/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert * Steve Reinhardt * Andrew Schultz */ #include <string> #include <vector> #include "arch/alpha/faults.hh" #include "arch/alpha/pagetable.hh" #include "arch/alpha/tlb.hh" #include "arch/generic/debugfaults.hh" #include "base/inifile.hh" #include "base/str.hh" #include "base/trace.hh" #include "cpu/thread_context.hh" #include "debug/TLB.hh" #include "sim/full_system.hh" using namespace std; namespace AlphaISA { /////////////////////////////////////////////////////////////////////// // // Alpha TLB // #ifdef DEBUG bool uncacheBit39 = false; bool uncacheBit40 = false; #endif #define MODE2MASK(X) (1 << (X)) TLB::TLB(const Params *p) : BaseTLB(p), size(p->size), nlu(0) { table = new TlbEntry[size]; memset(table, 0, sizeof(TlbEntry) * size); flushCache(); } TLB::~TLB() { if (table) delete [] table; } void TLB::regStats() { fetch_hits .name(name() + ".fetch_hits") .desc("ITB hits"); fetch_misses .name(name() + ".fetch_misses") .desc("ITB misses"); fetch_acv .name(name() + ".fetch_acv") .desc("ITB acv"); fetch_accesses .name(name() + ".fetch_accesses") .desc("ITB accesses"); fetch_accesses = fetch_hits + fetch_misses; read_hits .name(name() + ".read_hits") .desc("DTB read hits") ; read_misses .name(name() + ".read_misses") .desc("DTB read misses") ; read_acv .name(name() + ".read_acv") .desc("DTB read access violations") ; read_accesses .name(name() + ".read_accesses") .desc("DTB read accesses") ; write_hits .name(name() + ".write_hits") .desc("DTB write hits") ; write_misses .name(name() + ".write_misses") .desc("DTB write misses") ; write_acv .name(name() + ".write_acv") .desc("DTB write access violations") ; write_accesses .name(name() + ".write_accesses") .desc("DTB write accesses") ; data_hits .name(name() + ".data_hits") .desc("DTB hits") ; data_misses .name(name() + ".data_misses") .desc("DTB misses") ; data_acv .name(name() + ".data_acv") .desc("DTB access violations") ; data_accesses .name(name() + ".data_accesses") .desc("DTB accesses") ; data_hits = read_hits + write_hits; data_misses = read_misses + write_misses; data_acv = read_acv + write_acv; data_accesses = read_accesses + write_accesses; } // look up an entry in the TLB TlbEntry * TLB::lookup(Addr vpn, uint8_t asn) { // assume not found... TlbEntry *retval = NULL; if (EntryCache[0]) { if (vpn == EntryCache[0]->tag && (EntryCache[0]->asma || EntryCache[0]->asn == asn)) retval = EntryCache[0]; else if (EntryCache[1]) { if (vpn == EntryCache[1]->tag && (EntryCache[1]->asma || EntryCache[1]->asn == asn)) retval = EntryCache[1]; else if (EntryCache[2] && vpn == EntryCache[2]->tag && (EntryCache[2]->asma || EntryCache[2]->asn == asn)) retval = EntryCache[2]; } } if (retval == NULL) { PageTable::const_iterator i = lookupTable.find(vpn); if (i != lookupTable.end()) { while (i->first == vpn) { int index = i->second; TlbEntry *entry = &table[index]; assert(entry->valid); if (vpn == entry->tag && (entry->asma || entry->asn == asn)) { retval = updateCache(entry); break; } ++i; } } } DPRINTF(TLB, "lookup %#x, asn %#x -> %s ppn %#x\n", vpn, (int)asn, retval ? "hit" : "miss", retval ? retval->ppn : 0); return retval; } Fault TLB::checkCacheability(RequestPtr &req, bool itb) { // in Alpha, cacheability is controlled by upper-level bits of the // physical address /* * We support having the uncacheable bit in either bit 39 or bit * 40. The Turbolaser platform (and EV5) support having the bit * in 39, but Tsunami (which Linux assumes uses an EV6) generates * accesses with the bit in 40. So we must check for both, but we * have debug flags to catch a weird case where both are used, * which shouldn't happen. */ if (req->getPaddr() & PAddrUncachedBit43) { // IPR memory space not implemented if (PAddrIprSpace(req->getPaddr())) { return new UnimpFault("IPR memory space not implemented!"); } else { // mark request as uncacheable req->setFlags(Request::UNCACHEABLE); // Clear bits 42:35 of the physical address (10-2 in // Tsunami manual) req->setPaddr(req->getPaddr() & PAddrUncachedMask); } // We shouldn't be able to read from an uncachable address in Alpha as // we don't have a ROM and we don't want to try to fetch from a device // register as we destroy any data that is clear-on-read. if (req->isUncacheable() && itb) return new UnimpFault("CPU trying to fetch from uncached I/O"); } return NoFault; } // insert a new TLB entry void TLB::insert(Addr addr, TlbEntry &entry) { flushCache(); VAddr vaddr = addr; if (table[nlu].valid) { Addr oldvpn = table[nlu].tag; PageTable::iterator i = lookupTable.find(oldvpn); if (i == lookupTable.end()) panic("TLB entry not found in lookupTable"); int index; while ((index = i->second) != nlu) { if (table[index].tag != oldvpn) panic("TLB entry not found in lookupTable"); ++i; } DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn); lookupTable.erase(i); } DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), entry.ppn); table[nlu] = entry; table[nlu].tag = vaddr.vpn(); table[nlu].valid = true; lookupTable.insert(make_pair(vaddr.vpn(), nlu)); nextnlu(); } void TLB::flushAll() { DPRINTF(TLB, "flushAll\n"); memset(table, 0, sizeof(TlbEntry) * size); flushCache(); lookupTable.clear(); nlu = 0; } void TLB::flushProcesses() { flushCache(); PageTable::iterator i = lookupTable.begin(); PageTable::iterator end = lookupTable.end(); while (i != end) { int index = i->second; TlbEntry *entry = &table[index]; assert(entry->valid); // we can't increment i after we erase it, so save a copy and // increment it to get the next entry now PageTable::iterator cur = i; ++i; if (!entry->asma) { DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, entry->tag, entry->ppn); entry->valid = false; lookupTable.erase(cur); } } } void TLB::flushAddr(Addr addr, uint8_t asn) { flushCache(); VAddr vaddr = addr; PageTable::iterator i = lookupTable.find(vaddr.vpn()); if (i == lookupTable.end()) return; while (i != lookupTable.end() && i->first == vaddr.vpn()) { int index = i->second; TlbEntry *entry = &table[index]; assert(entry->valid); if (vaddr.vpn() == entry->tag && (entry->asma || entry->asn == asn)) { DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(), entry->ppn); // invalidate this entry entry->valid = false; lookupTable.erase(i++); } else { ++i; } } } void TLB::serialize(ostream &os) { SERIALIZE_SCALAR(size); SERIALIZE_SCALAR(nlu); for (int i = 0; i < size; i++) { nameOut(os, csprintf("%s.Entry%d", name(), i)); table[i].serialize(os); } } void TLB::unserialize(Checkpoint *cp, const string §ion) { UNSERIALIZE_SCALAR(size); UNSERIALIZE_SCALAR(nlu); for (int i = 0; i < size; i++) { table[i].unserialize(cp, csprintf("%s.Entry%d", section, i)); if (table[i].valid) { lookupTable.insert(make_pair(table[i].tag, i)); } } } Fault TLB::translateInst(RequestPtr req, ThreadContext *tc) { //If this is a pal pc, then set PHYSICAL if (FullSystem && PcPAL(req->getPC())) req->setFlags(Request::PHYSICAL); if (PcPAL(req->getPC())) { // strip off PAL PC marker (lsb is 1) req->setPaddr((req->getVaddr() & ~3) & PAddrImplMask); fetch_hits++; return NoFault; } if (req->getFlags() & Request::PHYSICAL) { req->setPaddr(req->getVaddr()); } else { // verify that this is a good virtual address if (!validVirtualAddress(req->getVaddr())) { fetch_acv++; return new ItbAcvFault(req->getVaddr()); } // VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5 // VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6 if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) { // only valid in kernel mode if (ICM_CM(tc->readMiscRegNoEffect(IPR_ICM)) != mode_kernel) { fetch_acv++; return new ItbAcvFault(req->getVaddr()); } req->setPaddr(req->getVaddr() & PAddrImplMask); // sign extend the physical address properly if (req->getPaddr() & PAddrUncachedBit40) req->setPaddr(req->getPaddr() | ULL(0xf0000000000)); else req->setPaddr(req->getPaddr() & ULL(0xffffffffff)); } else { // not a physical address: need to look up pte int asn = DTB_ASN_ASN(tc->readMiscRegNoEffect(IPR_DTB_ASN)); TlbEntry *entry = lookup(VAddr(req->getVaddr()).vpn(), asn); if (!entry) { fetch_misses++; return new ItbPageFault(req->getVaddr()); } req->setPaddr((entry->ppn << PageShift) + (VAddr(req->getVaddr()).offset() & ~3)); // check permissions for this access if (!(entry->xre & (1 << ICM_CM(tc->readMiscRegNoEffect(IPR_ICM))))) { // instruction access fault fetch_acv++; return new ItbAcvFault(req->getVaddr()); } fetch_hits++; } } // check that the physical address is ok (catch bad physical addresses) if (req->getPaddr() & ~PAddrImplMask) { return new MachineCheckFault(); } return checkCacheability(req, true); } Fault TLB::translateData(RequestPtr req, ThreadContext *tc, bool write) { mode_type mode = (mode_type)DTB_CM_CM(tc->readMiscRegNoEffect(IPR_DTB_CM)); /** * Check for alignment faults */ if (req->getVaddr() & (req->getSize() - 1)) { DPRINTF(TLB, "Alignment Fault on %#x, size = %d\n", req->getVaddr(), req->getSize()); uint64_t flags = write ? MM_STAT_WR_MASK : 0; return new DtbAlignmentFault(req->getVaddr(), req->getFlags(), flags); } if (PcPAL(req->getPC())) { mode = (req->getFlags() & Request::ALTMODE) ? (mode_type)ALT_MODE_AM( tc->readMiscRegNoEffect(IPR_ALT_MODE)) : mode_kernel; } if (req->getFlags() & Request::PHYSICAL) { req->setPaddr(req->getVaddr()); } else { // verify that this is a good virtual address if (!validVirtualAddress(req->getVaddr())) { if (write) { write_acv++; } else { read_acv++; } uint64_t flags = (write ? MM_STAT_WR_MASK : 0) | MM_STAT_BAD_VA_MASK | MM_STAT_ACV_MASK; return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } // Check for "superpage" mapping if (VAddrSpaceEV6(req->getVaddr()) == 0x7e) { // only valid in kernel mode if (DTB_CM_CM(tc->readMiscRegNoEffect(IPR_DTB_CM)) != mode_kernel) { if (write) { write_acv++; } else { read_acv++; } uint64_t flags = ((write ? MM_STAT_WR_MASK : 0) | MM_STAT_ACV_MASK); return new DtbAcvFault(req->getVaddr(), req->getFlags(), flags); } req->setPaddr(req->getVaddr() & PAddrImplMask); // sign extend the physical address properly if (req->getPaddr() & PAddrUncachedBit40) req->setPaddr(req->getPaddr() | ULL(0xf0000000000)); else req->setPaddr(req->getPaddr() & ULL(0xffffffffff)); } else { if (write) write_accesses++; else read_accesses++; int asn = DTB_ASN_ASN(tc->readMiscRegNoEffect(IPR_DTB_ASN)); // not a physical address: need to look up pte TlbEntry *entry = lookup(VAddr(req->getVaddr()).vpn(), asn); if (!entry) { // page fault if (write) { write_misses++; } else { read_misses++; } uint64_t flags = (write ? MM_STAT_WR_MASK : 0) | MM_STAT_DTB_MISS_MASK; return (req->getFlags() & Request::VPTE) ? (Fault)(new PDtbMissFault(req->getVaddr(), req->getFlags(), flags)) : (Fault)(new NDtbMissFault(req->getVaddr(), req->getFlags(), flags)); } req->setPaddr((entry->ppn << PageShift) + VAddr(req->getVaddr()).offset()); if (write) { if (!(entry->xwe & MODE2MASK(mode))) { // declare the instruction access fault write_acv++; uint64_t flags = MM_STAT_WR_MASK | MM_STAT_ACV_MASK | (entry->fonw ? MM_STAT_FONW_MASK : 0); return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } if (entry->fonw) { write_acv++; uint64_t flags = MM_STAT_WR_MASK | MM_STAT_FONW_MASK; return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } } else { if (!(entry->xre & MODE2MASK(mode))) { read_acv++; uint64_t flags = MM_STAT_ACV_MASK | (entry->fonr ? MM_STAT_FONR_MASK : 0); return new DtbAcvFault(req->getVaddr(), req->getFlags(), flags); } if (entry->fonr) { read_acv++; uint64_t flags = MM_STAT_FONR_MASK; return new DtbPageFault(req->getVaddr(), req->getFlags(), flags); } } } if (write) write_hits++; else read_hits++; } // check that the physical address is ok (catch bad physical addresses) if (req->getPaddr() & ~PAddrImplMask) { return new MachineCheckFault(); } return checkCacheability(req); } TlbEntry & TLB::index(bool advance) { TlbEntry *entry = &table[nlu]; if (advance) nextnlu(); return *entry; } Fault TLB::translateAtomic(RequestPtr req, ThreadContext *tc, Mode mode) { if (mode == Execute) return translateInst(req, tc); else return translateData(req, tc, mode == Write); } void TLB::translateTiming(RequestPtr req, ThreadContext *tc, Translation *translation, Mode mode) { assert(translation); translation->finish(translateAtomic(req, tc, mode), req, tc, mode); } Fault TLB::translateFunctional(RequestPtr req, ThreadContext *tc, Mode mode) { panic("Not implemented\n"); return NoFault; } Fault TLB::finalizePhysical(RequestPtr req, ThreadContext *tc, Mode mode) const { return NoFault; } } // namespace AlphaISA AlphaISA::TLB * AlphaTLBParams::create() { return new AlphaISA::TLB(this); }