/* * Copyright (c) 2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Matt Horsnell * Prakash Ramrakhyani */ #include #include #include #include "crypto.hh" namespace ArmISA { const uint8_t Crypto::aesSBOX[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; const uint8_t Crypto::aesInvSBOX[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; const uint8_t Crypto::aesFFLOG[256] = { 0x00, 0x00, 0x19, 0x01, 0x32, 0x02, 0x1a, 0xc6, 0x4b, 0xc7, 0x1b, 0x68, 0x33, 0xee, 0xdf, 0x03, 0x64, 0x04, 0xe0, 0x0e, 0x34, 0x8d, 0x81, 0xef, 0x4c, 0x71, 0x08, 0xc8, 0xf8, 0x69, 0x1c, 0xc1, 0x7d, 0xc2, 0x1d, 0xb5, 0xf9, 0xb9, 0x27, 0x6a, 0x4d, 0xe4, 0xa6, 0x72, 0x9a, 0xc9, 0x09, 0x78, 0x65, 0x2f, 0x8a, 0x05, 0x21, 0x0f, 0xe1, 0x24, 0x12, 0xf0, 0x82, 0x45, 0x35, 0x93, 0xda, 0x8e, 0x96, 0x8f, 0xdb, 0xbd, 0x36, 0xd0, 0xce, 0x94, 0x13, 0x5c, 0xd2, 0xf1, 0x40, 0x46, 0x83, 0x38, 0x66, 0xdd, 0xfd, 0x30, 0xbf, 0x06, 0x8b, 0x62, 0xb3, 0x25, 0xe2, 0x98, 0x22, 0x88, 0x91, 0x10, 0x7e, 0x6e, 0x48, 0xc3, 0xa3, 0xb6, 0x1e, 0x42, 0x3a, 0x6b, 0x28, 0x54, 0xfa, 0x85, 0x3d, 0xba, 0x2b, 0x79, 0x0a, 0x15, 0x9b, 0x9f, 0x5e, 0xca, 0x4e, 0xd4, 0xac, 0xe5, 0xf3, 0x73, 0xa7, 0x57, 0xaf, 0x58, 0xa8, 0x50, 0xf4, 0xea, 0xd6, 0x74, 0x4f, 0xae, 0xe9, 0xd5, 0xe7, 0xe6, 0xad, 0xe8, 0x2c, 0xd7, 0x75, 0x7a, 0xeb, 0x16, 0x0b, 0xf5, 0x59, 0xcb, 0x5f, 0xb0, 0x9c, 0xa9, 0x51, 0xa0, 0x7f, 0x0c, 0xf6, 0x6f, 0x17, 0xc4, 0x49, 0xec, 0xd8, 0x43, 0x1f, 0x2d, 0xa4, 0x76, 0x7b, 0xb7, 0xcc, 0xbb, 0x3e, 0x5a, 0xfb, 0x60, 0xb1, 0x86, 0x3b, 0x52, 0xa1, 0x6c, 0xaa, 0x55, 0x29, 0x9d, 0x97, 0xb2, 0x87, 0x90, 0x61, 0xbe, 0xdc, 0xfc, 0xbc, 0x95, 0xcf, 0xcd, 0x37, 0x3f, 0x5b, 0xd1, 0x53, 0x39, 0x84, 0x3c, 0x41, 0xa2, 0x6d, 0x47, 0x14, 0x2a, 0x9e, 0x5d, 0x56, 0xf2, 0xd3, 0xab, 0x44, 0x11, 0x92, 0xd9, 0x23, 0x20, 0x2e, 0x89, 0xb4, 0x7c, 0xb8, 0x26, 0x77, 0x99, 0xe3, 0xa5, 0x67, 0x4a, 0xed, 0xde, 0xc5, 0x31, 0xfe, 0x18, 0x0d, 0x63, 0x8c, 0x80, 0xc0, 0xf7, 0x70, 0x07 }; const uint8_t Crypto::aesFFEXP[256] = { 0x01, 0x03, 0x05, 0x0f, 0x11, 0x33, 0x55, 0xff, 0x1a, 0x2e, 0x72, 0x96, 0xa1, 0xf8, 0x13, 0x35, 0x5f, 0xe1, 0x38, 0x48, 0xd8, 0x73, 0x95, 0xa4, 0xf7, 0x02, 0x06, 0x0a, 0x1e, 0x22, 0x66, 0xaa, 0xe5, 0x34, 0x5c, 0xe4, 0x37, 0x59, 0xeb, 0x26, 0x6a, 0xbe, 0xd9, 0x70, 0x90, 0xab, 0xe6, 0x31, 0x53, 0xf5, 0x04, 0x0c, 0x14, 0x3c, 0x44, 0xcc, 0x4f, 0xd1, 0x68, 0xb8, 0xd3, 0x6e, 0xb2, 0xcd, 0x4c, 0xd4, 0x67, 0xa9, 0xe0, 0x3b, 0x4d, 0xd7, 0x62, 0xa6, 0xf1, 0x08, 0x18, 0x28, 0x78, 0x88, 0x83, 0x9e, 0xb9, 0xd0, 0x6b, 0xbd, 0xdc, 0x7f, 0x81, 0x98, 0xb3, 0xce, 0x49, 0xdb, 0x76, 0x9a, 0xb5, 0xc4, 0x57, 0xf9, 0x10, 0x30, 0x50, 0xf0, 0x0b, 0x1d, 0x27, 0x69, 0xbb, 0xd6, 0x61, 0xa3, 0xfe, 0x19, 0x2b, 0x7d, 0x87, 0x92, 0xad, 0xec, 0x2f, 0x71, 0x93, 0xae, 0xe9, 0x20, 0x60, 0xa0, 0xfb, 0x16, 0x3a, 0x4e, 0xd2, 0x6d, 0xb7, 0xc2, 0x5d, 0xe7, 0x32, 0x56, 0xfa, 0x15, 0x3f, 0x41, 0xc3, 0x5e, 0xe2, 0x3d, 0x47, 0xc9, 0x40, 0xc0, 0x5b, 0xed, 0x2c, 0x74, 0x9c, 0xbf, 0xda, 0x75, 0x9f, 0xba, 0xd5, 0x64, 0xac, 0xef, 0x2a, 0x7e, 0x82, 0x9d, 0xbc, 0xdf, 0x7a, 0x8e, 0x89, 0x80, 0x9b, 0xb6, 0xc1, 0x58, 0xe8, 0x23, 0x65, 0xaf, 0xea, 0x25, 0x6f, 0xb1, 0xc8, 0x43, 0xc5, 0x54, 0xfc, 0x1f, 0x21, 0x63, 0xa5, 0xf4, 0x07, 0x09, 0x1b, 0x2d, 0x77, 0x99, 0xb0, 0xcb, 0x46, 0xca, 0x45, 0xcf, 0x4a, 0xde, 0x79, 0x8b, 0x86, 0x91, 0xa8, 0xe3, 0x3e, 0x42, 0xc6, 0x51, 0xf3, 0x0e, 0x12, 0x36, 0x5a, 0xee, 0x29, 0x7b, 0x8d, 0x8c, 0x8f, 0x8a, 0x85, 0x94, 0xa7, 0xf2, 0x0d, 0x17, 0x39, 0x4b, 0xdd, 0x7c, 0x84, 0x97, 0xa2, 0xfd, 0x1c, 0x24, 0x6c, 0xb4, 0xc7, 0x52, 0xf6, 0x01 }; const uint8_t Crypto::aesSHIFT[16] = { 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11 }; const uint8_t Crypto::aesINVSHIFT[16] = { 0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3 }; uint8_t Crypto::aesFFMul(uint8_t a, uint8_t b) { unsigned int log_prod; if ((a ==0)|| (b == 0)) return 0; log_prod = (aesFFLOG[a] + aesFFLOG[b]); if(log_prod > 0xff) log_prod = log_prod - 0xff; return aesFFEXP[log_prod]; } void Crypto::aesSubBytes(uint8_t *output, uint8_t *input) { for (int i = 0; i < 16; ++i) { output[i] = aesSBOX[input[i]]; } } void Crypto::aesInvSubBytes(uint8_t *output, uint8_t *input) { for (int i = 0; i < 16; ++i) { output[i] = aesInvSBOX[input[i]]; } } void Crypto::aesShiftRows(uint8_t *output, uint8_t *input) { for (int i = 0; i < 16; ++i) { output[i] = input[aesSHIFT[i]]; } } void Crypto::aesInvShiftRows(uint8_t *output, uint8_t *input) { for (int i = 0; i < 16; ++i) { output[i] = input[aesINVSHIFT[i]]; } } void Crypto::aesAddRoundKey(uint8_t *output, uint8_t *input, uint8_t *key) { for (int i = 0; i < 16; ++i) { output[i] = input[i] ^ key[i]; } } void Crypto::aesMixColumns(uint8_t *output, uint8_t *input) { for (int j = 0; j < 4; ++j) { int row0 = (j * 4); int row1 = row0 + 1; int row2 = row0 + 2; int row3 = row0 + 3; uint8_t t1 = input[row0] ^ input[row1] ^ input[row2] ^ input[row3]; output[row1] = input[row1] ^ t1 ^ aesFFMul2(input[row1] ^ input[row2]); output[row2] = input[row2] ^ t1 ^ aesFFMul2(input[row2] ^ input[row3]); output[row3] = input[row3] ^ t1 ^ aesFFMul2(input[row3] ^ input[row0]); output[row0] = input[row0] ^ t1 ^ aesFFMul2(input[row0] ^ input[row1]); } } void Crypto::aesInvMixColumns(uint8_t *output, uint8_t *input) { for (int j = 0; j < 4; ++j) { for (int i = 0; i < 4; ++i) { int index0 = (j * 4) + i; int index1 = (j * 4) + ((i + 1) % 4); int index2 = (j * 4) + ((i + 2) % 4); int index3 = (j * 4) + ((i + 3) % 4); output [index0] = aesFFMul(0x0e, input[index0]) ^ aesFFMul(0x0b, input[index1]) ^ aesFFMul(0x0d, input[index2]) ^ aesFFMul(0x09, input[index3]); } } } void Crypto::aesEncrypt(uint8_t *output, uint8_t *input, uint8_t *key) { uint8_t temp1[16]; uint8_t temp2[16]; aesAddRoundKey(&temp1[0], input, key); aesShiftRows(&temp2[0], &temp1[0]); aesSubBytes(output, &temp2[0]); } void Crypto::aesDecrypt(uint8_t *output, uint8_t *input, uint8_t *key) { uint8_t temp1[16]; uint8_t temp2[16]; aesAddRoundKey(&temp1[0], input, key); aesInvShiftRows(&temp2[0], &temp1[0]); aesInvSubBytes(output, &temp2[0]); } void Crypto::sha256Op( uint32_t *X, uint32_t *Y, uint32_t *Z) { uint32_t T0, T1, T2, T3; for (int i = 0; i < 4; ++i) { T0 = choose(Y[0], Y[1], Y[2]); T1 = majority(X[0], X[1], X[2]); T2 = Y[3] + sigma1(Y[0]) + T0 + Z[i]; X[3] = T2 + X[3]; Y[3] = T2 + sigma0(X[0]) + T1; // Rotate T3 = Y[3]; Y[3] = Y[2]; Y[2] = Y[1]; Y[1] = Y[0]; Y[0] = X[3]; X[3] = X[2]; X[2] = X[1]; X[1] = X[0]; X[0] = T3; } } void Crypto::_sha1Op( uint32_t *X, uint32_t *Y, uint32_t *Z, SHAOp op) { uint32_t T1, T2; for (int i = 0; i < 4; ++i) { switch (op) { case CHOOSE: T1 = choose(X[1], X[2], X[3]); break; case PARITY: T1 = parity(X[1], X[2], X[3]); break; case MAJORITY: T1 = majority(X[1], X[2], X[3]); break; default: return; } Y[0] += ror(X[0], 27) + T1 + Z[i]; X[1] = ror(X[1], 2); T2 = Y[0]; Y[0] = X[3]; X[3] = X[2]; X[2] = X[1]; X[1] = X[0]; X[0] = T2; } } void Crypto::sha256H( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); sha256Op(&X[0], &Y[0], &Z[0]); store1Reg(output, &X[0]); } void Crypto::sha256H2( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); sha256Op(&Y[0], &X[0], &Z[0]); store1Reg(output, &X[0]); } void Crypto::sha256Su0(uint8_t *output, uint8_t *input) { uint32_t X[4], Y[4]; uint32_t T[4]; load2Reg(&X[0], &Y[0], output, input); T[3] = Y[0]; T[2] = X[3]; T[1] = X[2]; T[0] = X[1]; T[3] = ror(T[3], 7) ^ ror(T[3], 18) ^ (T[3] >> 3); T[2] = ror(T[2], 7) ^ ror(T[2], 18) ^ (T[2] >> 3); T[1] = ror(T[1], 7) ^ ror(T[1], 18) ^ (T[1] >> 3); T[0] = ror(T[0], 7) ^ ror(T[0], 18) ^ (T[0] >> 3); X[3] += T[3]; X[2] += T[2]; X[1] += T[1]; X[0] += T[0]; store1Reg(output, &X[0]); } void Crypto::sha256Su1( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4]; uint32_t T0[4], T1[4], T2[4], T3[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); T0[3] = Z[0]; T0[2] = Y[3]; T0[1] = Y[2]; T0[0] = Y[1]; T1[1] = Z[3]; T1[0] = Z[2]; T1[1] = ror(T1[1], 17) ^ ror(T1[1], 19) ^ (T1[1] >> 10); T1[0] = ror(T1[0], 17) ^ ror(T1[0], 19) ^ (T1[0] >> 10); T3[1] = X[1] + T0[1]; T3[0] = X[0] + T0[0]; T1[1] = T3[1] + T1[1]; T1[0] = T3[0] + T1[0]; T2[1] = ror(T1[1], 17) ^ ror(T1[1], 19) ^ (T1[1] >> 10); T2[0] = ror(T1[0], 17) ^ ror(T1[0], 19) ^ (T1[0] >> 10); T3[1] = X[3] + T0[3]; T3[0] = X[2] + T0[2]; X[3] = T3[1] + T2[1]; X[2] = T3[0] + T2[0]; X[1] = T1[1]; X[0] = T1[0]; store1Reg(output, &X[0]); } void Crypto::sha1Op( uint8_t *output, uint8_t *input, uint8_t *input2, SHAOp op) { uint32_t X[4], Y[4], Z[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); _sha1Op(&X[0], &Y[0], &Z[0], op); store1Reg(output, &X[0]); } void Crypto::sha1C( uint8_t *output, uint8_t *input, uint8_t *input2) { sha1Op(output, input, input2, CHOOSE); } void Crypto::sha1P( uint8_t *output, uint8_t *input, uint8_t *input2) { sha1Op(output, input, input2, PARITY); } void Crypto::sha1M( uint8_t *output, uint8_t *input, uint8_t *input2) { sha1Op(output, input, input2, MAJORITY); } void Crypto::sha1H(uint8_t *output, uint8_t *input) { uint32_t X[4], Y[4]; load2Reg(&X[0], &Y[0], output, input); X[0] = ror(Y[0], 2); store1Reg(output, &X[0]); } void Crypto::sha1Su0( uint8_t *output, uint8_t *input, uint8_t *input2) { uint32_t X[4], Y[4], Z[4], T[4]; load3Reg(&X[0], &Y[0], &Z[0], output, input, input2); T[3] = Y[1]; T[2] = Y[0]; T[1] = X[3]; T[0] = X[2]; X[3] = T[3] ^ X[3] ^ Z[3]; X[2] = T[2] ^ X[2] ^ Z[2]; X[1] = T[1] ^ X[1] ^ Z[1]; X[0] = T[0] ^ X[0] ^ Z[0]; store1Reg(output, &X[0]); } void Crypto::sha1Su1(uint8_t *output, uint8_t *input) { uint32_t X[4], Y[4], T[4]; load2Reg(&X[0], &Y[0], output, input); T[3] = X[3] ^ 0x0; T[2] = X[2] ^ Y[3]; T[1] = X[1] ^ Y[2]; T[0] = X[0] ^ Y[1]; X[2] = ror(T[2], 31); X[1] = ror(T[1], 31); X[0] = ror(T[0], 31); X[3] = ror(T[3], 31) ^ ror(T[0], 30); store1Reg(output, &X[0]); } void Crypto::load2Reg( uint32_t *X, uint32_t *Y, uint8_t *output, uint8_t *input) { for (int i = 0; i < 4; ++i) { X[i] = *((uint32_t *)&output[i*4]); Y[i] = *((uint32_t *)&input[i*4]); } } void Crypto::load3Reg( uint32_t *X, uint32_t *Y, uint32_t *Z, uint8_t *output, uint8_t *input, uint8_t *input2) { for (int i = 0; i < 4; ++i) { X[i] = *((uint32_t *)&output[i*4]); Y[i] = *((uint32_t *)&input[i*4]); Z[i] = *((uint32_t *)&input2[i*4]); } } void Crypto::store1Reg(uint8_t *output, uint32_t *X) { for (int i = 0; i < 4; ++i) { output[i*4] = (uint8_t)(X[i]); output[i*4+1] = (uint8_t)(X[i] >> 8); output[i*4+2] = (uint8_t)(X[i] >> 16); output[i*4+3] = (uint8_t)(X[i] >> 24); } } } // namespace ArmISA