/* * Copyright (c) 2012-2013, 2017-2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Edmund Grimley Evans * Thomas Grocutt */ /** * @file * Floating-point library code, which will gradually replace vfp.hh. For * portability, this library does not use floating-point data types. Currently, * C's standard integer types are used in the API, though this could be changed * to something like class Fp32 { uint32_t x; }, etc. */ #ifndef __ARCH_ARM_INSTS_FPLIB_HH__ #define __ARCH_ARM_INSTS_FPLIB_HH__ #include #include "arch/arm/miscregs.hh" namespace ArmISA { enum FPRounding { FPRounding_TIEEVEN = 0, FPRounding_POSINF = 1, FPRounding_NEGINF = 2, FPRounding_ZERO = 3, FPRounding_TIEAWAY = 4, FPRounding_ODD = 5 }; static inline FPRounding FPCRRounding(FPSCR &fpscr) { return (FPRounding)((uint32_t)fpscr >> 22 & 3); } /** Floating-point absolute value. */ template T fplibAbs(T op); /** Floating-point add. */ template T fplibAdd(T op1, T op2, FPSCR &fpscr); /** Floating-point compare (quiet and signaling). */ template int fplibCompare(T op1, T op2, bool signal_nans, FPSCR &fpscr); /** Floating-point compare equal. */ template bool fplibCompareEQ(T op1, T op2, FPSCR &fpscr); /** Floating-point compare greater than or equal. */ template bool fplibCompareGE(T op1, T op2, FPSCR &fpscr); /** Floating-point compare greater than. */ template bool fplibCompareGT(T op1, T op2, FPSCR &fpscr); /** Floating-point compare unordered. */ template bool fplibCompareUN(T op1, T op2, FPSCR &fpscr); /** Floating-point convert precision. */ template T2 fplibConvert(T1 op, FPRounding rounding, FPSCR &fpscr); /** Floating-point division. */ template T fplibDiv(T op1, T op2, FPSCR &fpscr); /** Floating-point exponential accelerator. */ template T fplibExpA(T op); /** Floating-point maximum. */ template T fplibMax(T op1, T op2, FPSCR &fpscr); /** Floating-point maximum number. */ template T fplibMaxNum(T op1, T op2, FPSCR &fpscr); /** Floating-point minimum. */ template T fplibMin(T op1, T op2, FPSCR &fpscr); /** Floating-point minimum number. */ template T fplibMinNum(T op1, T op2, FPSCR &fpscr); /** Floating-point multiply. */ template T fplibMul(T op1, T op2, FPSCR &fpscr); /** Floating-point multiply-add. */ template T fplibMulAdd(T addend, T op1, T op2, FPSCR &fpscr); /** Floating-point multiply extended. */ template T fplibMulX(T op1, T op2, FPSCR &fpscr); /** Floating-point negate. */ template T fplibNeg(T op); /** Floating-point reciprocal square root estimate. */ template T fplibRSqrtEstimate(T op, FPSCR &fpscr); /** Floating-point reciprocal square root step. */ template T fplibRSqrtStepFused(T op1, T op2, FPSCR &fpscr); /** Floating-point reciprocal estimate. */ template T fplibRecipEstimate(T op, FPSCR &fpscr); /** Floating-point reciprocal step. */ template T fplibRecipStepFused(T op1, T op2, FPSCR &fpscr); /** Floating-point reciprocal exponent. */ template T fplibRecpX(T op, FPSCR &fpscr); /** Floating-point convert to integer. */ template T fplibRoundInt(T op, FPRounding rounding, bool exact, FPSCR &fpscr); /** Floating-point adjust exponent. */ template T fplibScale(T op1, T op2, FPSCR &fpscr); /** Floating-point square root. */ template T fplibSqrt(T op, FPSCR &fpscr); /** Floating-point subtract. */ template T fplibSub(T op1, T op2, FPSCR &fpscr); /** Floating-point trigonometric multiply-add coefficient. */ template T fplibTrigMulAdd(uint8_t coeff_index, T op1, T op2, FPSCR &fpscr); /** Floating-point trigonometric starting value. */ template T fplibTrigSMul(T op1, T op2, FPSCR &fpscr); /** Floating-point trigonometric select coefficient. */ template T fplibTrigSSel(T op1, T op2, FPSCR &fpscr); /** Floating-point convert to fixed-point. */ template T2 fplibFPToFixed(T1 op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); /** Floating-point convert from fixed-point. */ template T fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); /** Floating-point value for +/- infinity. */ template T fplibInfinity(int sgn); /** Foating-point value for default NaN. */ template T fplibDefaultNaN(); /* Function specializations... */ template <> uint16_t fplibAbs(uint16_t op); template <> uint32_t fplibAbs(uint32_t op); template <> uint64_t fplibAbs(uint64_t op); template <> uint16_t fplibAdd(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibAdd(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibAdd(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> int fplibCompare(uint16_t op1, uint16_t op2, bool signal_nans, FPSCR &fpscr); template <> int fplibCompare(uint32_t op1, uint32_t op2, bool signal_nans, FPSCR &fpscr); template <> int fplibCompare(uint64_t op1, uint64_t op2, bool signal_nans, FPSCR &fpscr); template <> bool fplibCompareEQ(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> bool fplibCompareEQ(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> bool fplibCompareEQ(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> bool fplibCompareGE(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> bool fplibCompareGE(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> bool fplibCompareGE(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> bool fplibCompareGT(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> bool fplibCompareGT(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> bool fplibCompareGT(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> bool fplibCompareUN(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> bool fplibCompareUN(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> bool fplibCompareUN(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibConvert(uint32_t op, FPRounding rounding, FPSCR &fpscr); template <> uint16_t fplibConvert(uint64_t op, FPRounding rounding, FPSCR &fpscr); template <> uint32_t fplibConvert(uint16_t op, FPRounding rounding, FPSCR &fpscr); template <> uint32_t fplibConvert(uint64_t op, FPRounding rounding, FPSCR &fpscr); template <> uint64_t fplibConvert(uint16_t op, FPRounding rounding, FPSCR &fpscr); template <> uint64_t fplibConvert(uint32_t op, FPRounding rounding, FPSCR &fpscr); template <> uint16_t fplibDiv(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibDiv(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibDiv(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibExpA(uint16_t op); template <> uint32_t fplibExpA(uint32_t op); template <> uint64_t fplibExpA(uint64_t op); template <> uint16_t fplibMax(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibMax(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibMax(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibMaxNum(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibMaxNum(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibMaxNum(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibMin(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibMin(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibMin(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibMinNum(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibMinNum(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibMinNum(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibMul(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibMul(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibMul(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibMulAdd(uint16_t addend, uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibMulAdd(uint32_t addend, uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibMulAdd(uint64_t addend, uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibMulX(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibMulX(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibMulX(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibNeg(uint16_t op); template <> uint32_t fplibNeg(uint32_t op); template <> uint64_t fplibNeg(uint64_t op); template <> uint16_t fplibRSqrtEstimate(uint16_t op, FPSCR &fpscr); template <> uint32_t fplibRSqrtEstimate(uint32_t op, FPSCR &fpscr); template<> uint64_t fplibRSqrtEstimate(uint64_t op, FPSCR &fpscr); template <> uint16_t fplibRSqrtStepFused(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibRSqrtStepFused(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibRSqrtStepFused(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibRecipEstimate(uint16_t op, FPSCR &fpscr); template <> uint32_t fplibRecipEstimate(uint32_t op, FPSCR &fpscr); template <> uint64_t fplibRecipEstimate(uint64_t op, FPSCR &fpscr); template <> uint16_t fplibRecipStepFused(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibRecipStepFused(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibRecipStepFused(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibRecpX(uint16_t op, FPSCR &fpscr); template <> uint32_t fplibRecpX(uint32_t op, FPSCR &fpscr); template <> uint64_t fplibRecpX(uint64_t op, FPSCR &fpscr); template <> uint16_t fplibRoundInt(uint16_t op, FPRounding rounding, bool exact, FPSCR &fpscr); template <> uint32_t fplibRoundInt(uint32_t op, FPRounding rounding, bool exact, FPSCR &fpscr); template <> uint64_t fplibRoundInt(uint64_t op, FPRounding rounding, bool exact, FPSCR &fpscr); template <> uint16_t fplibScale(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibScale(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibScale(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibSqrt(uint16_t op, FPSCR &fpscr); template <> uint32_t fplibSqrt(uint32_t op, FPSCR &fpscr); template <> uint64_t fplibSqrt(uint64_t op, FPSCR &fpscr); template <> uint16_t fplibSub(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibSub(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibSub(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibTrigMulAdd(uint8_t coeff_index, uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibTrigMulAdd(uint8_t coeff_index, uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibTrigMulAdd(uint8_t coeff_index, uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibTrigSMul(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibTrigSMul(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibTrigSMul(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibTrigSSel(uint16_t op1, uint16_t op2, FPSCR &fpscr); template <> uint32_t fplibTrigSSel(uint32_t op1, uint32_t op2, FPSCR &fpscr); template <> uint64_t fplibTrigSSel(uint64_t op1, uint64_t op2, FPSCR &fpscr); template <> uint16_t fplibFPToFixed(uint16_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint32_t fplibFPToFixed(uint16_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint32_t fplibFPToFixed(uint32_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint32_t fplibFPToFixed(uint64_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint64_t fplibFPToFixed(uint16_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint64_t fplibFPToFixed(uint32_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint64_t fplibFPToFixed(uint64_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint16_t fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint32_t fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint64_t fplibFixedToFP(uint64_t op, int fbits, bool u, FPRounding rounding, FPSCR &fpscr); template <> uint16_t fplibInfinity(int sgn); template <> uint32_t fplibInfinity(int sgn); template <> uint64_t fplibInfinity(int sgn); template <> uint16_t fplibDefaultNaN(); template <> uint32_t fplibDefaultNaN(); template <> uint64_t fplibDefaultNaN(); } #endif