/* * Copyright (c) 2003-2004 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Ali Saidi */ #include "arch/alpha/process.hh" #include "arch/alpha/isa_traits.hh" #include "base/loader/elf_object.hh" #include "base/loader/object_file.hh" #include "base/logging.hh" #include "cpu/thread_context.hh" #include "debug/Loader.hh" #include "mem/page_table.hh" #include "params/Process.hh" #include "sim/aux_vector.hh" #include "sim/byteswap.hh" #include "sim/process_impl.hh" #include "sim/syscall_return.hh" #include "sim/system.hh" using namespace AlphaISA; using namespace std; AlphaProcess::AlphaProcess(ProcessParams *params, ObjectFile *objFile) : Process(params, new EmulationPageTable(params->name, params->pid, PageBytes), objFile) { fatal_if(params->useArchPT, "Arch page tables not implemented."); Addr brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize(); brk_point = roundUp(brk_point, PageBytes); // Set up stack. On Alpha, stack goes below text section. This // code should get moved to some architecture-specific spot. Addr stack_base = objFile->textBase() - (409600+4096); // Set up region for mmaps. Addr mmap_end = 0x10000; Addr max_stack_size = 8 * 1024 * 1024; // Set pointer for next thread stack. Reserve 8M for main stack. Addr next_thread_stack_base = stack_base - max_stack_size; memState = make_shared(brk_point, stack_base, max_stack_size, next_thread_stack_base, mmap_end); } void AlphaProcess::argsInit(int intSize, int pageSize) { // Patch the ld_bias for dynamic executables. updateBias(); objFile->loadSections(initVirtMem); typedef AuxVector auxv_t; std::vector auxv; ElfObject * elfObject = dynamic_cast(objFile); if (elfObject) { // modern glibc uses a bunch of auxiliary vectors to set up // TLS as well as do a bunch of other stuff // these vectors go on the bottom of the stack, below argc/argv/envp // pointers but above actual arg strings // I don't have all the ones glibc looks at here, but so far it doesn't // seem to be a problem. // check out _dl_aux_init() in glibc/elf/dl-support.c for details // --Lisa auxv.push_back(auxv_t(M5_AT_PAGESZ, AlphaISA::PageBytes)); auxv.push_back(auxv_t(M5_AT_CLKTCK, 100)); auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); DPRINTF(Loader, "auxv at PHDR %08p\n", elfObject->programHeaderTable()); auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); // This is the base address of the ELF interpreter; it should be // zero for static executables or contain the base address for // dynamic executables. auxv.push_back(auxv_t(M5_AT_BASE, getBias())); auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); auxv.push_back(auxv_t(M5_AT_UID, uid())); auxv.push_back(auxv_t(M5_AT_EUID, euid())); auxv.push_back(auxv_t(M5_AT_GID, gid())); auxv.push_back(auxv_t(M5_AT_EGID, egid())); } // Calculate how much space we need for arg & env & auxv arrays. int argv_array_size = intSize * (argv.size() + 1); int envp_array_size = intSize * (envp.size() + 1); int auxv_array_size = intSize * 2 * (auxv.size() + 1); int arg_data_size = 0; for (vector::size_type i = 0; i < argv.size(); ++i) { arg_data_size += argv[i].size() + 1; } int env_data_size = 0; for (vector::size_type i = 0; i < envp.size(); ++i) { env_data_size += envp[i].size() + 1; } int space_needed = argv_array_size + envp_array_size + auxv_array_size + arg_data_size + env_data_size; if (space_needed < 32*1024) space_needed = 32*1024; // set bottom of stack memState->setStackMin(memState->getStackBase() - space_needed); // align it memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); memState->setStackSize(memState->getStackBase() - memState->getStackMin()); // map memory allocateMem(memState->getStackMin(), roundUp(memState->getStackSize(), pageSize)); // map out initial stack contents Addr argv_array_base = memState->getStackMin() + intSize; // room for argc Addr envp_array_base = argv_array_base + argv_array_size; Addr auxv_array_base = envp_array_base + envp_array_size; Addr arg_data_base = auxv_array_base + auxv_array_size; Addr env_data_base = arg_data_base + arg_data_size; // write contents to stack uint64_t argc = argv.size(); if (intSize == 8) argc = htog((uint64_t)argc); else if (intSize == 4) argc = htog((uint32_t)argc); else panic("Unknown int size"); initVirtMem.writeBlob(memState->getStackMin(), (uint8_t*)&argc, intSize); copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); //Copy the aux stuff for (vector::size_type x = 0; x < auxv.size(); x++) { initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, (uint8_t*)&(auxv[x].getAuxType()), intSize); initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, (uint8_t*)&(auxv[x].getAuxVal()), intSize); } ThreadContext *tc = system->getThreadContext(contextIds[0]); setSyscallArg(tc, 0, argc); setSyscallArg(tc, 1, argv_array_base); tc->setIntReg(StackPointerReg, memState->getStackMin()); tc->pcState(getStartPC()); } void AlphaProcess::setupASNReg() { ThreadContext *tc = system->getThreadContext(contextIds[0]); tc->setMiscRegNoEffect(IPR_DTB_ASN, _pid << 57); } void AlphaProcess::unserialize(CheckpointIn &cp) { Process::unserialize(cp); // need to set up ASN after unserialization since _pid value may // come from checkpoint setupASNReg(); } void AlphaProcess::initState() { // need to set up ASN before further initialization since init // will involve writing to virtual memory addresses setupASNReg(); Process::initState(); argsInit(MachineBytes, PageBytes); ThreadContext *tc = system->getThreadContext(contextIds[0]); tc->setIntReg(GlobalPointerReg, objFile->globalPointer()); //Operate in user mode tc->setMiscRegNoEffect(IPR_ICM, mode_user << 3); tc->setMiscRegNoEffect(IPR_DTB_CM, mode_user << 3); //No super page mapping tc->setMiscRegNoEffect(IPR_MCSR, 0); } AlphaISA::IntReg AlphaProcess::getSyscallArg(ThreadContext *tc, int &i) { assert(i < 6); return tc->readIntReg(FirstArgumentReg + i++); } void AlphaProcess::setSyscallArg(ThreadContext *tc, int i, AlphaISA::IntReg val) { assert(i < 6); tc->setIntReg(FirstArgumentReg + i, val); } void AlphaProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) { // check for error condition. Alpha syscall convention is to // indicate success/failure in reg a3 (r19) and put the // return value itself in the standard return value reg (v0). if (sysret.successful()) { // no error tc->setIntReg(SyscallSuccessReg, 0); tc->setIntReg(ReturnValueReg, sysret.returnValue()); } else { // got an error, return details tc->setIntReg(SyscallSuccessReg, (IntReg)-1); tc->setIntReg(ReturnValueReg, sysret.errnoValue()); } }