/* * Copyright (c) 2001-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include "base/intmath.hh" #include "base/loader/object_file.hh" #include "base/loader/symtab.hh" #include "base/statistics.hh" #include "cpu/exec_context.hh" #include "cpu/full_cpu/smt.hh" #include "cpu/full_cpu/thread.hh" #include "eio/eio.hh" #include "mem/functional_mem/main_memory.hh" #include "sim/builder.hh" #include "sim/fake_syscall.hh" #include "sim/process.hh" #include "sim/stats.hh" #ifdef TARGET_ALPHA #include "arch/alpha/alpha_tru64_process.hh" #include "arch/alpha/alpha_linux_process.hh" #endif using namespace std; // // The purpose of this code is to fake the loader & syscall mechanism // when there's no OS: thus there's no resone to use it in FULL_SYSTEM // mode when we do have an OS // #ifdef FULL_SYSTEM #error "process.cc not compatible with FULL_SYSTEM" #endif // current number of allocated processes int num_processes = 0; Process::Process(const string &name, int stdin_fd, // initial I/O descriptors int stdout_fd, int stderr_fd) : SimObject(name) { // allocate memory space memory = new MainMemory(name + ".MainMem"); // allocate initial register file init_regs = new RegFile; memset(init_regs, 0, sizeof(RegFile)); // initialize first 3 fds (stdin, stdout, stderr) fd_map[STDIN_FILENO] = stdin_fd; fd_map[STDOUT_FILENO] = stdout_fd; fd_map[STDERR_FILENO] = stderr_fd; // mark remaining fds as free for (int i = 3; i <= MAX_FD; ++i) { fd_map[i] = -1; } num_syscalls = 0; // other parameters will be initialized when the program is loaded } void Process::regStats() { using namespace Stats; num_syscalls .name(name() + ".PROG:num_syscalls") .desc("Number of system calls") ; } // // static helper functions // int Process::openInputFile(const string &filename) { int fd = open(filename.c_str(), O_RDONLY); if (fd == -1) { perror(NULL); cerr << "unable to open \"" << filename << "\" for reading\n"; fatal("can't open input file"); } return fd; } int Process::openOutputFile(const string &filename) { int fd = open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0774); if (fd == -1) { perror(NULL); cerr << "unable to open \"" << filename << "\" for writing\n"; fatal("can't open output file"); } return fd; } int Process::registerExecContext(ExecContext *xc) { // add to list int myIndex = execContexts.size(); execContexts.push_back(xc); if (myIndex == 0) { // first exec context for this process... initialize & enable // copy process's initial regs struct xc->regs = *init_regs; // mark this context as active. // activate with zero delay so that we start ticking right // away on cycle 0 xc->activate(0); } // return CPU number to caller and increment available CPU count return myIndex; } void Process::replaceExecContext(ExecContext *xc, int xcIndex) { if (xcIndex >= execContexts.size()) { panic("replaceExecContext: bad xcIndex, %d >= %d\n", xcIndex, execContexts.size()); } execContexts[xcIndex] = xc; } // map simulator fd sim_fd to target fd tgt_fd void Process::dup_fd(int sim_fd, int tgt_fd) { if (tgt_fd < 0 || tgt_fd > MAX_FD) panic("Process::dup_fd tried to dup past MAX_FD (%d)", tgt_fd); fd_map[tgt_fd] = sim_fd; } // generate new target fd for sim_fd int Process::open_fd(int sim_fd) { int free_fd; // in case open() returns an error, don't allocate a new fd if (sim_fd == -1) return -1; // find first free target fd for (free_fd = 0; fd_map[free_fd] >= 0; ++free_fd) { if (free_fd == MAX_FD) panic("Process::open_fd: out of file descriptors!"); } fd_map[free_fd] = sim_fd; return free_fd; } // look up simulator fd for given target fd int Process::sim_fd(int tgt_fd) { if (tgt_fd > MAX_FD) return -1; return fd_map[tgt_fd]; } // // need to declare these here since there is no concrete Process type // that can be constructed (i.e., no REGISTER_SIM_OBJECT() macro call, // which is where these get declared for concrete types). // DEFINE_SIM_OBJECT_CLASS_NAME("Process", Process) //////////////////////////////////////////////////////////////////////// // // LiveProcess member definitions // //////////////////////////////////////////////////////////////////////// static void copyStringArray(vector &strings, Addr array_ptr, Addr data_ptr, FunctionalMemory *memory) { for (int i = 0; i < strings.size(); ++i) { memory->access(Write, array_ptr, &data_ptr, sizeof(Addr)); memory->writeString(data_ptr, strings[i].c_str()); array_ptr += sizeof(Addr); data_ptr += strings[i].size() + 1; } // add NULL terminator data_ptr = 0; memory->access(Write, array_ptr, &data_ptr, sizeof(Addr)); } LiveProcess::LiveProcess(const string &name, ObjectFile *objFile, int stdin_fd, int stdout_fd, int stderr_fd, vector &argv, vector &envp) : Process(name, stdin_fd, stdout_fd, stderr_fd) { prog_fname = argv[0]; prog_entry = objFile->entryPoint(); text_base = objFile->textBase(); text_size = objFile->textSize(); data_base = objFile->dataBase(); data_size = objFile->dataSize() + objFile->bssSize(); brk_point = RoundUp(data_base + data_size, VMPageSize); // load object file into target memory objFile->loadSections(memory); // load up symbols, if any... these may be used for debugging or // profiling. if (!debugSymbolTable) { debugSymbolTable = new SymbolTable(); if (!objFile->loadGlobalSymbols(debugSymbolTable) || !objFile->loadLocalSymbols(debugSymbolTable)) { // didn't load any symbols delete debugSymbolTable; debugSymbolTable = NULL; } } // Set up stack. On Alpha, stack goes below text section. This // code should get moved to some architecture-specific spot. stack_base = text_base - (409600+4096); // Set up region for mmaps. Tru64 seems to start just above 0 and // grow up from there. mmap_start = mmap_end = 0x10000; // Set pointer for next thread stack. Reserve 8M for main stack. next_thread_stack_base = stack_base - (8 * 1024 * 1024); // Calculate how much space we need for arg & env arrays. int argv_array_size = sizeof(Addr) * (argv.size() + 1); int envp_array_size = sizeof(Addr) * (envp.size() + 1); int arg_data_size = 0; for (int i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int env_data_size = 0; for (int i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int space_needed = argv_array_size + envp_array_size + arg_data_size + env_data_size; // for SimpleScalar compatibility if (space_needed < 16384) space_needed = 16384; // set bottom of stack stack_min = stack_base - space_needed; // align it stack_min &= ~7; stack_size = stack_base - stack_min; // map out initial stack contents Addr argv_array_base = stack_min + sizeof(uint64_t); // room for argc Addr envp_array_base = argv_array_base + argv_array_size; Addr arg_data_base = envp_array_base + envp_array_size; Addr env_data_base = arg_data_base + arg_data_size; // write contents to stack uint64_t argc = argv.size(); memory->access(Write, stack_min, &argc, sizeof(uint64_t)); copyStringArray(argv, argv_array_base, arg_data_base, memory); copyStringArray(envp, envp_array_base, env_data_base, memory); init_regs->intRegFile[ArgumentReg0] = argc; init_regs->intRegFile[ArgumentReg1] = argv_array_base; init_regs->intRegFile[StackPointerReg] = stack_min; init_regs->intRegFile[GlobalPointerReg] = objFile->globalPointer(); init_regs->pc = prog_entry; init_regs->npc = prog_entry + sizeof(MachInst); } LiveProcess * LiveProcess::create(const string &name, int stdin_fd, int stdout_fd, int stderr_fd, vector &argv, vector &envp) { LiveProcess *process = NULL; ObjectFile *objFile = createObjectFile(argv[0]); if (objFile == NULL) { fatal("Can't load object file %s", argv[0]); } // check object type & set up syscall emulation pointer if (objFile->getArch() == ObjectFile::Alpha) { switch (objFile->getOpSys()) { case ObjectFile::Tru64: process = new AlphaTru64Process(name, objFile, stdin_fd, stdout_fd, stderr_fd, argv, envp); break; case ObjectFile::Linux: process = new AlphaLinuxProcess(name, objFile, stdin_fd, stdout_fd, stderr_fd, argv, envp); break; default: fatal("Unknown/unsupported operating system."); } } else { fatal("Unknown object file architecture."); } delete objFile; if (process == NULL) fatal("Unknown error creating process object."); return process; } BEGIN_DECLARE_SIM_OBJECT_PARAMS(LiveProcess) VectorParam cmd; Param input; Param output; VectorParam env; END_DECLARE_SIM_OBJECT_PARAMS(LiveProcess) BEGIN_INIT_SIM_OBJECT_PARAMS(LiveProcess) INIT_PARAM(cmd, "command line (executable plus arguments)"), INIT_PARAM(input, "filename for stdin (dflt: use sim stdin)"), INIT_PARAM(output, "filename for stdout/stderr (dflt: use sim stdout)"), INIT_PARAM(env, "environment settings") END_INIT_SIM_OBJECT_PARAMS(LiveProcess) CREATE_SIM_OBJECT(LiveProcess) { string in = input; string out = output; // initialize file descriptors to default: same as simulator int stdin_fd, stdout_fd, stderr_fd; if (in == "stdin" || in == "cin") stdin_fd = STDIN_FILENO; else stdin_fd = Process::openInputFile(input); if (out == "stdout" || out == "cout") stdout_fd = STDOUT_FILENO; else if (out == "stderr" || out == "cerr") stdout_fd = STDERR_FILENO; else stdout_fd = Process::openOutputFile(out); stderr_fd = (stdout_fd != STDOUT_FILENO) ? stdout_fd : STDERR_FILENO; return LiveProcess::create(getInstanceName(), stdin_fd, stdout_fd, stderr_fd, cmd, env); } REGISTER_SIM_OBJECT("LiveProcess", LiveProcess)