_HOLDER(7, shared); CHECK_HOLDER(8, shared); // There's no nice way to test that these fail because they fail to compile; leave them here, // though, so that they can be manually tested by uncommenting them (and seeing that compilation // failures occurs). // We have to actually look into the type: the typedef alone isn't enough to instantiate the type: #define CHECK_BROKEN(N) static_assert(std::is_same<typename Breaks##N::type, BreaksBase<-N>>::value, \ "Breaks1 has wrong type!"); //// Two holder classes: //typedef py::class_<BreaksBase<-1>, std::unique_ptr<BreaksBase<-1>>, std::unique_ptr<BreaksBase<-1>>> Breaks1; //CHECK_BROKEN(1); //// Two aliases: //typedef py::class_<BreaksBase<-2>, BreaksTramp<-2>, BreaksTramp<-2>> Breaks2; //CHECK_BROKEN(2); //// Holder + 2 aliases //typedef py::class_<BreaksBase<-3>, std::unique_ptr<BreaksBase<-3>>, BreaksTramp<-3>, BreaksTramp<-3>> Breaks3; //CHECK_BROKEN(3); //// Alias + 2 holders //typedef py::class_<BreaksBase<-4>, std::unique_ptr<BreaksBase<-4>>, BreaksTramp<-4>, std::shared_ptr<BreaksBase<-4>>> Breaks4; //CHECK_BROKEN(4); //// Invalid option (not a subclass or holder) //typedef py::class_<BreaksBase<-5>, BreaksTramp<-4>> Breaks5; //CHECK_BROKEN(5); //// Invalid option: multiple inheritance not supported: //template <> struct BreaksBase<-8> : BreaksBase<-6>, BreaksBase<-7> {}; //typedef py::class_<BreaksBase<-8>, BreaksBase<-6>, BreaksBase<-7>> Breaks8; //CHECK_BROKEN(8);