/*
 * Copyright (c) 2001-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Nathan Binkert
 *          Steve Reinhardt
 *          Andrew Schultz
 */

#include <string>
#include <vector>

#include "arch/alpha/pagetable.hh"
#include "arch/alpha/tlb.hh"
#include "arch/alpha/faults.hh"
#include "base/inifile.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "config/alpha_tlaser.hh"
#include "cpu/thread_context.hh"
#include "sim/builder.hh"

using namespace std;
using namespace EV5;

namespace AlphaISA
{
    ///////////////////////////////////////////////////////////////////////
    //
    //  Alpha TLB
    //
#ifdef DEBUG
    bool uncacheBit39 = false;
    bool uncacheBit40 = false;
#endif

#define MODE2MASK(X)			(1 << (X))

    TLB::TLB(const string &name, int s)
        : SimObject(name), size(s), nlu(0)
    {
        table = new PTE[size];
        memset(table, 0, sizeof(PTE[size]));
    }

    TLB::~TLB()
    {
        if (table)
            delete [] table;
    }

    // look up an entry in the TLB
    PTE *
    TLB::lookup(Addr vpn, uint8_t asn) const
    {
        // assume not found...
        PTE *retval = NULL;

        PageTable::const_iterator i = lookupTable.find(vpn);
        if (i != lookupTable.end()) {
            while (i->first == vpn) {
                int index = i->second;
                PTE *pte = &table[index];
                assert(pte->valid);
                if (vpn == pte->tag && (pte->asma || pte->asn == asn)) {
                    retval = pte;
                    break;
                }

                ++i;
            }
        }

        DPRINTF(TLB, "lookup %#x, asn %#x -> %s ppn %#x\n", vpn, (int)asn,
                retval ? "hit" : "miss", retval ? retval->ppn : 0);
        return retval;
    }


    Fault
    TLB::checkCacheability(RequestPtr &req)
    {
        // in Alpha, cacheability is controlled by upper-level bits of the
        // physical address

        /*
         * We support having the uncacheable bit in either bit 39 or bit 40.
         * The Turbolaser platform (and EV5) support having the bit in 39, but
         * Tsunami (which Linux assumes uses an EV6) generates accesses with
         * the bit in 40.  So we must check for both, but we have debug flags
         * to catch a weird case where both are used, which shouldn't happen.
         */


#if ALPHA_TLASER
        if (req->getPaddr() & PAddrUncachedBit39) {
#else
        if (req->getPaddr() & PAddrUncachedBit43) {
#endif
            // IPR memory space not implemented
            if (PAddrIprSpace(req->getPaddr())) {
                return new UnimpFault("IPR memory space not implemented!");
            } else {
                // mark request as uncacheable
                req->setFlags(req->getFlags() | UNCACHEABLE);

#if !ALPHA_TLASER
                // Clear bits 42:35 of the physical address (10-2 in Tsunami manual)
                req->setPaddr(req->getPaddr() & PAddrUncachedMask);
#endif
            }
        }
        return NoFault;
    }


    // insert a new TLB entry
    void
    TLB::insert(Addr addr, PTE &pte)
    {
        VAddr vaddr = addr;
        if (table[nlu].valid) {
            Addr oldvpn = table[nlu].tag;
            PageTable::iterator i = lookupTable.find(oldvpn);

            if (i == lookupTable.end())
                panic("TLB entry not found in lookupTable");

            int index;
            while ((index = i->second) != nlu) {
                if (table[index].tag != oldvpn)
                    panic("TLB entry not found in lookupTable");

                ++i;
            }

            DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn);

            lookupTable.erase(i);
        }

        DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), pte.ppn);

        table[nlu] = pte;
        table[nlu].tag = vaddr.vpn();
        table[nlu].valid = true;

        lookupTable.insert(make_pair(vaddr.vpn(), nlu));
        nextnlu();
    }

    void
    TLB::flushAll()
    {
        DPRINTF(TLB, "flushAll\n");
        memset(table, 0, sizeof(PTE[size]));
        lookupTable.clear();
        nlu = 0;
    }

    void
    TLB::flushProcesses()
    {
        PageTable::iterator i = lookupTable.begin();
        PageTable::iterator end = lookupTable.end();
        while (i != end) {
            int index = i->second;
            PTE *pte = &table[index];
            assert(pte->valid);

            // we can't increment i after we erase it, so save a copy and
            // increment it to get the next entry now
            PageTable::iterator cur = i;
            ++i;

            if (!pte->asma) {
                DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn);
                pte->valid = false;
                lookupTable.erase(cur);
            }
        }
    }

    void
    TLB::flushAddr(Addr addr, uint8_t asn)
    {
        VAddr vaddr = addr;

        PageTable::iterator i = lookupTable.find(vaddr.vpn());
        if (i == lookupTable.end())
            return;

        while (i->first == vaddr.vpn()) {
            int index = i->second;
            PTE *pte = &table[index];
            assert(pte->valid);

            if (vaddr.vpn() == pte->tag && (pte->asma || pte->asn == asn)) {
                DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(),
                        pte->ppn);

                // invalidate this entry
                pte->valid = false;

                lookupTable.erase(i);
            }

            ++i;
        }
    }


    void
    TLB::serialize(ostream &os)
    {
        SERIALIZE_SCALAR(size);
        SERIALIZE_SCALAR(nlu);

        for (int i = 0; i < size; i++) {
            nameOut(os, csprintf("%s.PTE%d", name(), i));
            table[i].serialize(os);
        }
    }

    void
    TLB::unserialize(Checkpoint *cp, const string &section)
    {
        UNSERIALIZE_SCALAR(size);
        UNSERIALIZE_SCALAR(nlu);

        for (int i = 0; i < size; i++) {
            table[i].unserialize(cp, csprintf("%s.PTE%d", section, i));
            if (table[i].valid) {
                lookupTable.insert(make_pair(table[i].tag, i));
            }
        }
    }


    ///////////////////////////////////////////////////////////////////////
    //
    //  Alpha ITB
    //
    ITB::ITB(const std::string &name, int size)
        : TLB(name, size)
    {}


    void
    ITB::regStats()
    {
        hits
            .name(name() + ".hits")
            .desc("ITB hits");
        misses
            .name(name() + ".misses")
            .desc("ITB misses");
        acv
            .name(name() + ".acv")
            .desc("ITB acv");
        accesses
            .name(name() + ".accesses")
            .desc("ITB accesses");

        accesses = hits + misses;
    }


    Fault
    ITB::translate(RequestPtr &req, ThreadContext *tc) const
    {
        if (PcPAL(req->getPC())) {
            // strip off PAL PC marker (lsb is 1)
            req->setPaddr((req->getVaddr() & ~3) & PAddrImplMask);
            hits++;
            return NoFault;
        }

        if (req->getFlags() & PHYSICAL) {
            req->setPaddr(req->getVaddr());
        } else {
            // verify that this is a good virtual address
            if (!validVirtualAddress(req->getVaddr())) {
                acv++;
                return new ItbAcvFault(req->getVaddr());
            }


            // VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5
            // VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6
#if ALPHA_TLASER
            if ((MCSR_SP(tc->readMiscReg(IPR_MCSR)) & 2) &&
                VAddrSpaceEV5(req->getVaddr()) == 2) {
#else
            if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) {
#endif
                // only valid in kernel mode
                if (ICM_CM(tc->readMiscReg(IPR_ICM)) !=
                    mode_kernel) {
                    acv++;
                    return new ItbAcvFault(req->getVaddr());
                }

                req->setPaddr(req->getVaddr() & PAddrImplMask);

#if !ALPHA_TLASER
                // sign extend the physical address properly
                if (req->getPaddr() & PAddrUncachedBit40)
                    req->setPaddr(req->getPaddr() | ULL(0xf0000000000));
                else
                    req->setPaddr(req->getPaddr() & ULL(0xffffffffff));
#endif

            } else {
                // not a physical address: need to look up pte
                int asn = DTB_ASN_ASN(tc->readMiscReg(IPR_DTB_ASN));
                PTE *pte = lookup(VAddr(req->getVaddr()).vpn(),
                                            asn);

                if (!pte) {
                    misses++;
                    return new ItbPageFault(req->getVaddr());
                }

                req->setPaddr((pte->ppn << PageShift) +
                              (VAddr(req->getVaddr()).offset()
                               & ~3));

                // check permissions for this access
                if (!(pte->xre &
                      (1 << ICM_CM(tc->readMiscReg(IPR_ICM))))) {
                    // instruction access fault
                    acv++;
                    return new ItbAcvFault(req->getVaddr());
                }

                hits++;
            }
        }

        // check that the physical address is ok (catch bad physical addresses)
        if (req->getPaddr() & ~PAddrImplMask)
            return genMachineCheckFault();

        return checkCacheability(req);

    }

    ///////////////////////////////////////////////////////////////////////
    //
    //  Alpha DTB
    //
    DTB::DTB(const std::string &name, int size)
        : TLB(name, size)
    {}

    void
    DTB::regStats()
    {
        read_hits
            .name(name() + ".read_hits")
            .desc("DTB read hits")
            ;

        read_misses
            .name(name() + ".read_misses")
            .desc("DTB read misses")
            ;

        read_acv
            .name(name() + ".read_acv")
            .desc("DTB read access violations")
            ;

        read_accesses
            .name(name() + ".read_accesses")
            .desc("DTB read accesses")
            ;

        write_hits
            .name(name() + ".write_hits")
            .desc("DTB write hits")
            ;

        write_misses
            .name(name() + ".write_misses")
            .desc("DTB write misses")
            ;

        write_acv
            .name(name() + ".write_acv")
            .desc("DTB write access violations")
            ;

        write_accesses
            .name(name() + ".write_accesses")
            .desc("DTB write accesses")
            ;

        hits
            .name(name() + ".hits")
            .desc("DTB hits")
            ;

        misses
            .name(name() + ".misses")
            .desc("DTB misses")
            ;

        acv
            .name(name() + ".acv")
            .desc("DTB access violations")
            ;

        accesses
            .name(name() + ".accesses")
            .desc("DTB accesses")
            ;

        hits = read_hits + write_hits;
        misses = read_misses + write_misses;
        acv = read_acv + write_acv;
        accesses = read_accesses + write_accesses;
    }

    Fault
    DTB::translate(RequestPtr &req, ThreadContext *tc, bool write) const
    {
        Addr pc = tc->readPC();

        mode_type mode =
            (mode_type)DTB_CM_CM(tc->readMiscReg(IPR_DTB_CM));


        /**
         * Check for alignment faults
         */
        if (req->getVaddr() & (req->getSize() - 1)) {
            DPRINTF(TLB, "Alignment Fault on %#x, size = %d", req->getVaddr(),
                    req->getSize());
            uint64_t flags = write ? MM_STAT_WR_MASK : 0;
            return new DtbAlignmentFault(req->getVaddr(), req->getFlags(), flags);
        }

        if (pc & 0x1) {
            mode = (req->getFlags() & ALTMODE) ?
                (mode_type)ALT_MODE_AM(
                    tc->readMiscReg(IPR_ALT_MODE))
                : mode_kernel;
        }

        if (req->getFlags() & PHYSICAL) {
            req->setPaddr(req->getVaddr());
        } else {
            // verify that this is a good virtual address
            if (!validVirtualAddress(req->getVaddr())) {
                if (write) { write_acv++; } else { read_acv++; }
                uint64_t flags = (write ? MM_STAT_WR_MASK : 0) |
                    MM_STAT_BAD_VA_MASK |
                    MM_STAT_ACV_MASK;
                return new DtbPageFault(req->getVaddr(), req->getFlags(), flags);
            }

            // Check for "superpage" mapping
#if ALPHA_TLASER
            if ((MCSR_SP(tc->readMiscReg(IPR_MCSR)) & 2) &&
                VAddrSpaceEV5(req->getVaddr()) == 2) {
#else
            if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) {
#endif

                // only valid in kernel mode
                if (DTB_CM_CM(tc->readMiscReg(IPR_DTB_CM)) !=
                    mode_kernel) {
                    if (write) { write_acv++; } else { read_acv++; }
                    uint64_t flags = ((write ? MM_STAT_WR_MASK : 0) |
                                      MM_STAT_ACV_MASK);
                    return new DtbAcvFault(req->getVaddr(), req->getFlags(), flags);
                }

                req->setPaddr(req->getVaddr() & PAddrImplMask);

#if !ALPHA_TLASER
                // sign extend the physical address properly
                if (req->getPaddr() & PAddrUncachedBit40)
                    req->setPaddr(req->getPaddr() | ULL(0xf0000000000));
                else
                    req->setPaddr(req->getPaddr() & ULL(0xffffffffff));
#endif

            } else {
                if (write)
                    write_accesses++;
                else
                    read_accesses++;

                int asn = DTB_ASN_ASN(tc->readMiscReg(IPR_DTB_ASN));

                // not a physical address: need to look up pte
                PTE *pte = lookup(VAddr(req->getVaddr()).vpn(),
                                            asn);

                if (!pte) {
                    // page fault
                    if (write) { write_misses++; } else { read_misses++; }
                    uint64_t flags = (write ? MM_STAT_WR_MASK : 0) |
                        MM_STAT_DTB_MISS_MASK;
                    return (req->getFlags() & VPTE) ?
                        (Fault)(new PDtbMissFault(req->getVaddr(), req->getFlags(),
                                                  flags)) :
                        (Fault)(new NDtbMissFault(req->getVaddr(), req->getFlags(),
                                                  flags));
                }

                req->setPaddr((pte->ppn << PageShift) +
                    VAddr(req->getVaddr()).offset());

                if (write) {
                    if (!(pte->xwe & MODE2MASK(mode))) {
                        // declare the instruction access fault
                        write_acv++;
                        uint64_t flags = MM_STAT_WR_MASK |
                            MM_STAT_ACV_MASK |
                            (pte->fonw ? MM_STAT_FONW_MASK : 0);
                        return new DtbPageFault(req->getVaddr(), req->getFlags(), flags);
                    }
                    if (pte->fonw) {
                        write_acv++;
                        uint64_t flags = MM_STAT_WR_MASK |
                            MM_STAT_FONW_MASK;
                        return new DtbPageFault(req->getVaddr(), req->getFlags(), flags);
                    }
                } else {
                    if (!(pte->xre & MODE2MASK(mode))) {
                        read_acv++;
                        uint64_t flags = MM_STAT_ACV_MASK |
                            (pte->fonr ? MM_STAT_FONR_MASK : 0);
                        return new DtbAcvFault(req->getVaddr(), req->getFlags(), flags);
                    }
                    if (pte->fonr) {
                        read_acv++;
                        uint64_t flags = MM_STAT_FONR_MASK;
                        return new DtbPageFault(req->getVaddr(), req->getFlags(), flags);
                    }
                }
            }

            if (write)
                write_hits++;
            else
                read_hits++;
        }

        // check that the physical address is ok (catch bad physical addresses)
        if (req->getPaddr() & ~PAddrImplMask)
            return genMachineCheckFault();

        return checkCacheability(req);
    }

    PTE &
    TLB::index(bool advance)
    {
        PTE *pte = &table[nlu];

        if (advance)
            nextnlu();

        return *pte;
    }

    DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", TLB)

    BEGIN_DECLARE_SIM_OBJECT_PARAMS(ITB)

        Param<int> size;

    END_DECLARE_SIM_OBJECT_PARAMS(ITB)

    BEGIN_INIT_SIM_OBJECT_PARAMS(ITB)

        INIT_PARAM_DFLT(size, "TLB size", 48)

    END_INIT_SIM_OBJECT_PARAMS(ITB)


    CREATE_SIM_OBJECT(ITB)
    {
        return new ITB(getInstanceName(), size);
    }

    REGISTER_SIM_OBJECT("AlphaITB", ITB)

    BEGIN_DECLARE_SIM_OBJECT_PARAMS(DTB)

        Param<int> size;

    END_DECLARE_SIM_OBJECT_PARAMS(DTB)

    BEGIN_INIT_SIM_OBJECT_PARAMS(DTB)

        INIT_PARAM_DFLT(size, "TLB size", 64)

    END_INIT_SIM_OBJECT_PARAMS(DTB)


    CREATE_SIM_OBJECT(DTB)
    {
        return new DTB(getInstanceName(), size);
    }

    REGISTER_SIM_OBJECT("AlphaDTB", DTB)
}